
1

An Adaptive Framework to Tune the Coordinate
Systems in Nature-Inspired Optimization

Algorithms
Zhi-Zhong Liu, Yong Wang, Senior Member, IEEE, Shengxiang Yang, Senior Member, IEEE, and Ke Tang,

Senior Member, IEEE

Abstract—The performance of many nature-inspired optimiza-
tion algorithms depends strongly on their implemented coordi-
nate system. However, the commonly used coordinate system is
fixed and not well suited for different function landscapes, nature-
inspired optimization algorithms thus might not search efficiently.
To overcome this shortcoming, in this paper we propose a frame-
work, named ACoS, to adaptively tune the coordinate systems
in nature-inspired optimization algorithms. In ACoS, an Eigen
coordinate system is established by making use of the cumulative
population distribution information, which can be obtained based
on a covariance matrix adaptation strategy and an additional
archiving mechanism. Since the population distribution infor-
mation can reflect the features of the function landscape to
some extent, nature-inspired optimization algorithms in the Eigen
coordinate system have the capability to identify the modality of
the function landscape. In addition, the Eigen coordinate system
is coupled with the original coordinate system, and they are
selected according to a probability vector. The probability vector
aims to determine the selection ratio of each coordinate system for
each individual, and is adaptively updated based on the collected
information from the offspring. ACoS has been applied to two
of the most popular paradigms of nature-inspired optimization
algorithms, i.e., particle swarm optimization and differential
evolution, for solving 30 test functions with 30 and 50 dimensions
at the 2014 IEEE Congress on Evolutionary Computation. The
experimental studies demonstrate its effectiveness.

Index Terms—Nature-inspired optimization algorithms, parti-
cle swarm optimization, differential evolution, coordinate system,
adaptive framework.

This work was supported in part by the Innovation-Driven Plan in Cen-
tral South University under Grant 2018CX010, in part by the National
Natural Science Foundation of China under Grants 61673397, 61673331
and 61672478, in part by the EU Horizon 2020 Marie Sklodowska-Curie
Individual Fellowships (Project ID: 661327), in part by the Engineering and
Physical Sciences Research Council of UK under Grant EP/K001310/1, in
part by the Hunan Provincial Natural Science Fund for Distinguished Young
Scholars (Grant No. 2016JJ1018), and in part by the Graduate Innovation
Fund of Hunan Province of China under Grant CX2017B062. (Corresponding
author: Yong Wang).

Z.-Z. Liu is with the School of Information Science and Engineering,
Central South University, Changsha 410083, China (Email: zhizhongli-
u@csu.edu.cn)

Y. Wang is with the School of Information Science and Engineering, Central
South University, Changsha 410083, China, and also with the School of Com-
puter Science and Electronic Engineering, University of Essex, Colchester
CO4 3SQ, UK. (Email: ywang@csu.edu.cn)

S. Yang is with the Centre for Computational Intelligence (CCI), School
of Computer Science and Informatics, De Montfort University, Leicester LE1
9BH, UK, and also with the College of Information Engineering, Xiangtan
University, Xiangtan 411105, China. (Email: syang@dmu.ac.uk)

K. Tang is with the Department of Computer Science and Engineering,
Southern University of Science and Technology, Shenzhen 518055, China.
(Email: tangk3@sustc.edu.cn)

1x

2x

o

'

1x'

2x

'o

Global Optimum

An individual

Fig. 1. Advantage of the Eigen coordinate system. In this figure, the dashed
ellipses display the contours, ox1x2 denotes the original coordinate system,
and o

′
x
′
1x

′
2 refers to the Eigen coordinate system. Compared with ox1x2,

o
′
x
′
1x

′
2 is more suitable for the contours since it is established based on the

population distribution information.

I. INTRODUCTION

Nature-inspired Optimization algorithms (NIOAs) are a
class of meta-heuristic algorithms inspired by natural phe-
nomenon. NIOAs usually exploit nature-inspired mechanisms
from natural evolution and swarm intelligence to evolve a
population of candidate solutions toward the optimal solution.
Up to now, numerous NIOA paradigms have been proposed,
such as genetic algorithm (GA) [1], evolutionary programming
(EP) [2], evolution strategy (ES) [3], genetic programming
(GP) [4], differential evolution (DE) [5], particle swarm opti-
mization (PSO) [6], bat algorithm (BA) [7], teaching-learning-
based optimization (TLBO) [8], and Jaya algorithm [9]. Com-
pared with other types of optimization methods, NIOAs have
some advantages such as ease of use, simple structure, effi-
ciency, and robustness. Therefore, NIOAs have been broadly
applied to diverse fields such as renewable energy [10], au-
tomotive design [11], route planning [12], classification [13],
image processing [14], and action recognition [15].

For many NIOAs, their performance relies crucially on
their implemented coordinate system. However, the original
coordinate system, which is the most frequently used coordi-
nate system in current NIOAs, is fixed throughout the search
process. Under this condition, NIOAs may fail to produce
promising solutions matching the requirements of different
function landscapes or even one function landscape at different
search stages. As a result, it is difficult for NIOAs to search

2

efficiently in the original coordinate system.
To remedy this issue, in some variants of ES and DE, the

Eigen coordinate system is established by making use of the
population distribution information. As shown in Fig. 1, the
population distribution information can reflect the features of
the function landscape to a certain degree and the established
Eigen coordinate system (i.e., o

′
x

′

1x
′

2) is more suitable for the
contours compared with the original coordinate system (i.e.,
ox1x2). Therefore, it is expected that NIOAs implemented in
the Eigen coordinate system possess the capability to identify
the modality of the function landscape and search efficiently.
In 2001, a famous ES called CMA-ES was proposed by
Hansen and Ostermeier [16]. In CMA-ES, an Eigen coordinate
system is established by utilizing the cumulative population
distribution information (i.e., the current and historical popu-
lation distribution information). Afterward, the offspring popu-
lation is sampled from this Eigen coordinate system. Overall,
CMA-ES shows very fast convergence speed and is signifi-
cantly superior to the ordinary ES. Recently, three attempts
(i.e., DE/eig [17] , CoBiDE [18], and CPI-DE [19]) have
been made to enhance DE’s performance by implementing the
crossover operator in both the Eigen coordinate system and
the original coordinate system. In DE/eig and CoBiDE, only
the current population distribution information is extracted to
establish the Eigen coordinate system, while like CMA-ES,
in CPI-DE the cumulative population distribution information
is employed to construct the Eigen coordinate system. It is
interesting to note that all these three attempts in DE draw the
similar conclusions: 1) each coordinate system has its own
advantages and is suitable for certain kinds of optimization
problems, and 2) combining these two coordinate systems can
obtain better performance than just using one of them during
the evolution. The above conclusions motivate us to design
an adaptive scheme to make full use of these two coordinate
systems.

This paper presents an adaptive framework, called ACoS, to
tune the coordinate systems in NIOAs. ACoS takes advantage
of a covariance matrix adaptation strategy and an additional
archiving mechanism to extract cumulative population distri-
bution information, with the aim of establishing the Eigen
coordinate system. Moreover, this Eigen coordinate system
is synthesized with the original coordinate system, and they
are selected based on a probability vector. This probability
vector determines the selection ratio of each coordinate system
for each individual and is adaptively updated according to
the collected information from the offspring. ACoS has been
applied to two of the most popular NIOA paradigms: PSO
and DE. The effectiveness of ACoS has been validated by
comprehensive experiments on 30 test functions with 30 and
50 dimensions at the 2014 IEEE Congress on Evolutionary
Computation (IEEE CEC2014) [20].

The main contributions of this paper are summarized as
follows:

• This paper provides a new point of view toward how to
describe some common nature-inspired operators in the
original coordinate system, and also offers a convenient
transformation from a nature-inspired operator in the
original coordinate system to the corresponding nature-

inspired operator in the Eigen coordinate system.
• A simple yet effective approach is proposed to establish

the Eigen coordinate system, which consists of two main
elements, i.e., a covariance matrix adaptation strategy
and an additional archiving mechanism. In comparison
with the previous methods, the cumulative population
distribution information derived from our approach is
more sufficient.

• By using a probability vector, this paper presents an adap-
tive scheme to select an appropriate coordinate system
from the original coordinate system and the Eigen coor-
dinate system for each individual during the evolution.

• The proposed framework (i.e., ACoS) can be readily
applied to various NIOAs. In this paper, we have verified
that ACoS is able to improve the performance of two of
the most popular NIOA paradigms: PSO and DE. To the
best of our knowledge, it is the first attempt to improve
PSO’s performance by adjusting the coordinate systems
in an adaptive fashion.

The rest of this paper is organized as follows. Section II
briefly introduces PSO and DE. Section III presents the
coordinate systems and their related work. The proposed ACoS
and its implementation details are presented in Section IV.
The experimental results and the performance comparisons are
given in Section V. Finally, Section VI concludes this paper.

II. PARTICLE SWARM OPTIMIZATION (PSO) AND
DIFFERENTIAL EVOLUTION (DE)

PSO and DE have become two of the most popular NIOA
paradigms. In this section, we will briefly introduce them.

A. Particle Swarm Optimization (PSO)

PSO [6] is inspired by swarm behavior. It searches with
a population (called swarm) of candidate solutions (called
particles or individuals). Each particle moves in the search
space to seek the global optimum, and its movement is guided
by its own personal historical best experience as well as
the entire swarm’s best experience. Due to ease of use and
efficiency, PSO has been successful applied to a variety of
real-world optimization problems [21].

PSO contains two core equations: the velocity updating
equation and the position updating equation. At generation
g, PSO updates the dth dimension of the ith particle’s
velocity −→v gi = [vgi,1, v

g
i,2, ..., v

g
i,D]

T and position −→x gi =

[xgi,1, x
g
i,2, ..., x

g
i,D]

T as follows:

vg+1
i,d =vgi,d+c1r1,d(pbest

g
i,d−x

g
i,d)+c2r2,d(gbest

g
d−x

g
i,d) (1)

xg+1
i,d = vg+1

i,d + xgi,d (2)

where i ∈ {1, . . . , NP}, d ∈ {1, . . . , D}, NP is the popula-
tion size, D is the dimension of the search space,

−−−→
pbestgi =

[pbestgi,1, pbest
g
i,2, ..., pbest

g
i,D]

T denotes the ith particle’s his-
torical best position,

−−−→
gbestg = [gbestg1, gbest

g
2, ..., gbest

g
D]
T

means the entire swarm’s best position, c1 and c2 are the ac-
celeration parameters, and r1,d and r2,d refer to two uniformly
distributed random numbers between 0 and 1.

3

From Eq.(1) and Eq.(2), it is apparent that PSO works
dimension by dimension. Based on the updating of each
dimension, the whole velocity and position of a particle are
updated as follows:
−→v g+1
i = −→v gi +c1R1(

−−−→
pbestgi −

−→x gi)+c2R2(
−−−→
gbestg−−→x gi) (3)

−→x g+1
i = −→v g+1

i +−→x gi (4)

where R1 = diag(r1,1, r1,2, . . . , r1,D) and R2 = diag(r2,1,
r2,2, . . . , r2,D).

Since PSO’s inception, many researchers have improved
its performance in different ways [22] [23]. One way is to
control or adjust the particle’s velocity. Shi and Eberhart [24]
incorporated an inertial weight w into the original PSO’s
velocity updating, and Eq.(3) is thus modified into Eq.(5)
−→v g+1
i =w−→v gi+c1R1(

−−−→
pbestgi−

−→x gi)+c2R2(
−−−→
gbestg−−→x gi) (5)

The only difference between Eq.(3) and Eq.(5) is that in Eq.(5)
w is attached to −→v gi . In Eq.(5), the value of w decreases
linearly from 0.9 to 0.4 over the course of search. It is because
a larger w in the early stage of evolution is beneficial to
exploration, and a smaller w in the later stage of evolution can
facilitate the exploitation. In addition, Clerc and Kennedy [25]
introduced a constriction factor χ to reformulate the particle’s
velocity updating:
−→v g+1
i =χ[−→v gi+c1R1(

−−−→
pbestgi−

−→x gi)+c2R2(
−−−→
gbestg−−→x gi)] (6)

where χ = 2/|2 − ϕ −
√
ϕ2 − 4ϕ| and ϕ = c1 + c2. χ is

preferably set to 0.729 together with c1 = c2 = 2.05. For the
sake of convenience, the PSO variants in [24] and [25] are
called PSO-w and PSO-cf in this paper, respectively, which
are two of the most popular PSO variants.

B. Differential Evolution (DE)

DE [5] is another simple yet efficient NIOA paradigm which
has been successfully used to deal with a wide spectrum
of optimization problems [26]. Similar to other NIOAs, DE
searches with a population of NP individuals: Pg = {−→x gi =
[xgi,1, x

g
i,2, ..., x

g
i,D]

T , i = 1, 2, ..., NP}, where g denotes the
generation number, NP means the population size, and D
refers to the dimension of the search space. In DE, at genera-
tion g = 0, the initial population P0 is randomly sampled from
the search space. After initialization, DE employs mutation,
crossover, and selection operators to steer the population
toward the global optimum.

Mutation: The aim of the mutation operator is to generate
a mutant vector −→v gi for each individual −→x gi (also called a
target vector). The following are four commonly used mutation
operators in the literature:

• DE/rand/1
−→v gi =

−→x gr1 + F ∗ (−→x gr2 −
−→x gr3) (7)

• DE/rand/2
−→v gi =

−→x gr1 +F ∗ (
−→x gr2 −

−→x gr3)+F ∗ (−→x gr4 −
−→x gr5) (8)

• DE/current-to-best/1
−→v g+i = −→x gi +F ∗(

−→x gbest−
−→x gi)+F ∗(

−→x gr1−
−→x gr2) (9)

• DE/rand-to-best/1
−→v gi =

−→x gr1+F ∗(
−→x gbest−

−→x gr1)+F ∗(
−→x gr2−

−→x gr3) (10)

where the indices r1, r2, r3, r4, and r5 are mutually different
integers randomly selected from [1, 2, ..., NP] and are also
different from i, −→x gbest denotes the best target vector in the
current population, and F refers to the scaling factor.

Crossover: After mutation, the crossover operator is per-
formed on each pair of −→x gi and −→v gi to generate a trial
vector −→u gi = [ugi,1, u

g
i,2, ..., u

g
i,D]

T . The binomial crossover
is expressed as follows:

ugi,j =

{
vgi,j , if randj ≤ CR or j = jrand

xgi,j , otherwise
(11)

where jrand is a random integer between 1 and D, randj is
a uniformly distributed random number between 0 and 1 for
each j, and CR denotes the crossover control parameter. The
condition “j = jrand” makes −→u gi different from −→x gi by at
least one dimension.

From Eq.(11), it is easy to see that the crossover operator
is implemented dimension by dimension. The updating of the
whole trial vector can be described as follows:

−→u gi =
−→x gi + Cr(−→v gi −

−→x gi) (12)

where Cr = diag(s1, s2, ..., sD), and sj ={
1, if randj ≤ CR or j = jrand

0, otherwise
, j = 1, 2, ..., D.

Selection: The selection operator is designed to select the
better one between −→u gi and −→x gi to enter the next generation.
For a minimization problem, it can be described as follows:

−→x g+1
i =

{−→u gi , if f(−→u gi) ≤ f(−→x gi)
−→x gi , otherwise

(13)

DE has also attracted much attention [27] and a considerable
number of DE variants have been proposed. Among them,
jDE [28], SaDE [29], and JADE [30] are three state-of-
the-art DE variants. jDE is a DE with self-adaptive control
parameter settings [31]. It encodes the control parameters
F and CR into individual level and evolves them. SaDE
adaptively adjusts the trial vector generation strategies and
control parameter settings simultaneously by learning from
the previous experience. It maintains a strategy candidate pool
which contains four different trial vector generation strategies.
Each individual selects a trial vector generation strategy from
the pool in an adaptive way to yield its trial vector. JADE is
an adaptive DE with an optional external archive. In JADE,
the “DE/current-to-pbest/1” mutation operator exploits the
information of multiple best individuals in the population.
Moreover, the optional external archive utilizes the difference
between the current solutions and the recently explored inferi-
or solutions to produce promising directions. JADE generates
F and CR based on their historical record of success.

III. COORDINATE SYSTEMS AND THEIR RELATED WORK

A. Coordinate Systems
In this subsection, we will introduce the original coordi-

nate system, the Eigen coordinate system, and the difference
between them.

4

1) Original Coordinate System: The original coordinate
system is a default coordinate system in most NIOAs. It is
formed by the columns of the unity matrix I, and thus is
a fixed coordinate system. The nature-inspired operators of
PSO and DE introduced in Section II are conducted in the
original coordinate system. By analyzing these operators, we
find that each of them can be described with the usage of
three elements: the coefficients, the diagonal matrixes, and the
vectors. Therefore, we propose a new point of view toward
how to describe these operators in the original coordinate
system:

−→r O =

m∑
i=1

αi
−→y i +

n∑
i=1

Wi
−→z i (14)

where −→r O denotes the resultant vector, m and n are nonneg-
ative integers, αi is a coefficient, Wi = diag(w1, w2, ..., wD),
w1, w2, ..., wD are real numbers, and −→y i and −→z i mean
two vectors in the original coordinate system. Eq.(14) can
be considered as a general form of the operators in PSO
and DE. For example, if −→r O = −→v g+1

i , m = 1, αi = 1,
−→y 1 = −→v gi , n = 3, W1 = c1R1, −→z 1 =

−−−→
pbestgi , W2 = c2R2,

−→z 2 =
−−−→
gbestg , W3 = −(c1R1 + c2R2), and −→z 3 = −→x gi , then

Eq.(14) is revised to

−→v g+1
i =−→v gi +

[
c1R1

−−−→
pbestgi +c2R2

−−−→
gbestg−(c1R1+c2R2)

−→x gi
]

=−→v gi +c1R1(
−−−→
pbestgi −

−→x gi) + c2R2(
−−−→
gbestg−−→x gi)

(15)
Clearly, Eq.(15) is equivalent to Eq.(3) and both of them are
the velocity updating equation in PSO. Indeed, apart from
PSO and DE, Eq.(14) is also an effective way to describe
the operators in some other NIOA paradigms such as cultural
algorithm [32], artificial bee colony algorithm [33], fireworks
algorithm [34], brain storm optimization algorithm [35], and
so on.

Note that the right-hand side of Eq.(14) involves two parts:∑m
i=1 αi

−→y i and
∑n
i=1 Wi

−→z i. Since the first part is a linear
operation of different vectors, it is irrelevant to the coordinate
system. In terms of the second part, Wi is a diagonal matrix
used for scaling −→z i within the original coordinate system.
Since the original coordinate system is a fixed coordinate
system, Wi can only optimize −→z i in the deterministic direc-
tions, thus failing to identify the modality of different function
landscapes or even a single function landscape at different
optimization stages. As a result, the search process guided by
Eq.(14) may not be efficient.
Remark 1: Each operator in Section II can be rewritten as

Eq.(14). It can be found that the right-hand side of the velocity
updating equation in PSO (i.e., Eq.(3)) and the crossover
operator in DE (i.e., Eq.(12)) contains the second part (i.e.,∑n
i=1 Wi

−→z i), which suggests that these two operators may
fail to search efficiently in the original coordinate system.

2) Eigen Coordinate System: In this paper, the Eigen coor-
dinate system is established by the columns of an orthogonal
matrix B, which comes from the Eigen decomposition of the
covariance matrix C:

C = BD2BT (16)

where B is an orthogonal matrix, BT is the transposed matrix
of B, and D is a diagonal matrix. Each column of B is an
eigenvector of C, and each diagonal element of D is the square
root of an eigenvalue of C. The fundamental issue in Eq.(16)
is how to construct the covariance matrix C. In general, the
covariance matrix C is constructed and updated according to
the feedback information resulting from the search process.
Therefore, unlike the original coordinate system, the Eigen
coordinate system is dynamic throughout the search process,
with the aim of suiting the function landscape.

Next, we will discuss how to construct a nature-inspired
operator in the Eigen coordinate system. It contains three
steps. Firstly, BT is applied to transform the vectors in the
original coordinate system into the Eigen coordinate system.
Subsequently, these vectors in the Eigen coordinate system
are combined with the coefficients and diagonal matrixes
following Eq.(14), and thus an offspring vector is obtained.
Finally, this offspring vector is transformed back into the
original coordinate system by making use of B, with the aim
of evaluating its fitness. Specifically, a nature-inspired operator
in the Eigen coordinate system can be described as:

−→r E = B

(
m∑
i=1

αi(BT−→y i) +
n∑
i=1

Wi(BT−→z i)

)

=

m∑
i=1

αi
−→y i +

n∑
i=1

BWiBT−→z i

(17)

where −→r E denotes the resultant vector. By comparing E-
q.(17) with Eq.(14), it can be seen that: if we replace Wi

with BWiBT on the right-hand side of Eq.(14), then a
nature-inspired operator in the original coordinate system is
transformed into the corresponding nature-inspired operator
in the Eigen coordinate system. Compared with Wi

−→z i, in
BWiBT−→z i, BT transforms −→z i into the Eigen coordinate
system, then Wi scales BT−→z i within the Eigen coordinate
system, and finally B transforms the vector WiBT−→z i back
into the original coordinate system.
Remark 2: PSO’s velocity updating equation (i.e., Eq.(3))

and DE’s crossover operator (i.e., Eq.(12)) in the Eigen
coordinate system can be expressed as Eq.(18) and Eq.(19),
respectively.

−→v g+1
i =−→v gi+c1BR1BT (

−−−→
pbestgi−

−→x gi)+c2BR2BT (
−−−→
gbestg−−→x gi)

(18)
−→u gi =

−→x gi + BCrBT (−→v gi −
−→x gi) (19)

3) Difference Between the Original Coordinate System and
the Eigen Coordinate System: Next, we will investigate
NIOAs’ search behaviors in the original and Eigen coordinate
systems. To make a clear explanation, we take the basic PSO as
an example. For simplicity, suppose that the velocity −→v gi of a
particle is equal to

−→
0 , c1 = c2 = 2, the position −→x gi is just its

historical best position
−−−→
pbestgi , and the dimension of the search

space is equal to two. As a result, in the original coordinate
system, the new velocity −→v g+1

i is updated as Eq.(20), and

5

1x

2xo

a

b c

d

Global Optimum

g
ix


g

gbest


1g
ix


(a) PSO in the original coordinate system (i.e., ox1x2)

1x

2xo

a

'b

c

'd Global Optimum

g
ix
 g

gbest


'
1x

'
2x

1g
ix


(b) PSO in the Eigen coordinate system (i.e., ox
′
1x

′
2)

Fig. 2. PSO works in different coordinate systems. In this figure, the dashed
ellipses display the contours, −→x g

i denotes the current position,
−−−→
gbestg means

the entire swarm’s best position, and −→x g+1
i is the new position which is

located in the blue area.

then the new position −→x g+1
i is renewed as Eq.(21):

−→v g+1
i = −→v gi + c1R1(

−−−→
pbestgi −

−→x gi) + c2R2(
−−−→
gbestg −−→x gi)

=
−→
0 + c1R1(

−→
0) + 2R2(

−−−→
gbestg −−→x gi)

= 2R2(
−−−→
gbestg −−→x gi)

(20)

−→x g+1
i = −→x gi +

−→v g+1
i = −→x gi + 2R2(

−−−→
gbestg −−→x gi) (21)

where R2 = diag(r2,1, r2,2), and r2,1 and r2,2 are two
uniformly distributed random numbers between 0 and 1. By
replacing R2 with BR2BT in Eq.(21), the new position −→x g+1

i

is generated in the Eigen coordinate system:
−→x g+1
i = −→x gi + 2BR2BT (

−−−→
gbestg −−→x gi) (22)

Fig. 2 shows the difference between PSO in the original
coordinate system (Fig. 2(a)) and in the Eigen coordinate
system (Fig. 2(b)) for an optimization problem with variable
correlation. The original coordinate system is fixed and de-
noted as ox1x2. As pointed out, the Eigen coordinate system
is dynamically updated during the search process. Suppose
that for this example the Eigen coordinate system is ox

′

1x
′

2,
which can suit the contours well. In Fig. 1, −→x g+1

i in the
original coordinate system and the Eigen coordinate system
is generated as Eq.(23) and Eq.(24), respectively.

−→x g+1
i = −→x gi + 2R2(

−−−→
gbestg −−→x gi)

= −→x gi + r2,1 ∗
−→
ab + r2,2 ∗

−→
ad

(23)

−→x g+1
i = −→x gi + 2BR2BT (

−−−→
gbestg −−→x gi)

= −→x gi + r2,1 ∗
−→
ab

′
+ r2,2 ∗

−→
ad

′ (24)

Since r2,1 and r2,2 are two uniformly distributed random
numbers between 0 and 1, −→x g+1

i generated in the original and
Eigen coordinate systems can be any point in the rectangular
areas abcd and ab

′
cd

′
, respectively. As shown in Fig. 2, abcd

does not contain the global optimal solution, while ab
′
cd

′

contains the global optimal solution and its neighborhood. This
phenomenon signifies that PSO may search more efficiently in
the Eigen coordinate system.

B. Related Work on the Eigen Coordinate System

In this paper, the related work on the Eigen coordinate
system are classified into two categories, according to the way
of conducting the nature-inspired operators.

In the first category, the nature-inspired operators are imple-
mented only in the Eigen coordinate system. In 2001, CMA-
ES [16] was proposed which samples the offspring population
according to:
−→x g+1
i = −→mg + σgN (

−→
0 ,Cg), i = 1, 2, ..., λ

= −→mg + σg(Cg)1/2N (
−→
0 , I), i = 1, 2, ..., λ

= −→mg + σgBgDg(Bg)TN (
−→
0 , I), i = 1, 2, ..., λ

(25)

where −→mg denotes the mean vector of the search distribution
at generation g, σg denotes the step size, Cg refers to a
covariance matrix, Bg is an orthogonal matrix, Dg is a diagonal
matrix, N (

−→
0 ,Cg) is a multivariate normal distribution with

zero mean and covariance matrix Cg , and N (
−→
0 , I) is a

multivariate normal distribution with zero mean and identity
covariance matrix I. By comparing Eq.(25) with Eq.(17),
it can be found that Eq.(25) is a special case of Eq.(17),
which means that the sampling operation of CMA-ES only
occurs in the Eigen coordinate system. In CMA-ES, this Eigen
coordinate system comes from the Eigen decomposition of
the covariance matrix Cg , and two strategies, namely the
rank-µ-update strategy and the rank-one-update strategy [36],
are designed to adapt Cg . In the rank-µ-update strategy, a
weighted combination of the µ best out of λ offspring is used
to compute Cg+1

µ , which is an estimator of the distribution of
the current population:

Cg+1
µ =

µ∑
i=1

wi(
−→x g+1
i:λ −

−→mg)(−→x g+1
i:λ −

−→mg)T (26)

where wi is the ith weight coefficient, λ is the population
size, and −→x (g+1)

i:λ means the ith best individual among the λ
offspring. Thereafter, the information from both the previous
and current generations are used to compute the covariance
matrix Cg+1:

Cg+1 = (1− cµ)Cg +
cµ

(σg)2
Cg+1
µ (27)

where cµ is the learning rate for the rank-µ-update strategy.
In terms of the rank-one-update strategy, it exploits correlation
between consecutive generations and constructs an evolution
path to update the covariance matrix. Thus, its implementation
is much more complex than the rank-µ-update strategy. These

6

two strategies are combined together in CMA-ES to update
the covariance matrix. Since CMA-ES is able to detect the
features of the function landscape, it shows a significant
superiority over the ordinary ES. To further expand CMA-
ES, an adaptive encoding mechanism called AECMA [37] is
proposed. In AECMA, a more general approach for covariance
matrix adaptation is proposed, which can be applied to ES and
estimation of distribution algorithm [38]. Again, in AECMA,
the evolutionary operators are executed only in the Eigen
coordinate system.

In the second category, the nature-inspired operators are
considered in both the Eigen and original coordinate systems
at each generation of NIOAs. For instance, DE/eig [17] and
CoBiDE [18] implement the crossover operator of DE in both
the Eigen and original coordinate systems in a random manner.
As a result, similar to the classical DE, one trial vector is
created for one target vector. In DE/eig, all individuals from
the current generation are used to compute the covariance
matrix:

Cg+1=
1

NP−1

NP∑
i=1

(−→x gi −
1

NP

NP∑
j=1

−→x gj)(
−→x gi −

1

NP

NP∑
j=1

−→x gj)
T

(28)
where NP is the population size, and −→x gi and −→x gj mean the
ith and jth individuals, respectively. While in CoBiDE, the
NP

′
best out of the individuals from the current population

are employed to update the covariance matrix:

Cg+1 =
1

NP ′ − 1

NP
′∑

i=1

(−→x gi:NP −
1

NP ′

NP
′∑

j=1

−→x gj:NP)×

(−→x gi:NP −
1

NP ′

NP
′∑

j=1

−→x gj:NP)
T

(29)

where NP
′
= ps∗NP , ps ∈ [0, 1] is a user-defined parameter,

and −→x gi:NP and −→x gj:NP denote the ith and jth best individuals,
respectively. From Eq.(28) and Eq.(29), it can be seen that
only the current population distribution information is utilized
to compute the covariance matrix. Very recently, a novel
DE framework called CPI-DE [19] is proposed. In CPI-DE,
DE’s crossover operator is executed in both the Eigen and
original coordinate systems in a deterministic manner and,
consequently, two trial vectors are generated for each target
vector. Thereafter, the best one among the target vector and
its two trial vectors will survive into the next generation. The
covariance matrix in CPI-DE is estimated by the rank-NP -
update strategy, which can be regarded as an extension of
the rank-µ-update strategy in CMA-ES. This rank-NP -update
strategy contains two steps. In the first step, the NP best out of
2∗NP offspring (note that in CPI-DE, the offspring population
consists of 2∗NP trial vectors) are used to estimate the current
population distribution:

Cg+1
NP =

NP∑
i=1

wi(
−→x g+1
i:2∗NP −

−→mg)(−→x g+1
i:2∗NP −

−→mg)T (30)

where wi is the ith weight coefficient and −→x g+1
i:2∗NP represents

the ith best individual in the offspring population. In the

second step, the population distribution information from
the current and historical generations are used to adapt the
covariance matrix:

Cg+1 = (1− cNP)Cg +
cNP
(σg)2

Cg+1
NP (31)

where cNP is the learning rate and σg is the step size. It is
claimed in CPI-DE [19] that there is no necessary to adapt the
step size for DE, since DE has a different search pattern with
ES. In fact, σg is set to 1 in CPI-DE, which means that the
covariance matrix is of equal importance at each generation. It
is necessary to note that CPI-DE does not utilize the rank-one-
update strategy. The reason is that the rank-one-update strategy
plays a less important role when the population size is large,
and DE usually maintains a relatively large population com-
pared with ES. Besides, the rank-one-update strategy is much
more complex than the rank-µ-update strategy. Therefore, by
eliminating the rank-one-update strategy, the adaptation of the
covariance matrix in CPI-DE becomes simpler. There is an
agreement from the above three attempts: the usage of both
the Eigen and original coordinate systems at each generation
can reach better performance than the usage of one of them
during the whole search process.

Our work in this paper falls into the second category.
Moreover, the Eigen and original coordinate systems are
adaptively tuned as the search process proceeds.

IV. PROPOSED APPROACH

A. ACoS

We continue the work on the coordinate systems and
propose a novel framework named ACoS. The motivation of
ACoS comes from three aspects:

• A large population can provide more information to
estimate the Eigen coordinate system, compared with a
small population. However, given the maximum number
of fitness evaluations, the increase of the population
size will lead to the decrease of the generation number,
which might cause incomplete convergence of NIOAs.
Consequently, it is necessary to design a mechanism to
strike the balance between the accuracy of estimation and
the convergence performance.

• As introduced in Section III-B, some researchers have
recognized the importance of combining the original
coordinate system with the Eigen coordinate system in the
design of NIOAs. However, the current methods adjust
these two coordinate systems in either a random way
or a deterministic way. How to exploit the feedback
information from the search process to adaptively tune
them has not yet been investigated.

• The coordinate systems play a very important role in
the performance of many NIOAs. Note, however, that in
current studies the coordinate systems have been applied
to enhance the performance of few NIOA paradigms (e.g.,
ES and DE). It is an interesting topic to boost the research
on the coordinate systems to other NIOA paradigms.

ACoS aims at addressing the above three issues. In ACoS,
an additional archiving mechanism is designed to maintain the

7

Algorithm 1 Framework of ACoS

1: Initialize g = 0, P0 = {−→x 0
1,
−→x 0

2, ...,
−→x 0
NP }, archive A =

∅, and C0 = B0 = I;
2: Initialize the probability vector −→p = (p1, p2, ..., pNP) =

(0.5, 0.5, ..., 0.5);
3: while the termination criterion is not met do
4: for i = 1 to NP do
5: if rand ≤ pi then
6: Implement the nature-inspired operators in the

Eigen coordinate system to generate the ith off-
spring;

7: else
8: Implement the nature-inspired operators in the

original coordinate system to generate the ith off-
spring;

9: end if
10: end for
11: Evaluate the offspring population;
12: Execute the selection operator of NIOAs to get Pg+1;
13: Update A, Cg+1, and Bg+1 based on Section IV-B;
14: Update −→p according to Section IV-C;
15: g = g + 1;
16: end while

offspring not only in the current generation but also in the past
several generations. Therefore, sufficient information can be
obtained to estimate an appropriate Eigen coordinate system
without adding the population size and reducing the generation
number. As a result, ACoS achieves a balance between the
accuracy of estimation and the convergence performance. Af-
terward, the Eigen and original coordinate systems are selected
in an adaptive way (rather than a random or deterministic
way) according to a probability vector, which is updated based
on the collected information from the offspring. ACoS can
be readily applied to various NIOAs, and in this paper we
consider two of the most popular NIOA paradigms: PSO and
DE.

The general framework of ACoS has been given in Algo-
rithm 1. In Algorithm 1, rand denotes a uniformly distributed
random number on the interval [0, 1]. In the initialization
process, the population P0 = {−→x 0

1,
−→x 0

2, ...,
−→x 0
NP } is ran-

domly sampled from the search space, the archive A is
initialized to be empty, the covariance matrix C0 and the
orthogonal matrix B0 are set to be the unity matrix I, and
the probability vector −→p = (p1, p2, ..., pNP) is initialized
to be −→p = (0.5, 0.5, ..., 0.5). During the search process,
to generate the ith offspring, the operators of NIOAs are
implemented in the Eigen and original coordinate systems with
the probabilities pi and 1 − pi, respectively. Afterward, the
offspring population is evaluated and the selection operator of
NIOAs is executed to obtain Pg+1. Subsequently, A, Cg+1,
and Bg+1 are updated according to Section IV-B. Finally, −→p
is renewed according to Section IV-C.

Obviously, ACoS is different from the canonical NIOAs due
to the simultaneous use and adaptive tuning of the Eigen and
original coordinate systems. Next, we will introduce two core

components of ACoS: the updating of the Eigen coordinate
system and the updating of −→p .

B. Updating of the Eigen Coordinate System

The Eigen coordinate system is updated by making use
of an additional archiving mechanism and the rank-µ-update
strategy [36].

The additional archiving mechanism adopts an external
archive A to store the offspring in both the current generation
and the past several generations. It is because the search
area may not change dramatically in the continuous several
generations of NIOAs, and thus the offspring in the past
several generations, other than the offspring in the current
generation, can also provide important information to esti-
mate an appropriate Eigen coordinate system. Actually, the
implementation of this additional archiving mechanism is very
simple. Firstly, A is initialized to be an empty set. Then
at each generation, the newly generated offspring are added
into A. If the archive size (called AS) exceeds a certain
threshold, say 3 ∗NP in this paper, then the earlier offspring
in A will be removed based on the “first-in-first-out” rule
to keep the archive size at 3 ∗ NP . Note that unlike the
main population Pg , A does not undergo any nature-inspired
operators. Therefore, this additional archiving mechanism can
obtain sufficient information to estimate the Eigen coordinate
system while never affecting the population size and the
generation number.

Subsequently, the rank-µ-update strategy extracts the popu-
lation distribution information from A. The previous research
has demonstrated that the rank-µ-update strategy is an efficient
technique to adapt the covariance matrix [36]. In this paper, the
size of A is larger than that of Pg . Therefore, the rank-µ-update
can benefit from this relatively larger size to get a reliable
estimator of the covariance matrix. Before executing the rank-
µ-update strategy, we need to initialize the mean vector of the
search distribution −→mg in Eq.(26) and the covariance matrix
Cg . In this paper, −→m0 is set to be a randomly generated point
in the search space and C0 is set to be the unity matrix I.
Then, at generation g + 1, −→mg+1 is updated according to:

−→mg+1 =

µ∑
i=1

ωi
−→a i:AS (32)

where µ = AS/2 is the number of the selected solutions,
−→a i:AS denotes the ith best solution out of A (i.e., f(−→a 1:AS) ≤
f(−→a 2:AS) ≤ ... ≤ f(−→a µ:AS)), and ωi refers to the ith weight
coefficient computed as:

ωi =
ln(µ+ 0.5)− ln i

n ln(µ+ 0.5)−
∑µ
j=1 ln i

, i = 1, 2, ..., µ (33)

It can be found that the increase of i will lead to the
decrease of ωi, which implies the better individual will play an
more important role in the updating of the −→mg+1. Afterward,
an estimator of the current population distribution Cg+1

µ is
obtained by:

Cg+1
µ =

µ∑
i=1

ωi(
−→a i:AS −−→mg)(−→a i:AS −−→mg)T (34)

8

Algorithm 2 Updating of the probability vector −→p
1: switch (the case of the collected information from the

offspring)
2: case Eigen coordinate system is better:
3: pi ← pi + r(pi);
4: case Eigen coordinate system is worse:
5: pi ← pi − η ∗ r(pi);
6: case original coordinate system is better:
7: pi ← pi − r(1− pi);
8: case original coordinate system is worse:
9: pi ← pi + η ∗ r(1− pi);

10: end switch

Finally, the covariance matrix Cg+1 is updated by making use
of the cumulative population distribution information:

Cg+1 = (1− cµ)Cg + cµCg+1
µ (35)

where cµ ≈ 1
3µeff/D

2 denotes the learning rate, µeff =
(
∑µ
i=1 ω

2
i)

−1 is the variance effective selection mass, and D
is the dimension of the search space.

After Cg+1 is obtained, an Eigen decomposition is per-
formed on Cg+1 according to Eq.(16) to produce the or-
thogonal matrix Bg+1, the columns of which form the Eigen
coordinate system.

C. Updating of the Probability Vector −→p
The probability vector −→p = (p1, p2, ..., pNP) determines

the selection ratio of each coordinate system for each individ-
ual. To be specific, for the ith (i ∈ {1, . . . , NP}) individual,
ACoS implements the nature-inspired operators in the Eigen
and original coordinate systems with the probabilities pi and
1− pi, respectively. Since there is no priori knowledge about
the characteristics of the function landscapes, the Eigen and
original coordinate systems are considered to be of equal
importance at the beginning of search process, i.e., −→p =
(0.5, 0.5, ..., 0.5). Then, −→p is adaptively updated according
to the collected information derived from the offspring.

In this paper, we collect the information including which
coordinate system is used to generate the offspring and how
about the quality of the generated offspring. It is easy to iden-
tify which coordinate system is used to produce the offspring.
However, how to measure the quality of the offspring is usually
dependent on a specific NIOA. For PSO, if a particle’s new
position is better than its personal historical best position, then
the offspring performs better, otherwise, it performs worse. In
terms of DE, if the trial vector outperforms its corresponding
target vector, then the offspring performs better; otherwise,
it performs worse. Without loss of generality, the collected
information derived from the offspring can be categorized into
four cases:

• Eigen coordinate system is better: the Eigen coordinate
system is used to generate the offspring and the offspring
performs better;

• Eigen coordinate system is worse: the Eigen coordinate
system is used to generate the offspring but the offspring
performs worse;

• Original coordinate system is better: the original coor-
dinate system is used to generate the offspring and the
offspring performs better;

• Original coordinate system is worse: the original coor-
dinate system is used to generate the offspring but the
offspring performs worse.

These four cases have been considered fully in Algorithm 2
to adaptively update −→p . The main principle behind Algo-
rithm 2 is the “use it or lose it” rule: if one coordinate
system is used to generate the offspring and the offspring
performs better, the selection ratio for this coordinate system
will increase; otherwise, the selection ratio for this coordinate
system will decrease. More specifically, for the ith individual:

• In the case of Eigen coordinate system is better, a reward
r(pi) is added to pi. r(·) denotes a reward function
defined as r(x) = ε(1−x)e−2x, x ∈ [0, 1]. In this reward
function, ε = 0.05 is a constriction factor to clamp the
reward value into [0, 0.05], and (1−x)e−2x is a concave
function whose value decreases from 1 to 0 when the
variable x increases from 0 to 1. As a result, a larger
pi will receive a smaller r(pi). It is reasonable since a
larger pi means that the Eigen coordinate system already
has more potential to be chosen, and a smaller reward
would restrain the dramatic increasing of pi and adapt pi
to a proper value in a more robust way.

• In the case of Eigen coordinate system is worse, a
punishment η ∗ r(pi) is added to pi. In η ∗ r(pi), η = 0.1
is a punishment coefficient. Therefore, η∗r(pi) is smaller
than r(pi), which implies that the case Eigen coordinate
system is worse has less influence on pi than the case
Eigen coordinate system is better at one time. The reason
is the following. A NIOA usually is a trial-and-error
method and the case Eigen coordinate system is worse
is more likely to happen compared with the case Eigen
coordinate system is better. Therefore, the more likely
occurred case (i.e., Eigen coordinate system is worse)
should have less influence on pi than the less likely
occurred case (i.e., Eigen coordinate system is better) at
one time, due to the fact that these two cases’ whole
effects on pi should be similar.

• In the case of original coordinate system is better, the
selection ratio of the original coordinate system will
increase and, therefore, pi will decrease. The reduced
value is equal to r(1− pi).

• In the case of original coordinate system is worse, the
selection ratio of the original coordinate system will
decrease and pi thus will increase. The increased value
is equal to η ∗ r(1− pi).

It is clear that in the above four cases, pi is updated in different
ways. By making use of −→p , NIOAs can dynamically select
an appropriate coordinate system from the original coordinate
system and the Eigen coordinate system for each individual
across the search process.

D. Applying ACoS to PSO and DE

ACoS has a simple structure and can be easily applied to
various NIOAs. For a specific NIOA, if it is under the frame-

9

work of ACoS, it will dynamically select one of the Eigen and
original coordinate systems according to −→p to generate the
offspring. Since the updating of the Eigen coordinate system
and −→p has been introduced previously, when implementing a
specific NIOA under the framework of ACoS, we only need to
consider how to generate the offspring in different coordinate
systems and how to use the selection operator. In this paper,
we apply ACoS to two of the most popular NIOA paradigms,
namely PSO and DE.

For PSO, the offspring are generated via the velocity up-
dating equation and the position updating equation. These two
equations in the original coordinate system have been given
in Eq.(3) and Eq.(4), respectively. According to Section III,
Eq.(4) is irrelevant to the coordinate systems. With respect to
Eq.(3), it depends on the coordinate systems and its imple-
mentation in the Eigen coordinate system has been given in
Eq.(18). It is necessary to note that PSO does not employ the
selection operator and, therefore, the selection operator in Step
12 of Algorithm 1 can be eliminated.

For DE, the offspring are produced through the mutation
and crossover operators. These two operators in the original
coordinate system have been given in Eqs.(7)-(10) and Eq.(11),
respectively. In fact, the mutation operator is independent of
the coordinate systems, while the crossover operator relies
on the coordinate systems, the implementation of which in
the Eigen coordinate system has been given in Eq.(19). In
addition, the selection operator of ACoS is the same with that
of the original DE.

E. Difference between ACoS and Other Methods

Next, we compare ACoS with other related work introduced
in Section III-B. Compared with CMA-ES which samples all
the individuals in the Eigen coordinate system, ACoS has some
advantages listed as follows:

• It makes use of both the Eigen and original coordinate
systems. The Eigen coordinate system enables NIOAs to
identify the modality of the fitness landscape and enhance
the search efficiency, while the original coordinate system
can maintain the superiority of the original NIOAs.

• The updating of the Eigen coordinate system in ACoS is
simpler. ACoS eliminates the much more complex rank-
one-update strategy and only adopts the rank-µ-update
strategy to estimate the Eigen coordinate system. In ad-
dition, an additional archiving mechanism with negligible
computational cost is designed to improve the estimation
accuracy.

• ACoS can be readily applied to many other NIOAs. This
can be attributed to the fact that the step-size control,
which plays a very important role in CMA-ES, can be
ignored in many other NIOAs due to their different search
patterns with CMA-ES.

Compared with DE/eig, CoBiDE and CPI-DE which focus
on enhancing DE’s performance, ACoS has the following
advantages:

• ACoS is designed to improve the performance of not only
DE but also many other NIOAs.

• To update the Eigen coordinate system, DE/eig and
CoBiDE only utilize the current population distribution
information, therefore the established Eigen coordinate
system might be inappropriate due to insufficient infor-
mation. In CPI-DE and ACoS, the cumulative population
distribution information is used to update the Eigen
coordinate system. Note, however, that ACoS employs an
additional archiving mechanism which can obtain more
sufficient information while having no influence on the
population size and the generation number.

• Although both the Eigen and original coordinate systems
are utilized in DE/eig, CoBiDE, CPI-DE, and ACoS,
DE/eig and CoBiDE adjust these two coordinate systems
in a random manner which ignores the feedback infor-
mation from the search process and, therefore, is not
well suited for different kinds of fitness landscapes. In
addition, CPI-DE generates two offspring for each target
vector, one in the Eigen coordinate system and the other
in the original coordinate system, which inevitably spends
more fitness evaluations at each generation. In contrast,
ACoS adapts these two coordinate systems in an adaptive
way as the search process proceeds, thus exploiting the
feedback information and producing only one offspring
for each target vector simultaneously.

V. EXPERIMENTAL STUDY

In this section, our experiments were conducted on 30 test
functions with 30 dimensions (30D) and 50 dimensions (50D)
at IEEE CEC2014. These 30 test functions are denoted as cf1-
cf30, and their details can be available from [20]. In general,
these 30 test functions can be grouped into four classes: 1)
Unimodal functions cf1-cf3; 2) Simple multimodal functions
cf4-cf16; 3) Hybrid functions cf17-cf22; and 4) Composition
functions cf23-cf30.

In our experiments, we performed 51 independent runs for
each algorithm on each test function. All the experiments were
implemented on a PC with Intel Core i5-4590 CPU @ 3.30
GHz and 64-bit Windows 10 operating system. A run will
terminate if the maximum number of fitness evaluations (FEs)
is reached, which was recommended to be 10000∗D [20]. At
the end of a run, the function error value (f(−→x best)−f(−→x ∗))
was recorded, where −→x ∗ is the optimal solution and −→x best
denotes the best solution found. If the function error value
is less than 10−8, it was taken as zero. The average and
standard deviation of the function error values in all runs
(denoted as “Mean Error” and “Std Dev”) were used to
measure the performance of an algorithm. Besides, to test the
statistical significance of the experimental results between two
algorithms, the Wilcoxon’s rank sum test at a 0.05 significance
level was performed.

For the sake of convenience, if a specific NIOA is under the
framework of ACoS, the name of this NIOA will be modified
by adding four letters “ACoS-”. For example, PSO-w under
our framework is named as ACoS-PSO-w.

A. Principle Analysis
Firstly, we intend to verify whether ACoS can detect the

modality of a function or not. To answer this question, we

10

1x

2x

o'

'

'

(a) Nonrotated ellipsoidal function

1x

2x

o'

'

'

(b) Rotated ellipsoidal function (rotate 45◦)

1x

2x

o'

'

'

(c) Rotated ellipsoidal function (rotate -45◦)

Fig. 3. Contours of three ellipsoidal functions, the trial vectors (marked as red asterisks) of ACoS-DE/rand/1/bin, and the Eigen coordinate systems (denoted
as o

′
x
′
1x

′
2) after 15 generations.

0 60000 120000 180000 240000 300000
10

2

10
4

10
6

10
8

10
10

FEs

A
ve

ra
ge

 F
un

ct
io

n
E

rr
or

 V
al

ue

PSO−w
ACoS−PSO−w
PSO−cf
ACoS−PSO−cf

(a) cf1 with 30D

0 60000 120000 180000 240000 300000
10

2

10
4

10
6

10
8

10
10

10
12

FEs

A
ve

ra
ge

 F
un

ct
io

n
E

rr
or

 V
al

ue

PSO−w
ACoS−PSO−w
PSO−cf
ACoS−PSO−cf

(b) cf18 with 30D

Fig. 4. Evolution of the average function error values derived from two
popular PSO versions (PSO-w and PSO-cf) and their augmented algorithms
versus the number of FEs on cf1 with 30D and cf18 with 30D

took ACoS-DE/rand/1/bin as an example, and tested it on three
ellipsoidal functions with two dimensions. Among these three
ellipsoidal functions, one is nonrotated problem and the other
two are rotated problems which rotate 45◦ and −45◦, respec-
tively. Therefore, these three ellipsoidal functions can provide
different function landscapes for testing. For the parameters
of ACoS-DE/rand/1/bin, the population size was set to 100,
F was set to 0.9, and CR was set to 0.5. Afterward, we run
ACoS-DE/rand/1/bin with 15 generations and calculated the
orthogonal matrix B via the Eigen decomposition in Eq.(16).
Fig. 3 depicts the contours of these three ellipsoidal functions,
the trial vectors (marked as red asterisks), and the Eigen
coordinate systems (denoted as o

′
x

′

1x
′

2) obtained by making
use of B at the 15th generation.

From Fig. 3, we can observe that the coordinate axes of
the Eigen coordinate system rotate about 0◦, 45◦, and −45◦
compared with the coordinate axes of the original coordinate
system for nonrotated ellipsoidal function, rotated ellipsoidal
function with 45◦, and rotated ellipsoidal function with −45◦,
respectively. This phenomenon indicates that the Eigen coor-
dinate system in ACoS can be adapted to suit different fitness
landscapes. As for the generated trial vectors, they spread out
along the valleys, and their distributions are in accordance
with the three different function landscapes. Therefore, it can
be concluded that ACoS has the capability to identify the
modality of a function at hand.

B. ACoS for Two Popular PSO Variants

Subsequently, we applied ACoS to two of the most popular
PSO variants: PSO-w and PSO-cf, which have been introduced
in Section II-A. The resultant methods are denoted as ACoS-
PSO-w and ACoS-PSO-cf, respectively.

The population size of these two PSO variants and their
augmented algorithms was set to be 40 and 60 when the
dimension of the search space was equal to 30 and 50, re-
spectively. The experimental results on cf1-cf30 with 30D and
50D are given in Table S-I and Table S-II in the supplementary
file, where “+”, “−”, and “≈” denote that PSO-w or PSO-cf
performs better than, worse than, and similar to its augmented
algorithm, respectively. The last three rows of Tables S-I and
S-II summarize the experimental results.

Important observations can be obtained from Tables S-I and
S-II:

• In the case of D = 30, ACoS-PSO-w and ACoS-
PSO-cf have an edge over their original algorithms on
27 and 24 test functions, respectively. With respect to
D = 50, both ACoS-PSO-w and ACoS-PSO-cf achieve
better performance than their original algorithms on 26
test functions. However, PSO-w and PSO-cf cannot sur-
pass their augmented algorithms on more than three test
functions when D = 30 and D = 50.

• ACoS-PSO-w and ACoS-PSO-cf are never inferior to
their original algorithms on any unimodal functions,
hybrid functions, and composition functions, regardless
of the number of the decision variables.

• ACoS is able to achieve great performance improvement
toward PSO-w and PSO-cf on all the unimodal functions
(i.e., cf1-cf3), five simple modal functions (i.e., cf4, cf7,
and cf13-cf15), four hybrid functions (i.e., cf17, cf18,
cf20, and cf21), and two composition functions (i.e., cf29
and cf30). Moreover, ACoS offers the optimal solutions
for three cases in all runs, which have been highlighted
in boldface in Tables S-I and S-II.

• It seems that the increase of the dimension (i.e., from
D = 30 to D = 50) does not have a remarkable influence
on the performance improvement of our framework.

From the above observations, our framework significantly
improves the performance of these two popular PSO variants,

11

0 60000 120000 180000 240000 300000
10

−10

10
−5

10
0

10
5

10
10

FEs

A
ve

ra
ge

 F
un

ct
io

n
E

rr
or

 V
al

ue

JADE
ACoS−JADE
jDE
ACoS−jDE
SaDE
ACoS−SaDE

(a) cf1 with 30D

0 60000 120000 180000 240000 300000
10

0

10
2

10
4

10
6

10
8

FEs

A
ve

ra
ge

 F
un

ct
io

n
E

rr
or

 V
al

ue

JADE
ACoS−JADE
jDE
ACoS−jDE
SaDE
ACoS−SaDE

(b) cf20 with 30D

Fig. 5. Evolution of the average function error values derived from three
state-of-the-art DE variants (JADE, jDE, and SaDE) and their augmented
algorithms versus the number of FEs on cf1 with 30D and cf20 with 30D

which indicates that: 1) there is a necessity to consider
both the Eigen and original coordinate systems in the design
of PSO variants, and 2) the adaptive scheme in ACoS is
capable of effectively utilizing these two coordinate systems.
The convergence graphs of the average function error values
derived from these two PSO variants and their augmented
algorithms are plotted in Fig. 4 for two test functions (i.e.,
cf1 with 30D and cf18 with 30D).

C. ACoS for Three State-of-the-Art DE Variants
Thereafter, we investigated the influence of ACoS on three

famous DE variants: JADE, jDE, and SaDE, which have been
introduced in Section II-B. To ensure the comparison fair, the
parameter settings of JADE, jDE, and SaDE were identical
with their original papers, and remained unchanged when they
were under the framework of ACoS. Table S-III and Table S-
IV in the supplementary file show the comparison results on
cf1-cf30 with 30D and 50D, where “+”, “−”, and“≈” denote
that a state-of-the-art DE variant performs better than, worse
than, and similar to its augmented algorithm, respectively.
The last three rows of Tables S-III and S-IV summarize the
experimental results.

As can be seen from Tables S-III and S-IV, ACoS signifi-
cantly improves JADE, jDE, and SaDE on many test functions.
Specifically, compared with their original algorithms, when
D = 30, ACoS-JADE, ACoS-jDE and ACoS-SaDE obtain
significance on 17, 13, and 21 test functions, respectively;
meanwhile in the case of D = 50, they outperform on 12, 14,
and 23 test functions, respectively. In contrast, JADE, jDE, and
SaDE cannot beat their augmented algorithms on more than
four test functions. Besides, under our framework, these three
state-of-the-art DE variants can consistently solve 13 cases,
which have been highlighted in boldface in Tables S-III and
S-IV. Moreover, the superiority of ACoS-jDE and ACoS-SaDE
over their original algorithms increases as the dimension of the
search space increases (i.e., from D = 30 to D = 50).

The above comparison demonstrates that ACoS can effec-
tively improve the performance of these three state-of-the-art
DE variants, which verifies the necessity to consider both
the Eigen and original coordinate systems in an adaptive
fashion when designing DE variants. Two convergence graphs
are given in Fig. 5 for the performance comparison between
these three state-of-the-art DE variants and their augmented
algorithms.

D. Comparison between ACoS and Other Eigen Coordinate
System-Based Methods

The aim of this subsection is to compare ACoS with other
Eigen coordinate system-based methods: CMA-ES, CoBiDE,
DE/eig, and CPI-DE, which have been introduced in Sec-
tion III-B. Due to its outstanding performance, JADE was
selected as the instance algorithm. It should be noted that
the updating of the Eigen coordinate system in CMA-ES is
particularly designed for ES and cannot be used to JADE.
With respect to ACoS, CoBiDE, DE/eig, and CPI-DE, we
applied them to JADE and obtained ACoS-JADE, CoJADE,
JADE/eig, and CPI-JADE, respectively. For fair comparison,
ACoS-JADE, CoJADE, JADE/eig, and CPI-JADE adopted the
same parameter settings of F , CR, and NP with the original
JADE, while the other parameter settings were identical with
their own original papers. cf1-cf30 with 30D were employed
in the comparative study, and Table S-V summarizes the
experimental results, where“+”, “−”, and “≈” denote that
the performance of the corresponding algorithm is better than,
worse than, and similar to that of ACoS-JADE, respectively.

As shown in Table S-V, ACoS-JADE exhibits the best
performance among the five compared methods. It outperforms
CMA-ES, CoJADE, JADE/eig, and CPI-JADE on 22, 14,
16 and 10 test functions, respectively; while only loses on
no more than two test functions. It is worth noting that
ACoS-JADE is never inferior to the four competitors on any
unimodal functions, hybrid functions, and composition func-
tions. Compared with CoJADE and JADE/eig, CPI-JADE and
ACoS-JADE reach better performance, which demonstrates
the potential of utilizing the cumulative population distribu-
tion information rather than the single population distribution
information to estimate the Eigen coordinate system. Com-
pared with CPI-JADE, ACoS-JADE’s superior performance
is largely attributed to the usage of the additional archiving
mechanism and the probability vector −→p .

E. Benefit of ACoS’s Components

We are interested in identifying the benefit of two crucial
components of ACoS: the additional archiving mechanism and
the probability vector −→p . To this end, we still selected JADE
as the instance algorithm and two groups of experiments were
carried out. In the first group, the archiving mechanism was
eliminated and the offspring in the current generation played
the role of the archive A in ACoS accordingly, while the other
parts were kept untouched. This compared method is denoted
as nonAr-ACoS-JADE. With respect to the second group,
instead of adaptive tuning, −→p was fixed during the evolution.
We tested three different values for each element of −→p : 0, 0.5,
and 1, and these three values represent different conditions,
i.e., only the original coordinate system is used, the Eigen
and original coordinate systems have an equal probability to
be selected, and only the Eigen coordinate system is utilized,
respectively. It is evident that the first condition is equivalent
to the original JADE. These compared methods are named as
JADE, half-ACoS-JADE, and Eig-ACoS-JADE, respectively.

We conducted the experiments on cf1-cf30 with 30D.
Experimental results are presented in Table S-VI of the sup-

12

0 60000 120000 180000 240000 300000
0

0.2

0.4

0.6

0.8

1

FEs

P
ro

ba
bi

lit
y

p
m

1−p
m

(a) cf1 with 30D

0 60000 120000 180000 240000 300000

0.2

0.4

0.6

0.8

1

FEs

P
ro

ba
bi

lit
y

p
m

1−p
m

(b) cf10 with 30D

0 60000 120000 180000 240000 300000

0.2

0.4

0.6

0.8

1

FEs

P
ro

ba
bi

lit
y

p
m

1−p
m

(c) cf23 with 30D

Fig. 6. Evolution of the average values of pm and (1− pm) in ACoS-JADE during the optimization of cf1 with 30D, cf10 with 30D, and cf23 with 30D

plementary file, where “+”, “−”, and “≈” denote that the
performance of the corresponding algorithm is better than,
worse than, and similar to that of ACoS-JADE, respectively.
From Table S-VI, ACoS-JADE performs the best among the
five compared methods. Compared with nonAr-ACoS-JADE,
ACoS-JADE is significantly better on 11 test functions and
does not lose on any test functions. Although ACoS-JADE and
nonAr-ACoS-JADE achieve comparable performance on the
unimodal functions, ACoS-JADE outperforms nonAr-ACoS-
JADE on more complex functions (i.e., simple multimodal
functions, hybrid functions, and composition functions). The
reason is probably that the additional archiving mechanism
preserves the offspring not only in the current generation but
also in the past several generations, thus providing sufficient
information to estimate a more reliable Eigen coordinate
system in complex environments. Compared with JADE, half-
ACoS-JADE, and Eig-ACoS-JADE, ACoS-JADE produces
better results on 13, 11 and 21 test functions, respectively;
while the three competitors cannot outperform ACoS-JADE
on more than three test functions. This phenomenon suggests
that the updating of −→p in our framework has the capability to
provide a more proper coordinate system. It is noteworthy that
ACoS-JADE and half-ACoS-JADE have an advantage over
JADE and Eig-ACoS-JADE, which again verifies the effec-
tiveness of combining both the Eigen and original coordinate
systems together.

From the above discussion, one can conclude that both the
additional archiving mechanism and the probability vector −→p
play very important roles in ACoS. The former is beneficial
to estimate a more reliable Eigen coordinate system, and the
latter enables each individual to select a more appropriate
coordinate system. In addition, the utilization of both the Eigen
and original coordinate systems is quite necessary in the design
of a NIOA.

F. Evolution of the Probability Vector −→p in ACoS

Since the probability vector −→p = (p1, p2, ..., pNP) deter-
mines the selection ratio of each coordinate system for each
individual, one may be interested in investigating the dynamic
changes of −→p over the course of search. For this purpose, the
mean value of −→p , referred as pm = 1

NP

∑NP
i=1 pi, is monitored

in this subsection.
We still chose JADE as the instance algorithm and tested

ACoS-JADE on three test functions with 30D from IEEE

CEC2014: the unimodal function cf1, the simple multimodal
function cf10, and the composite function cf23. These three
different kinds of test functions aim to provide a comprehen-
sive study on the changes of −→p . To visualize the results, Fig. 6
plots the evolution of the average values of pm and (1− pm)
over 51 independent runs.

As shown in Fig. 6, there are three different types of curves.
In the first type (see Fig. 6(a)), the Eigen coordinate system has
a larger probability to be selected than the original coordinate
system. Nevertheless, in the second type (see Fig. 6(b)), the
situation is opposite. For the third type (see Fig. 6(c)), these
two coordinate systems have the similar probability to be
chosen over the course of search process. It can be seen
from Table S-VI that Eig-ACoS-JADE outperforms JADE on
cf1, JADE surpasses Eig-ACoS-JADE on cf10, and Eig-ACoS-
JADE and JADE reach the similar performance on cf23, which
implies that the Eigen coordinate system is more appropriate
for cf1, the original coordinate system is a better choice for
cf10, and these two coordinate systems are both important
for cf23, respectively. Interestingly, the changes of pm and
(1 − pm) in Fig. 6 are consistent with the above analysis,
which indicates that ACoS is able to adapt −→p to a reasonable
value to match different function landscapes. In summary, the
following concludes can be made: 1) there does not exist
a one-size-fits-all coordinate system, and 2) our proposed
framework can effectively select the appropriate coordinate
system for different optimization problems.

G. Applying ACoS to Other NIOAs
Apart from PSO and DE, we applied ACoS to two other

well-known NIOAs: bat algorithm (BA) [7] and teaching-
learning-based optimization (TLBO) [15] to validate the gen-
eralization of ACoS. According to Sections III and IV, ACoS
can be easily applied to BA and TLBO. The comparative
experiments were conducted on cf1-cf30 with 30D. To make
a fair comparison, the parameter settings of BA and TLBO
were identical with their original papers, and kept the same
when they were under the framework of ACoS. Table S-VII
in the supplementary file provides the experimental results,
where “+”, “−”, and “≈” denote that BA or TLBO performs
better than, worse than, and similar to its augmented algorithm,
respectively. The last three rows of Table S-IX summarize the
experimental results.

From Table S-VII, it is obvious that ACoS has the capability
to enhance the performance of both BA and TLBO on a

13

vast majority of test functions. To be specific, ACoS-BA and
ACoS-TLBO outperform their original algorithms on 19 and
25 test functions, respectively. In contrast, BA and TLBO
cannot beat their augmented algorithms on any test functions.
Hence, we can conclude that ACoS is also an effective
framework to improve the performance of these two NIOAs
(i.e, BA and TLBO).
Remark 3: In Sections S-I and S-II of the supplementary

file, we also analyzed the effect of the parameter settings and
the computational time complexity of ACoS, respectively.

VI. CONCLUSION

An adaptive framework for tuning the coordinate systems in
NIOAs, referred as ACoS, was proposed in this paper. ACoS
provided a simple yet efficient approach to establish the Eigen
coordinate system via an additional archiving mechanism and
the rank-µ-update strategy. Thereafter, it adopted a probability
vector, which was adaptively updated by making use of
the collected information from the offspring, to select an
appropriate coordinate system from the Eigen and original
coordinate systems for each individual. This paper also pre-
sented a new point of view toward how to transform a nature-
inspired operator in the original coordinate system into the
corresponding nature-inspired operator in the Eigen coordinate
system. We applied ACoS to two of the most popular NIOA
paradigms, namely PSO and DE, for solving 30 test functions
with 30D and 50D from IEEE CEC2014. Simulation results
demonstrated that ACoS is capable of significantly enhancing
the performance of both PSO and DE. Compared with some
other Eigen coordinate system-based methods, ACoS exhibited
superior performance. We verified the importance of both the
Eigen and original coordinate systems in the design of a
NIOA, and the effectiveness of the adaptive tuning of them in
ACoS. In addition, ACoS was also applied to two other well-
known NIOAs (i.e., BA and TLBO) and achieved improved
performance. In the future, we will apply ACoS to some multi-
method NIOAs [39], [40].

The Matlab source code of ACoS can
be downloaded from Y. Wang’s homepage:
http://www.escience.cn/people/yongwang1/index.html

REFERENCES

[1] J. H. Holland, Adaptation in Natural and Artificial Systems: An Intro-
ductory Analysis with Applications to Biology, Control, and Artificial
Intelligence. MIT press, 1992.

[2] L. J. Fogel and A. J. Owens, Artificial Intelligence Through Simulated
Evolution. London John Wiley, 1966.

[3] I. Rechenberg, “Evolutionsstrategien,” in Simulationsmethoden in der
Medizin und Biologie. Springer, 1978, pp. 83–114.

[4] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT press, 1992.

[5] R. Storn and K. Price, “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
Global Optimization, vol. 11, no. 4, pp. 341–359, 1997.

[6] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. of
1995 IEEE Int. Conf. Neural Networks, 1995, pp. 1942–1948.

[7] X.-S. Yang, “A new metaheuristic bat-inspired algorithm,” Nature In-
spired Cooperative Strategies for Optimization (NICSO 2010), pp. 65–
74, 2010.

[8] R. V. Rao, V. J. Savsani, and D. Vakharia, “Teaching–learning-based
optimization: a novel method for constrained mechanical design opti-
mization problems,” Computer-Aided Design, vol. 43, no. 3, pp. 303–
315, 2011.

[9] R. Rao, “Jaya: A simple and new optimization algorithm for solving
constrained and unconstrained optimization problems,” International
Journal of Industrial Engineering Computations, vol. 7, no. 1, pp. 19–
34, 2016.

[10] Y. Wang, H. Liu, H. Long, Z. Zhang, and S. Yang, “Differential evolution
with a new encoding mechanism for optimizing wind farm layout,”
IEEE Transactions on Industrial Informatics, 2018, DOI: 10.1109/TI-
I.2017.2743761.

[11] Y. Wang, B. Xu, G. Sun, and S. Yang, “A two-phase differential
evolution for uniform designs in constrained experimental domains,”
IEEE Transactions on Evolutionary Computation, vol. 21, no. 5, pp.
665–680, Oct 2017.

[12] R. Shang, K. Dai, L. Jiao, and R. Stolkin, “Improved memetic algorithm
based on route distance grouping for multiobjective large scale capaci-
tated arc routing problems,” IEEE Transactions on Cybernetics, vol. 46,
no. 4, pp. 1000–1013, 2016.

[13] B. Xue, M. Zhang, and W. N. Browne, “Particle swarm optimization
for feature selection in classification: A multi-objective approach,” IEEE
Transactions on Cybernetics, vol. 43, no. 6, pp. 1656–1671, 2013.

[14] L. Shao, R. Yan, X. Li, and Y. Liu, “From heuristic optimization to
dictionary learning: A review and comprehensive comparison of image
denoising algorithms,” IEEE Transactions on Cybernetics, vol. 44, no. 7,
pp. 1001–1013, 2014.

[15] L. Liu, L. Shao, X. Li, and K. Lu, “Learning spatio-temporal represen-
tations for action recognition: A genetic programming approach,” IEEE
Transactions on Cybernetics, vol. 46, no. 1, pp. 158–170, 2016.

[16] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evolutionary Computation, vol. 9,
no. 2, pp. 159–195, 2001.

[17] S.-M. Guo and C.-C. Yang, “Enhancing differential evolution utilizing
eigenvector-based crossover operator,” IEEE Transactions on Evolution-
ary Computation, vol. 19, no. 1, pp. 31–49, 2015.

[18] Y. Wang, H.-X. Li, T. Huang, and L. Li, “Differential evolution based on
covariance matrix learning and bimodal distribution parameter setting,”
Applied Soft Computing, vol. 18, pp. 232–247, 2014.

[19] Y. Wang, Z.-Z. Liu, J. Li, H.-X. Li, and G. G. Yen, “Utilizing cumulative
population distribution information in differential evolution,” Applied
Soft Computing, vol. 48, pp. 329–346, 2016.

[20] J. Liang, B. Qu, and P. Suganthan, “Problem definitions and eval-
uation criteria for the cec 2014 special session and competition on
single objective real-parameter numerical optimization,” Computational
Intelligence Laboratory, Zhengzhou University, Zhengzhou China and
Technical Report, Nanyang Technological University, Singapore, 2013.

[21] Y. Wang, J.-J. Huang, N. Zhou, D.-S. Cao, J. Dong, and H.-X. Li,
“Incorporating PLS model information into particle swarm optimization
for descriptor selection in QSAR/QSPR,” Journal of Chemometrics,
vol. 29, no. 12, pp. 627–636, 2015.

[22] Y.-J. Gong, J.-J. Li, Y. Zhou, Y. Li, H. S.-H. Chung, Y.-H. Shi,
and J. Zhang, “Genetic learning particle swarm optimization,” IEEE
Transactions on Cybernetics, vol. 46, no. 10, pp. 2277–2290, 2016.

[23] S. M. Elsayed, R. A. Sarker, and E. Mezura-Montes, “Self-adaptive
mix of particle swarm methodologies for constrained optimization,”
Information Sciences, vol. 277, pp. 216–233, 2014.

[24] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in Proc.
IEEE Congr. Evolutionary Computation. IEEE, 1998, pp. 69–73.

[25] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability, and
convergence in a multidimensional complex space,” IEEE Transactions
on Evolutionary Computation, vol. 6, no. 1, pp. 58–73, 2002.

[26] S. Das and P. N. Suganthan, “Differential evolution: A survey of
the state-of-the-art,” IEEE Transactions on Evolutionary Computation,
vol. 15, no. 1, pp. 4–31, 2011.

[27] R. A. Sarker, S. M. Elsayed, and T. Ray, “Differential evolution with
dynamic parameters selection for optimization problems.” IEEE Trans.
Evolutionary Computation, vol. 18, no. 5, pp. 689–707, 2014.

[28] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-
adapting control parameters in differential evolution: A comparative
study on numerical benchmark problems,” IEEE Transactions on Evo-
lutionary Computation, vol. 10, no. 6, pp. 646–657, 2006.

[29] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution
algorithm with strategy adaptation for global numerical optimization,”
IEEE Transactions on Evolutionary Computation, vol. 13, no. 2, pp.
398–417, 2009.

[30] J. Zhang and A. C. Sanderson, “JADE: Adaptive differential evolution
with optional external archive,” IEEE Transactions on Evolutionary
Computation, vol. 13, no. 5, pp. 945–958, 2009.

14

[31] Z. Bingul, “Adaptive genetic algorithms applied to dynamic multiob-
jective problems,” Applied Soft Computing, vol. 7, no. 3, pp. 791–799,
2007.

[32] R. G. Reynolds, “An introduction to cultural algorithms,” in Proceedings
of the third annual conference on evolutionary programming, vol.
131139. Singapore, 1994.

[33] D. Karaboga and B. Basturk, “A powerful and efficient algorithm for
numerical function optimization: artificial bee colony (abc) algorithm,”
Journal of Global Optimization, vol. 39, no. 3, pp. 459–471, 2007.

[34] Y. Tan and Y. Zhu, “Fireworks algorithm for optimization,” in Interna-
tional Conference in Swarm Intelligence. Springer, 2010, pp. 355–364.

[35] Y. Shi, “Brain storm optimization algorithm,” in International Confer-
ence in Swarm Intelligence. Springer, 2011, pp. 303–309.

[36] N. Hansen, “The CMA evolution strategy: A tutorial,” arXiv preprint
arXiv:1604.00772, 2016.

[37] ——, “Variable metrics in evolutionary computation,” 2009, https:
//www.lri.fr/∼hansen/hansen-habil-manu.pdf.

[38] Q. Zhang, A. Zhou, and Y. Jin, “RM-MEDA: A regularity model-based
multiobjective estimation of distribution algorithm,” IEEE Transactions
on Evolutionary Computation, vol. 12, no. 1, pp. 41–63, 2008.

[39] S. M. Elsayed, R. A. Sarker, and D. L. Essam, “Adaptive configura-
tion of evolutionary algorithms for constrained optimization,” Applied
Mathematics and Computation, vol. 222, pp. 680–711, 2013.

[40] F. Peng, K. Tang, G. Chen, and X. Yao, “Population-based algorithm
portfolios for numerical optimization,” IEEE Transactions on Evolution-
ary Computation, vol. 14, no. 5, pp. 782–800, 2010.

Zhi-Zhong Liu received the B.S. degree in automation from Central South University, Changsha, China, in 2013,

where he is currently pursuing the Ph.D. degree in control science and engineering. His current research

interests include evolutionary computation, bioinformatics, swarm intelligence, nonlinear equation systems, and

multimodal optimization.

Jia-Wei Huang received the B.S. degree in automation from Nanchang University, Nanchang, China, in 2011,

and the M.S. degree in control science and engineering from Central South University, Changsha, China, in

2016. His research interests include evolutionary computation, drug discovery, and bioinformatics.

Yong Wang (M’08-SM’17) received the B.S. degree in automation from the Wuhan Institute of Technology,

Wuhan, China, in 2003, and the M.S. degree in pattern recognition and intelligent systems and the Ph.D. degree

in control science and engineering both from the Central South University (CSU), Changsha, China, in 2006 and

2011, respectively.

Page 13 of 14

For Review Only

IEEE Access

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Zhi-Zhong Liu received the B.S. degree in au-
tomation from Central South University, Changsha,
China, in 2013, where he is currently pursuing the
Ph.D. degree in control science and engineering.

His current research interests include evolution-
ary computation, bioinformatics, swarm intelligence,
nonlinear equation systems, and multimodal opti-
mization.

Yong Wang (M’08–SM’17) received the B.S. degree
in automation from the Wuhan Institute of Technol-
ogy, Wuhan, China, in 2003, and the M.S. degree in
pattern recognition and intelligent systems and the
Ph.D. degree in control science and engineering both
from the Central South University (CSU), Changsha,
China, in 2006 and 2011, respectively.

He is currently an Associate Professor with the
School of Information Science and Engineering,
CSU. His current research interests include the the-
ory, algorithm design, and interdisciplinary applica-

tions of computational intelligence.
Dr. Wang was awarded the Hong Kong Scholar by the Mainland-Hong Kong

Joint Postdoctoral Fellows Program, China, in 2013, the Excellent Doctoral
Dissertation by Hunan Province, China, in 2013, the New Century Excellent
Talents in University by the Ministry of Education, China, in 2013, the
2015 IEEE Computational Intelligence Society Outstanding PhD Dissertation
Award, the Hunan Provincial Natural Science Fund for Distinguished Young
Scholars, in 2016, the EU Horizon 2020 Marie Sklodowska-Curie Fellowship,
in 2016, and a Highly Cited Researcher in computer science by Clarivate
Analytics, in 2017. He is currently serving as an associate editor for the
Swarm and Evolutionary Computation.

Shengxiang Yang (M’00–SM’14) received the
Ph.D. degree in systems engineering from North-
eastern University, Shenyang, China in 1999.

He is currently a Professor in Computational
Intelligence and Director of the Centre for Computa-
tional Intelligence, School of Computer Science and
Informatics, De Montfort University, Leicester, U.K.
He has over 240 publications.

His current research interests include evolution-
ary computation, swarm intelligence, computational
intelligence in dynamic and uncertain environments,

artificial neural networks for scheduling, and relevant real-world applications.
He serves as an Associate Editor/Editorial Board Member of seven interna-
tional journals, such as the IEEE Transactions on Cybernetics, Information
Sciences, Evolutionary Computation, and Soft Computing.

Ke Tang (M’07–SM’13) received the B.Eng. degree
from Huazhong University of Science and Technol-
ogy, Wuhan, China, in 2002, and the Ph.D. degree
from Nanyang Technological University, Singapore,
in 2007, respectively.

From 2007 to 2017, he was with the School of
Computer Science and Technology, University of
Science and Technology of China (USTC), Hefei,
China, first as an Associate Professor (2007-2011)
and later a Professor (2011-2017). Currently, he is
a Professor at the Department of Computer Science

and Engineering, Southern University of Science and Technology (SUSTech),
Shenzhen, China. His major research interests include evolutionary computa-
tion, machine learning, and their applications.

Dr. Tang has published more than 60 journal papers and more than
70 conference papers. According to Google Scholar, his publications have
received more than 4900 citations and the H-index is 32 (as of October 5,
2017). He is an Associate Editor of the IEEE Transactions on Evolutionary
Computation and served as a member of Editorial Boards for a few other
journals. He received the Royal Society Newton Advanced Fellowship (2015)
and the 2018 IEEE Computational Intelligence Society Outstanding Early
Career Award.

https://www.lri.fr/~hansen/hansen-habil-manu.pdf
https://www.lri.fr/~hansen/hansen-habil-manu.pdf

1

Supplementary File for “An Adaptive Framework to
Tune the Coordinate Systems in Nature-Inspired

Optimization Algorithms”
Zhi-Zhong Liu, Yong Wang, Senior Member, IEEE, Shengxiang Yang, Senior Member, IEEE, and Ke Tang,

Senior Member, IEEE

LIST OF TABLES

S-I Experimental results of PSO-w, ACoS-PSO-w, PSO-cf, and ACoS-PSO-cf over 51 independent runs on 30 test
functions with 30D from IEEE CEC2014 using 300,000 FEs. 3

S-II Experimental results of PSO-w, ACoS-PSO-w, PSO-cf, and ACoS-PSO-cf over 51 independent runs on 30 test
functions with 50D from IEEE CEC2014 using 500,000 FEs. 4

S-III Experimental results of JADE, ACoS-JADE, jDE, ACoS-jDE, SaDE, and ACoS-SaDE over 51 independent runs
on 30 test functions with 30D from IEEE CEC2014 using 300,000 FEs. 5

S-IV Experimental results of JADE, ACoS-JADE, jDE, ACoS-jDE, SaDE, and ACoS-SaDE over 51 independent runs
on 30 test functions with 50D from IEEE CEC2014 using 500,000 FEs. 6

S-V Experimental results of CMA-ES, CoJADE, JADE/eig, CPI-JADE, and ACoS-JADE over 51 independent runs on
30 test functions with 30D from IEEE CEC2014 using 300,000 FEs. 7

S-VI Experimental results of nonAr-ACoS-JADE, JADE, half-ACoS-JADE, Eig-ACoS-JADE, and ACoS-JADE over 51
independent runs on 30 test functions with 30D from IEEE CEC2014 using 300,000 FEs. 8

S-VII Experimental results of BA, ACoS-BA, TLBO, and ACoS-TLBO over 51 independent runs on 30 test functions
with 30D from IEEE CEC2014 using 300,000 FEs. 9

S-VIII Runtime of PSO-w, ACoS-PSO-w, PSO-cf, ACoS-PSO-cf, JADE, ACoS-JADE, jDE, ACoS-jDE, SaDE, and ACoS-
SaDE on 30 test functions with 30D from IEEE CEC2014 using 300,000 FEs. 10

S-IX Runtime of PSO-w, ACoS-PSO-w, PSO-cf, ACoS-PSO-cf, JADE, ACoS-JADE, jDE, ACoS-jDE, SaDE, and ACoS-
SaDE on 30 test functions with 50D from IEEE CEC2014 using 500,000 FEs. 11

LIST OF FIGURES

S-1 Box plots of the function error values derived from ACoS-JADE with different archive size on cf16 with 30D,
cf20 with 30D, and cf30 with 30D. 12

S-2 Average function error values provided by ACoS-JADE with different combinations of constriction factor ε and
punishment efficient η on cf16 with 30D, cf20 with 30D, and cf30 with 30D. 13

Z.-Z. Liu is with the School of Information Science and Engineering, Central South University, Changsha 410083, China (Email: zhizhongliu@csu.edu.cn)
Y. Wang is with the School of Information Science and Engineering, Central South University, Changsha 410083, China, and also with the School of

Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK. (Email: ywang@csu.edu.cn)
S. Yang is with the Centre for Computational Intelligence (CCI), School of Computer Science and Informatics, De Montfort University, Leicester LE1

9BH, UK, and also with the College of Information Engineering, Xiangtan University, Xiangtan 411105, China. (Email: syang@dmu.ac.uk)
K. Tang is with the Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China. (Email:

ketang@ustc.edu.cn)

2

S-I. EFFECT OF THE PARAMETER SETTINGS IN ACOS

ACoS introduces three parameters: the archive size (AS) in Section IV-B, the constriction factor (ε) in Section IV-C, and
the punishment coefficient (η) in Section IV-C. The purpose of this subsection is to investigate the sensitivity of these three
parameters. To this end, we tested ACoS-JADE on three different kinds of test functions with 30D: the simple multimodal
function cf16, the hybrid functions cf20, and the composition function cf30, with the aim of providing multi-facet insights.

Firstly, we investigated how AS affects the performance of ACoS-JADE by testing five different AS values: NP , 2 ∗NP ,
3 ∗ NP , 4 ∗ NP , and 5 ∗ NP . As shown in Fig. S-1 of the supplementary file, AS in the range of [2 ∗ NP , 4 ∗ NP] is a
good choice and AS = 3 ∗ NP is highly recommended. The reason is the following. A small AS value (e.g., NP) might
not provide enough population distribution information to estimate an appropriate Eigen coordinate system, while a big AS
value (e.g., 5 ∗ NP) would contain some outdated population distribution information, thus also having a side effect on the
establishment of the Eigen coordinate system.

Subsequently, we studied the sensitivity of the other two parameters: ε and η. As introduced in Section IV-C, ε is used
to control the changing scope of pi at each generation. A small ε value always results in a little change at each generation;
thus it will take a lot of generations to reach an appropriate value of pi. On the contrary, a big ε value will lead to a great
oscillation of pi which causes unstable performance. In essence, NIOAs are randomized methods. Generally, the case that a
coordinate system achieves good performance is less likely to occur than the case that a coordinate system achieves worse
performance for each individual at each generation. η is employed to alleviate the influence of the more likely occurred case,
with the aim of balancing the whole effect of these two cases during the evolution. Neither a small η value nor a big η value
can accomplish this goal. Hence, an appropriate value should be set to both ε and η. We chose five different ε values: 0.01,
0.03, 0.05, 0.07, and 0.09, and five different η values: 0.01, 0.05, 0.1, 0.2 and 0.5, and tested the performance of ACoS-JADE
with different combinations of ε and η. From Fig. S-2 of the supplementary file, we can observe that, overall, ACoS-JADE
exhibits better performance with ε ∈ [0.03, 0.07] and η ∈ [0.05, 0.2].

S-II. ANALYSIS OF THE COMPUTATIONAL TIME COMPLEXITY

When applying ACOS to a NIOA, it will cause extra computational time. It is because ACoS has to update the Eigen
coordinate system and the probability vector −→p . From the introduction in Section IV-C, we know that the computational
time complexity of the updating of −→p is very low and is O(NP). In terms of the updating of the Eigen coordinate system,
the computational time complexity depends mainly on the calculation of the covariance matrix (i.e, Eq. 27) and the Eigen
decomposition (i.e., Eq. 16) [17]. Note that a covariance matrix contains D×D elements. From Eq. 27, we can infer that the
computational time complexity of the calculation of the covariance matrix is O(D2 ×AS/2). For the Eigen decomposition of
a covariance matrix, the Jacobi’s method is adopted in this paper, whose computational time complexity is O(D3). Therefore,
the extra computational time complexity of ACoS is O(D2 ×max{D,AS/2}).

To ascertain the actual runtime of a NIOA with and without ACoS, Tables S-VIII and S-IX in the supplementary file record
the runtime of PSO-w and ACoS-PSO-w, PSO-cf and ACoS-PSO-cf, JADE and ACoS-JADE, jDE and ACoS-jDE, and SaDE
and ACoS-SaDE on cf1-cf30 with 30D and 50D, respectively. The extra runtime can be obtained by subtracting the runtime of
a NIOA without ACoS from the runtime of this NIOA with ACoS. From Tables S-VIII and S-IX, the extra runtime of ACoS
is relatively small and is about 2 seconds and 5 seconds in 30D and 50D, respectively. Therefore, ACoS can be regarded as an
efficient framework for NIOAs, since it can significantly improve the performance of NIOAs without much extra computational
burden.

With respect to the extra runtime, we would like to further give the following comments:
• The extra runtime is mainly related to the dimension of a test function, and is independent of search algorithms and

the fitness evaluations. Considering in many real-world applications, the computational time of the fitness evaluations is
relatively high, the extra runtime induced by ACoS thus is trivial to some extent.

• For offline optimization, we do not need to have any concerns about the extra runtime of ACoS since it can be neglected.
The extra runtime of ACoS may cause inefficiency for online optimization. Fortunately, we can resort to some efficient
programming languages (such as C++), some accelerating techniques (such as GPU accelerator), etc.

• In the future, we will also apply more efficient covariance matrix estimation to reduce the extra runtime of ACoS.

3

TABLE S-I
EXPERIMENTAL RESULTS OF PSO-W, ACOS-PSO-W, PSO-CF, AND ACOS-PSO-CF OVER 51 INDEPENDENT RUNS ON 30 TEST FUNCTIONS WITH 30D

FROM IEEE CEC2014 USING 300,000 FES.

Test Functions with 30D

from IEEE CEC2014

PSO-w ACoS-PSO-w PSO-cf ACoS-PSO-cf

Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev

Unimodal

Functions

cf1 1.53E+08±1.34E+08− 1.86E+06±3.60E+06 6.68E+07±7.48E+07− 1.08E+03±2.62E+03

cf2 1.67E+10±7.67E+09− 1.00E+03±5.14E+03 7.77E+09±5.94E+09− 0.00E+00±0.00E+00

cf3 4.72E+04±3.37E+04− 1.75E+01±1.23E+02 1.17E+04±1.59E+04− 0.00E+00±0.00E+00

Simple

Multimodal

Functions

cf4 1.28E+03±9.00E+02− 1.00E+02±6.30E+01 8.37E+02±9.65E+02− 1.83E+01±2.88E+01

cf5 2.07E+01±1.35E-01≈ 2.07E+01±1.22E-01 2.02E+01±2.83E-01+ 2.07E+01±1.41E-01

cf6 2.07E+01±2.92E+00− 1.97E+01±3.30E+00 2.10E+01±3.35E+00− 1.81E+01±4.17E+00

cf7 1.76E+02±7.89E+01− 1.06E+01±7.76E+00 1.05E+02±7.63E+01− 1.11E-02±1.34E-02

cf8 9.63E+01±2.67E+01− 7.19E+01±1.82E+01 9.59E+01±3.56E+01− 8.62E+01±2.35E+01

cf9 1.50E+02±3.10E+01− 1.19E+02±2.38E+01 1.38E+02±4.02E+01− 9.55E+01±2.65E+01

cf10 3.36E+03±7.42E+02− 2.69E+03±5.82E+02 2.72E+03±8.03E+02+ 3.04E+03±6.17E+02

cf11 3.65E+03±7.20E+02− 3.45E+03±7.27E+02 3.62E+03±6.73E+02≈ 3.63E+03±5.65E+02

cf12 7.19E-01±5.24E-01+ 1.17E+00±6.17E-01 3.26E-01±1.08E-01+ 6.81E-01±4.43E-01

cf13 3.03E+00±1.25E+00− 6.99E-01±9.79E-02 2.39E+00±1.25E+00− 4.32E-01±1.04E-01

cf14 5.11E+01±2.68E+01− 1.19E+00±2.59E-01 4.19E+01±3.13E+01− 5.77E-01±2.56E-01

cf15 7.52E+04±2.33E+05− 1.08E+03±3.81E+03 1.03E+04±3.49E+04− 5.24E+00±1.70E+00

cf16 1.13E+01±6.30E-01≈ 1.15E+01±5.00E-01 1.14E+01±6.21E-01≈ 1.13E+01±6.22E-01

Hybrid

Functions

cf17 4.99E+06±5.88E+06− 8.00E+04±2.34E+05 2.26E+06±4.46E+06− 1.73E+03±3.74E+02

cf18 2.16E+08±4.65E+08− 5.48E+03±5.47E+03 7.51E+07±2.94E+08− 9.38E+03±8.31E+03

cf19 6.84E+01±6.64E+01− 2.60E+01±2.66E+01 6.00E+01±5.33E+01− 1.13E+01±2.07E+00

cf20 1.87E+04±2.46E+04− 5.62E+02±8.51E+02 6.61E+03±1.58E+04− 3.21E+02±1.33E+02

cf21 8.45E+05±1.06E+06− 2.56E+04±9.06E+04 8.93E+05±3.76E+06− 1.20E+03±7.46E+02

cf22 6.53E+02±3.21E+02− 4.72E+02±1.97E+02 6.36E+02±2.39E+02− 4.93E+02±1.97E+02

Composition

Functions

cf23 4.03E+02±6.51E+01− 3.18E+02±7.06E+00 3.65E+02±4.81E+01− 3.15E+02±4.54E-13

cf24 2.70E+02±2.30E+01− 2.45E+02±7.89E+00 2.61E+02±2.35E+01− 2.42E+02±7.12E+00

cf25 2.19E+02±1.05E+00− 2.05E+02±2.49E+00 2.16E+02±8.63E+00− 2.07E+02±5.45E+00

cf26 1.30E+02±6.78E+01− 1.20E+02±6.50E+01 1.32E+02±6.43E+01− 1.14E+02±5.36E+01

cf27 1.05E+03±1.81E+02− 9.18E+02±2.17E+02 9.16E+02±2.77E+02≈ 9.10E+02±2.07E+02

cf28 1.93E+03±4.66E+02− 1.34E+03±2.97E+02 1.89E+03±4.67E+02− 1.65E+03±4.43E+02

cf29 1.70E+07±1.54E+07− 8.49E+06±1.05E+07 1.64E+07±1.21E+07− 8.30E+06±1.14E+07

cf30 2.06E+05±1.89E+05− 1.13E+04±2.43E+04 1.37E+05±1.12E+05− 3.59E+03±1.73E+03

+ 1 3

− 27 24

≈ 2 3

4

TABLE S-II
EXPERIMENTAL RESULTS OF PSO-W, ACOS-PSO-W, PSO-CF, AND ACOS-PSO-CF OVER 51 INDEPENDENT RUNS ON 30 TEST FUNCTIONS WITH 50D

FROM IEEE CEC2014 USING 500,000 FES.

Test Functions with 50D

from IEEE CEC2014

PSO-w ACoS-PSO-w PSO-cf ACoS-PSO-cf

Mean Error±Std Dev Mean Error±Std Dev Mean Error Std Dev Mean Error±Std Dev

Unimodal

Functions

cf1 5.23E+08±2.85E+08− 6.60E+06±7.39E+06 3.30E+08±2.76E+08− 1.23E+05±8.87E+04

cf2 5.62E+10±1.57E+10− 1.48E+08±7.73E+08 3.06E+10±1.31E+10− 1.91E+03±4.55E+03

cf3 7.77E+04±3.61E+04− 1.76E+02±5.88E+02 1.42E+04±1.81E+04− 0.00E+00±0.00E+00

Simple

Multimodal

Functions

cf4 6.92E+03±3.34E+03− 1.63E+02±1.75E+02 2.24E+03±1.75E+03− 9.10E+01±3.14E+01

cf5 2.10E+01±8.68E-02≈ 2.10E+01±8.98E-02 2.02E+01±2.65E-01+ 2.10E+01±1.44E-01

cf6 4.46E+01±5.13E+00− 4.11E+01±4.91E+00 4.10E+01±4.75E+00− 3.87E+01±5.60E+00

cf7 4.89E+02±1.52E+02− 1.14E+01±1.91E+01 2.64E+02±1.27E+02− 4.92E-03±7.13E-03

cf8 2.75E+02±3,86E+01− 1.79E+02±3.43E+01 2.23E+02±5.38E+01− 1.75E+02±3.69E+01

cf9 3.60E+02±6.32E+01− 2.37E+02±5.10E+01 3.18E+02±7.13E+01− 2.03E+02±5.37E+01

cf10 6.95E+03±1.04E+03− 5.76E+03±1.02E+03 5.72E+03±1.11E+03+ 6.34E+03±8.75E+02

cf11 7.21E+03±9.63E+02− 7.02E+03±1.17E+03 6.91E+03±9.82E+02− 6.67E+03±9.22E+02

cf12 8.91E-01±6.81E-01+ 1.46E+00±8.14E-01 4.64E-01±1.47E-01+ 9.89E-01±6.14E-01

cf13 4.85E+00±8.24E-01− 8.10E-01±1.06E-01 3.50E+00±1.20E+00− 5.19E-01±9.60E-02

cf14 1.33E+02±3.27E+01− 1.49E+00±2.53E-01 7.60E+01±3.75E+01− 5.63E-01±2.74E-01

cf15 4.54E+05±5.86E+05− 1.82E+03±6.01E+03 1.65E+05±3.04E+05− 1.02E+01±2.70E+00

cf16 2.07E+01±7.28E-01≈ 2.08E+01±7.38E-01 2.07E+01±8.18E-01≈ 2.07E+01±5.94E-01

Hybrid

Functions

cf17 2.89E+07±2.86E+07− 3.29E+05±4.22E+05 1.50E+07±2.04E+07− 3.51E+03±2.73E+03

cf18 1.42E+09±1.12E+09− 1.95E+03±1.61E+03 1.02E+09±9.81E+08− 4.23E+03±1.89E+03

cf19 3.53E+02±1.82E+02− 6.41E+01±3.97E+01 2.89E+02±2.52E+02− 2.52E+01±9.93E+00

cf20 5.37E+04±3.90E+04− 9.46E+02±5.10E+02 7.94E+03±1.40E+04− 6.09E+02±1.62E+02

cf21 9.21E+06±1.10E+07− 2.59E+05±4.70E+05 5.14E+06±8.56E+06− 2.11E+03±7.27E+02

cf22 1.57E+03±4.43E+02− 1.10E+03±3.12E+02 1.54E+03±3.85E+02− 1.04E+03±2.97E+02

Composition

Functions

cf23 6.62E+02±1.45E+02− 3.49E+02±1.87E+01 5.29E+02±1.16E+02− 3.44E+02±4.69E-13

cf24 4.04E+02±4.57E+01− 2.99E+02±1.83E+01 3.49E+02±3.44E+01− 2.91E+02±6.15E+00

cf25 2.52E+02±2.15E+01− 2.13E+02±5.08E+00 2.29E+02±1.33E+01− 2.17E+02±9.18E+00

cf26 1.86E+02±1.19E+02≈ 1.88E+02±1.18E+02 1.87E+02±9.95E+01− 1.32E+02±9.67E+01

cf27 1.75E+03±1.22E+02− 1.52E+03±1.42E+02 1.62E+03±1.80E+02− 1.51E+03±2.09E+02

cf28 3.68E+03±8.30E+02− 2.42E+03±5.84E+02 3.73E+03±9.88E+02− 2.93E+03±8.20E+02

cf29 1.23E+08±5.07E+07− 7.00E+07±4.64E+07 1.25E+08±7.59E+07− 3.88E+07±4.56E+07

cf30 7.35E+05±6.25E+05− 1.96E+04±1.16E+03 5.77E+05±4.36E+05− 1.43E+04±2.44E+03

+ 1 3

− 26 26

≈ 3 1

5

TABLE S-III
EXPERIMENTAL RESULTS OF JADE, ACOS-JADE, JDE, ACOS-JDE, SADE, AND ACOS-SADE OVER 51 INDEPENDENT RUNS ON 30 TEST FUNCTIONS

WITH 30D FROM IEEE CEC2014 USING 300,000 FES.

Test Functions with 30D

from IEEE CEC2014

JADE ACoS-JADE jDE ACoS-jDE SaDE ACoS-SaDE

Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev

Unimodal

Functions

cf1 6.09E+02±1.18E+03− 0.00E+00±0.00E+00 7.35E+04±6.12E+04− 0.00E+00±0.00E+00 3.60E+05±2.74E+05− 0.00E+00±0.00E+00

cf2 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00

cf3 9.86E-04±5.95E-03− 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 1.92E+01±5.60E+01− 0.00E+00±0.00E+00

Simple

Multimodal

Functions

cf4 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 5.09E+00±1.48E+01− 1.24E+00±8.87E+00 4.13E+01±3.65E+01− 0.00E+00±0.00E+00

cf5 2.03E+01±3.23E-02≈ 2.03E+01±6.08E-02 2.03E+01±3.80E-02≈ 2.03E+01±4.44E-02 2.05E+01±4.94E-02≈ 2.03E+01±3.50E-02

cf6 9.15E+00±2.21E+00− 6.11E+00±3.54E+00 3.39E+00±3.97E+00− 1.32E+00±2.31E+00 4.86E+00±2.15E+00− 2.93E+00±3.65E+00

cf7 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 1.12E-02±1.50E-02− 0.00E+00±0.00E+00

cf8 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 5.85E-02±2.36E-01− 0.00E+00±0.00E+00

cf9 2.62E+01±4.96E+00− 2.47E+01±3.89E+00 4.40E+01±5.33E+00≈ 4.30E+01±5.65E+00 3.72E+01±8.61E+00+ 4.58E+01±7.67E+00

cf10 8.16E-03±1.18E-02− 4.89E-03±9.84E-03 1.22E-03±4.94E-03≈ 1.22E-03±4.94E-03 2.82E-01±4.35E-01− 4.32E-02±3.08E-02

cf11 1.67E+03±2.13E+02≈ 1.69E+03±1.88E+02 2.41E+03±3.11E+02≈ 2.55E+03±3.02E+02 3.25E+03±5.37E+02− 2.62E+03±2.87E+02

cf12 2.67E-01±3.57E-02≈ 2.80E-01±3.76E-02 4.56E-01±6.46E-02+ 4.92E-01±6.51E-02 7.95E-01±9.96E-02− 5.13E-01±6.75E-02

cf13 2.20E-01±3.25E-02≈ 2.21E-01±3.64E-02 3.04E-01±3.54E-02− 2.82E-01±3.55E-02 2.66E-01±4.05E-02+ 2.99E-01±4.94E-02

cf14 2.41E-01±3.18E-02− 2.24E-01±3.04E-02 2.83E-01±2.95E-02− 2.63E-01±3.44E-02 2.35E-01±3.70E-02≈ 2.31E-01±2.73E-02

cf15 3.20E+00±4.55E-01≈ 3.16E+00±3.76E-01 5.89E+00±7.23E-01≈ 5.88E+00±8.14E-01 4.10E+00±1.40E+00+ 6.41E+00±8.18E-01

cf16 9.30E+00±4.61E-01≈ 9.41E+00±4.33E-01 9.85E+00±3.81E-01≈ 9.99E+00±2.49E-01 1.10E+01±2.64E-01− 1.01E+01±3.12E-01

Hybrid

Functions

cf17 1.91E+04±1.08E+05− 4.11E+02±1.56E+02 1.13E+03±9.03E+02− 2.86E+02±1.25E+02 1.40E+04±1.36E+04− 9.00E+02±4.25E+02

cf18 1.14E+02±1.97E+02− 2.94E+01±1.95E+01 1.66E+01±6.53E+00− 1.39E+01±9.31E+00 3.52E+02±4.95E+02− 5.94E+01±3.10E+01

cf19 4.48E+00±7.56E-01≈ 4.48E+00±7.83E-01 4.36E+00±5.94E-01− 4.16E+00±6.71E-01 6.31E+00±1.15E+01− 4.58E+00±7.50E-01

cf20 3.11E+03±3.01E+03− 1.22E+01±4.65E+00 1.16E+01±3.51E+00− 8.51E+00±1.90E+00 1.39E+02±2.02E+02− 2.12E+01±1.08E+01

cf21 1.33E+04±4.12E+04− 1.40E+02±1.00E+02 2.74E+02±1.71E+02− 1.01E+02±8.28E+01 4.46E+03±7.23E+03− 2.38E+02±1.24E+02

cf22 1.44E+02±7.74E+01− 1.12E+02±7.46E+01 1.08E+02±7.15E+01− 7.21E+01±5.14E+01 1.54E+02±5.78E+01− 1.45E+02±8.03E+01

Composition

Functions

cf23 3.15E+02±4.01E-13≈ 3.15E+02±3.59E-13 3.15E+02±4.01E-13≈ 3.15E+02±3.73E-13 3.15E+02±2.24E-13≈ 3.15E+02±2.45E-13

cf24 2.25E+02±3.60E+00≈ 2.24E+02±1.85E+00 2.25E+02±2.56E+00≈ 2.23E+02±7.89E-01 2.26E+02±2.79E+00≈ 2.24E+02±9.64E-01

cf25 2.03E+02±1.13E+00≈ 2.03E+02±4.16E-01 2.03E+02±5.31E-01≈ 2.02E+02±3.67E-01 2.08E+02±2.54E+00≈ 2.03E+02±1.62E+00

cf26 1.02E+02±1.39E+01≈ 1.00E+02±4.27E-02 1.00E+02±4.02E-02≈ 1.00E+02±3.64E-02 1.11E+02±3.24E+01− 1.00E+02±4.15E-02

cf27 3.35E+02±4.68E+01≈ 3.34E+02±4.61E+01 3.62E+02±4.69E+01≈ 3.70E+02±4.53E+01 4.20E+02±4.42E+01− 3.66E+02±4.28E+01

cf28 7.96E+02±4.63E+01≈ 7.96E+02±4.57E+01 7.99E+02±2.68E+01≈ 8.01E+02±3.54E+01 8.93E+02±3.46E+01− 8.18E+02±4.69E+01

cf29 8.28E+02±3.27E+02− 6.12E+02±2.00E+02 8.13E+02±7.12E+01− 5.43E+02±2.29E+02 1.10E+03±2.16E+02− 6.12E+02±1.67E+02

cf30 1.66E+03±7.61E+02− 1.02E+03±4.21E+02 1.40E+03±5.06E+02− 7.83E+02±3.71E+02 1.48E+03±5.40E+02− 9.75E+02±4.91E+02

+ 0 1 3

− 17 13 21

≈ 13 16 6

6

TABLE S-IV
EXPERIMENTAL RESULTS OF JADE, ACOS-JADE, JDE, ACOS-JDE, SADE, AND ACOS-SADE OVER 51 INDEPENDENT RUNS ON 30 TEST FUNCTIONS

WITH 50D FROM IEEE CEC2014 USING 500,000 FES.

Test Functions with 50D

from IEEE CEC2014

JADE ACoS-JADE jDE ACoS-jDE SaDE ACoS-SaDE

Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev Mean Error Std Dev Mean Error±Std Dev Mean Error±Std Dev

Unimodal

Functions

cf1 1.45E+04±9.43E+03− 0.00E+00±0.00E+00 4.58E+05±2.03E+05− 2.94E+02±1.30E+03 9.38E+05±2.96E+05− 4.63E+03±6.03E+03

cf2 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 9.19E-09±1.83E-08− 0.00E+00±0.00E+00 3.65E+03±4.02E+03− 2.90E+02±6.17E+02

cf3 3.96E+03±2.41E+03− 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 3.04E+03±1.64E+03− 0.00E+00±0.00E+00

Simple

Multimodal

Functions

cf4 2.35E+01±4.12E+01− 1.10E+01±3.07E+01 8.70E+01±1.92E+01− 4.45E+01±3.94E+01 9.34E+01±3.89E+01− 2.84E+01±3.24E+01

cf5 2.03E+01±2.81E-02≈ 2.03E+01±3.68E-02 2.04E+01±3.30E-02≈ 2.04E+01±3.39E-02 2.07E+01±4.62E-02≈ 2.05E+01 ±3.40E-02

cf6 1.56E+01±6.56E+00− 1.17E+01±7.19E+00 8.88E+00±7.14E+00− 6.34E+00±5.31E+00 1.77E+01±3.55E+00− 7.77E+00±2.56E+00

cf7 2.84E-03±6.74E-03− 8.69E-04±2.73E-03 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 1.43E-02±1.36E-02− 3.28E-03±4.56E-03

cf8 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 1.46E+00±1.78E+00− 0.00E+00±0.00E+00

cf9 5.15E+01±7.85E+00≈ 5.28E+01±6.61E+00 9.15E+01±9.51E+00− 8.92E+01±1.12E+01 8.78E+01±1.45E+01+ 1.01E+02±2.16E+01

cf10 1.17E-02±1.33E-02− 9.79E-03±1.09E-02 7.34E-04±2.96E-03+ 2.69E-03±5.18E-03 1.57E+00±1.11E+00− 1.06E-01±1.35E-01

cf11 3.84E+03±3.04E+02≈ 3.93E+03±3.76E+02 5.22E+03±3.62E+02≈ 5.26E+03±3.88E+02 6.49E+03±1.70E+03− 6.07E+03±4.09E+02

cf12 2.50E-01±3.42E-02≈ 2.64E-01±3.71E-02 4.93E-01±5.40E-02≈ 5.02E-01±5.75E-02 1.10E+00±1.10E-01− 6.27E-01±8.33E-02

cf13 3.29E-01±4.25E-02− 3.16E-01±4.45E-02 3.84E-01±4.45E-02− 3.68E-01±3.80E-02 4.26E-01±5.82E-02− 4.01E-01±6.71E-02

cf14 3.04E-01±8.56E-02≈ 2.98E-01±9.03E-02 3.26E-01±5.50E-02− 2.95E-01±3.04E-02 3.09E-01±3.72E-02− 2.93E-01±2.95E-02

cf15 7.17E+00±8.18E-01+ 7.35E+00±8.60E-01 1.20E+01±1.28E+00≈ 1.19E+01±1.39E+00 1.46E+01±4.25E+00+ 1.74E+01±2.32E+00

cf16 1.77E+01±3.71E-01≈ 1.78E+01±5.19E-01 1.82E+01±3.72E-01≈ 1.84E+01±4.20E-01 2.01E+01±3.19E-01− 1.88E+01±3.95E-01

Hybrid

Functions

cf17 2.40E+03±6.31E+02≈ 2.42E+03±5.03E+02 2.16E+04±1.32E+04− 2.09E+03±5.36E+02 5.72E+04±3.41E+04− 2.12E+03±5.72E+02

cf18 1.74E+02±5.03E+01≈ 1.88E+02±4.92E+01 5.91E+02±7.38E+02− 1.22E+02±4.01E+01 5.82E+02±5.63E+02− 4.93E+02±4.00E+01

cf19 1.30E+01±6.01E+00− 1.07E+01±3.80E+00 1.30E+01±4.48E+00≈ 1.20E+01±2.89E+00 1.39E+01±6.45E+00+ 1.67E+01±1.04E+01

cf20 8.27E+03±6.67E+03− 2.38E+02±7.09E+01 4.86E+01±1.64E+01− 4.43E+01±1.89E+01 8.79E+02±6.50E+02− 1.54E+02±7.20E+01

cf21 1.25E+03±3.07E+02+ 1.41E+03±4.21E+02 8.53E+03±7.94E+03− 9.80E+02±2.91E+02 6.25E+04±3.33E+04− 1.18E+03±5.07E+02

cf22 4.81E+02±1.58E+02− 4.32E+02±1.54E+02 5.40E+02±1.12E+02− 4.30E+02±1.50E+02 4.80E+02±1.43E+02+ 5.04E+02±1.08E+02

Composition

Functions

cf23 3.44E+02±4.26E-13≈ 3.44E+02±4.98E-13 3.44E+02±4.17E-13≈ 3.44E+02±2.87E-13 3.44E+02±2.85E-13≈ 3.44E+02±2.87E-13

cf24 2.74E+02±1.66E+00≈ 2.74E+02±2.20E+00 2.68E+02±2.17E+00≈ 2.67E+02±2.45E+00 2.75E+02±3.44E+00≈ 2.69E+02±4.68E+00

cf25 2.16E+02±7.03E+00− 2.09E+02±2.64E+00 2.07E+02±1.47E+00≈ 2.07E+02±1.44E+00 2.17E+02±8.71E+00− 2.10E+02±9.31E+00

cf26 1.00E+02±1.33E-01≈ 1.00E+02±6.88E-02 1.00E+02±3.69E-02≈ 1.00E+02±5.47E-02 1.94E+02±2.36E+01− 1.23E+02±4.26E+01

cf27 4.48E+02±5.03E+01+ 4.77E+02±6.60E+01 4.48E+02±7.13E+01− 4.04E+02±6.10E+01 7.67E+02±6.81E+01− 5.69E+02±6.85E+01

cf28 1.18E+03±5.71E+01≈ 1.17E+03±9.34E+01 1.09E+03±3.35E+01≈ 1.13E+03±5.82E+01 1.41E+03±1.25E+02− 1.20E+03±6.72E+01

cf29 9.00E+02±6.73E+01− 8.72E+02±8.50E+01 1.04E+03±1.95E+02− 8.22E+02±5.41E+01 1.43E+03±3.82E+02− 9.32E+02±1.06E+02

cf30 9.71E+03±7.21E+02≈ 9.89E+03±1.08E+03 8.70E+03±4.77E+02≈ 8.88E+03±5.72E+02 1.19E+04±1.78E+03− 9.99E+03±9.46E+02

+ 3 1 4

− 12 14 23

≈ 15 15 3

7

TABLE S-V
EXPERIMENTAL RESULTS OF CMA-ES, COJADE, JADE/EIG, CPI-JADE, AND ACOS-JADE OVER 51 INDEPENDENT RUNS ON 30 TEST FUNCTIONS

WITH 30D FROM IEEE CEC2014 USING 300,000 FES.

Test Functions with

30D from IEEE CEC2014

CMA-ES CoJADE JADE/eig CPI-JADE ACoS-JADE

Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev

Unimodal

Functions

cf1 0.00E+00±0.00E+00≈ 3.96E+01±1.27E+02− 1.00E+02±3.12E+02− 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00

cf2 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00

cf3 0.00E+00±0.00E+00≈ 5.90E-01±6.44E-01− 2.30E-02±3.83E-02− 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00

Simple

Multimodal

Functions

cf4 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00

cf5 2.00E+01±7.43E-05+ 2.03E+01±1.09E-01≈ 2.03E+01±4.46E-02≈ 2.03E+01±3.68E-02≈ 2.03E+01±6.08E-02

cf6 3.98E+01±1.04E+01− 7.67E+00±3.51E+00− 6.98E+00±4.06E+00− 3.44E+00±3.57E+00+ 6.11E+00±3.54E+00

cf7 1.15E-03±3.95E-03− 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00

cf8 3.94E+02±8.31E+01− 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00

cf9 6.53E+02±1.70E+02− 2.66E+01±4.25E+00− 2.46E+01±4.80E+00≈ 2.24E+01±5.33E+00≈ 2.47E+01±3.89E+00

cf10 4.89E+03±7.73E+02− 7.57E-02±3.08E-02− 5.47E-01±1.55E-01− 3.83E-01±7.47E-02− 4.89E-03±9.84E-03

cf11 5.29E+03±7.24E+02− 1.76E+03±2.41E+02≈ 1.83E+03±2.25E+02− 1.77E+03±2.55E+02≈ 1.69E+03±1.88E+02

cf12 2.33E-01±2.25E-01+ 2.93E-01±4.28E-02− 3.14E-01±5.91E-02− 3.95E-01±8.64E-02− 2.80E-01±3.76E-02

cf13 2.60E-01±7.65E-02− 2.19E-01±3.64E-02≈ 2.23E-01±4.05E-02≈ 2.04E-01±3.38E-02+ 2.21E-01±3.64E-02

cf14 3.54E-01±7.26E-02− 2.31E-01±3.02E-02≈ 2.31E-01±3.00E-02− 2.32E-01±3.35E-02≈ 2.24E-01±3.04E-02

cf15 3.45E+00±7.93E-01− 3.23E+00±3.59E-01≈ 3.27E+00±4.45E-01≈ 3.26E+00±3.78E-01≈ 3.16E+00±3.76E-01

cf16 1.42E+01±4.26E-01− 9.62E+00±2.93E-01− 9.76E+00±3.48E-01− 9.70E+00±2.79E-01− 9.41E+00±4.33E-01

Hybrid

Functions

cf17 1.63E+03±4.26E+02− 1.26E+03±3.76E+02− 1.42E+03±4.38E+02− 1.16E+03±3.81E+02− 4.11E+02±1.56E+02

cf18 1.42E+02±4.79E+01− 1.01E+02±3.33E+01− 9.73E+01±3.70E+01− 9.47E+01±3.42E+01− 2.94E+01±1.95E+01

cf19 1.01E+01±1.75E+00− 4.66E+00±8.20E-01− 4.59E+00±6.63E-01≈ 4.89E+00±7.64E-01− 4.48E+00±7.83E-01

cf20 2.80E+02±9.48E+01− 5.55E+02±7.08E+02− 2.52E+02±2.57E+02− 1.12E+01±5.24E+00≈ 1.22E+01±4.65E+00

cf21 9.91E+02±3.05E+02− 1.45E+03±5.33E+03− 6.95E+02±1.11E+03− 3.33E+02±1.54E+02− 1.40E+02±1.00E+02

cf22 2.87E+02±1.56E+02− 1.07E+02±6.93E+01≈ 1.03E+02±6.94E+02≈ 9.99E+01±6.09E+01≈ 1.12E+02±7.46E+01

Composition

Functions

cf23 3.15E+02±4.20E-12≈ 3.15E+02±4.01E-13≈ 3.15E+02±4.01E-13≈ 3.15E+02±4.01E-13≈ 3.15E+02±3.59E-13

cf24 2.48E+02±6.72E+01− 2.24E+02±1.72E+00≈ 2.25E+02±3.53E+00≈ 2.24E+02±2.93E+00≈ 2.24E+02±1.85E+00

cf25 2.03E+02±1.64E+00≈ 2.03E+02±9.00E-01≈ 2.03E+02±6.41E-01≈ 2.03E+02±5.77E-01≈ 2.03E+02±4.16E-01

cf26 1.35E+02±1.83E+02− 1.00E+02±4.71E-02≈ 1.00E+02±4.53E-02≈ 1.00E+02±2.92E-02≈ 1.00E+02±4.27E-02

cf27 3.81E+02±5.84E+01− 3.41E+02±4.96E+01≈ 3.45E+02±4.85E+01− 3.53E+02±5.03E+01− 3.34E+02±4.61E+01

cf28 3.69E+03±3.63E+03− 8.02E+02±3.81E+01≈ 8.06E+02±3.69E+01− 8.02E+02±4.34E+01≈ 7.96E+02±4.57E+01

cf29 7.91E+02±9.09E+01− 7.31E+02±1.26E+01− 7.30E+02±3.79E+01− 8.13E+02±7.12E+01− 6.12E+02±2.00E+02

cf30 2.25E+03±7.06E+02− 1.77E+03±8.13E+02− 1.68E+03±7.22E+02− 1.40E+03±7.24E+02− 1.02E+03±4.21E+02

+ 2 0 0 2

− 22 14 16 10

≈ 6 16 14 18

8

TABLE S-VI
EXPERIMENTAL RESULTS OF NONAR-ACOS-JADE, JADE, HALF-ACOS-JADE, EIG-ACOS-JADE, AND ACOS-JADE OVER 51 INDEPENDENT RUNS ON

30 TEST FUNCTIONS WITH 30D FROM IEEE CEC2014 USING 300,000 FES.

Test Functions with

30D from IEEE CEC2014

nonAr-ACoS-JADE JADE half-ACoS-JADE Eig-ACoS-JADE ACoS-JADE

Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev

Unimodal

Functions

cf1 0.00E+00±0.00E+00≈ 6.09E+02±1.18E+03− 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00

cf2 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00

cf3 0.00E+00±0.00E+00≈ 9.86E-04±5.95E-03− 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00

Simple

Multimodal

Functions

cf4 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00

cf5 2.03E+01±4.03E-02≈ 2.03E+01±3.23E-02≈ 2.03E+01±6.08E-02≈ 2.07E+01±3.02E-01− 2.03E+01±6.08E-02

cf6 6.60E+00±3.66E+00− 9.15E+00±2.21E+00− 6.70E+00±3.44E+00− 8.19E+00±4.90E+00− 6.11E+00±3.54E+00

cf7 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 9.17E-04±2.95E-03− 0.00E+00±0.00E+00

cf8 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 2.69E+01±5.05E+00− 0.00E+00±0.00E+00

cf9 2.41E+01±3.40E+00≈ 2.62E+01±4.96E+00− 2.46E+01±4.42E+00≈ 2.79E+01±5.73E+00− 2.47E+01±3.89E+00

cf10 6.93E-03±9.91E-03− 8.16E-03±1.18E-02− 5.64E-01±1.46E-01− 2.35E+03±2.35E+02− 4.89E-03±9.84E-03

cf11 1.72E+03±2.41E+02≈ 1.67E+03±2.13E+02≈ 1.82E+03±2.19E+02− 2.75E+03±2.75E+02− 1.69E+03±1.88E+02

cf12 2.85E-01±3.95E-02≈ 2.67E-01±3.57E-02≈ 2.95E-01±4.39E-02− 6.32E-01±1.42E-01− 2.80E-01±3.76E-02

cf13 2.19E-01±3.15E-02≈ 2.20E-01±3.25E-02≈ 2.18E-01±3.79E-02≈ 2.32E-01±4.46E-02− 2.21E-01±3.64E-02

cf14 2.27E-01±3.29E-02≈ 2.41E-01±3.18E-02− 2.34E-01±3.28E-02− 2.15E-01±6.23E-02≈ 2.24E-01±3.04E-02

cf15 3.11E+00±4.27E-01≈ 3.20E+00±4.55E-01≈ 3.22E+00±3.49E-01≈ 4.00E+00±6.87E-01− 3.16E+00±3.76E-01

cf16 9.52E+00±3.68E-01− 9.30E+00±4.61E-01≈ 9.68E+00±3.43E-01− 1.08E+01±5.39E-01− 9.41E+00±4.33E-01

Hybrid

Functions

cf17 4.11E+02±1.56E+02≈ 1.91E+04±1.08E+05− 3.87E+02±1.94E+02+ 5.52E+02±2.33E+02− 4.11E+02±1.56E+02

cf18 9.21E+01±2.98E+01− 1.14E+02±1.97E+02− 2.04E+01±1.42E+01+ 8.60E+01±2.63E+01− 2.94E+01±1.95E+01

cf19 4.79E+00±8.02E-01− 4.48E+00±7.56E-01≈ 4.48E+00±7.72E-01≈ 5.89E+00±1.11E+00− 4.48E+00±7.83E-01

cf20 2.29E+01±1.11E+01− 3.11E+03±3.01E+03− 1.18E+01±9.27E+00≈ 4.69E+01±2.02E+01− 1.22E+01±4.65E+00

cf21 3.66E+02±1.99E+02− 1.33E+04±4.12E+04− 1.60E+02±8.74E+01− 4.51E+02±1.34E+02− 1.40E+02±1.00E+02

cf22 1.30E+02±6.55E+01− 1.44E+02±7.74E+01− 9.76E+01±6.22E+01+ 1.48E+02±7.06E+01− 1.12E+02±7.46E+01

Composition

Functions

cf23 3.15E+02±4.01E-13≈ 3.15E+02±4.01E-13≈ 3.15E+02±4.01E-13≈ 3.15E+02±4.01E-13≈ 3.15E+02±3.59E-13

cf24 2.24E+02±1.81E+00≈ 2.25E+02±3.60E+00≈ 2.24E+02±2.59E+00≈ 2.27E+02±4.62E+00≈ 2.24E+02±1.85E+00

cf25 2.03E+02±5.71E-01≈ 2.03E+02±1.13E+00≈ 2.02E+02±2.99E-01≈ 2.03E+02±5.66E-01≈ 2.03E+02±4.16E-01

cf26 1.06E+02±2.37E+01− 1.02E+02±1.39E+01≈ 1.00E+02±3.50E-02≈ 1.00E+02±5.39E-02≈ 1.00E+02±4.27E-02

cf27 3.43E+02±4.75E+01≈ 3.35E+02±4.68E+01≈ 3.49E+02±4.80E+01− 3.82E+02±4.18E+01− 3.34E+02±4.61E+01

cf28 8.01E+02±4.06E+01≈ 7.96E+02±4.63E+01≈ 8.06E+02±3.56E+01− 8.58E+02±6.96E+01− 7.96E+02±4.57E+01

cf29 1.80E+05±1.28E+06− 8.28E+02±3.27E+02− 7.07E+02±8.30E+02− 4.60E+05±2.31E+06− 6.12E+02±2.00E+02

cf30 1.53E+03±7.69E+02− 1.66E+03±7.61E+02− 1.13E+03±4.87E+02− 1.27E+03±6.65E+02− 1.02E+03±4.21E+02

+ 0 0 3 0

− 11 13 11 21

≈ 19 17 16 9

9

TABLE S-VII
EXPERIMENTAL RESULTS OF BA, ACOS-BA, TLBO, AND ACOS-TLBO OVER 51 INDEPENDENT RUNS ON 30 TEST FUNCTIONS WITH 30D FROM IEEE

CEC2014 USING 300,000 FES.

Test Functions with 30D

from IEEE CEC2014

BA ACoS-BA TLBO ACoS-TLBO

Mean Error±Std Dev Mean Error±Std Dev Mean Error Std Dev Mean Error±Std Dev

Unimodal

Functions

cf1 1.42E+05±9.29E+04− 2.36E+04±2.04E+04 2.34E+07±6.90E+06− 1.60E+02±9.16E+01

cf2 1.19E+04±1.43E+04− 9.38E+03±9.92E+03 3.58E+07±7.23E+06− 3.65E+04±1.89E+04

cf3 5.00E-03±3.99E-03− 1.31E-05±2.09E-05 4.43E+04±8.48E+03− 1.89E-01±6.23E-02

Simple

Multimodal

Functions

cf4 4.52E+01±4.18E+01− 6.32E+00±1.90E+01 1.62E+02±2.42E+01− 9.77E+01±2.58E+01

cf5 2.02E+01±1.94E-01≈ 2.01E+01±1.82E-01 2.09E+01±5.86E-02≈ 2.08E+01±5.17E-02

cf6 4.48E+01±2.32E+00− 4.37E+01±2.48E+00 3.29E+01±1.73E+00− 2.83E+01±1.85E+00

cf7 1.57E-02±1.31E-02− 1.11E-02±1.20E-02 1.08E+00±2.59E-02− 4.59E-01±8.13E-02

cf8 2.36E+02±4.89E+01≈ 2.40E+02±5.01E+01 2.29E+02±1.04E+01− 1.83E+02±2.11E+01

cf9 3.16E+02±5.41E+01− 3.06E+02±5.10E+01 2.67E+02±1.49E+01− 2.04E+02±1.89E+01

cf10 4.53E+03±8.49E+02≈ 4.58E+03±7.45E+02 5.91E+03±3.08E+02− 4.99E+03±3.46E+02

cf11 5.12E+03±8.74E+02− 4.57E+03±8.60E+02 6.90E+03±3.36E+02− 5.46E+03±4.16E+02

cf12 1.63E+00±6.18E-01− 1.47E+00±6.12E-01 2.43E+00±2.71E-01− 1.83E+00±2.09E-01

cf13 7.25E-01±1.41E-01− 7.04E-01±1.68E-01 5.69E-01±6.94E-02− 4.13E-01±5.56E-02

cf14 7.68E-01±3.63E-01− 4.73E-01±3.14E-01 4.27E-01±1.82E-01− 3.29E-01±1.92E-01

cf15 7.89E+02±5.23E+02− 5.79E+02±4.29E+02 1.00E+02±4.05E+01− 2.56E+01±2.25E+00

cf16 1.35E+01±4.62E-01≈ 1.35E+01±4.73E-01 1.28E+01±1.77E-01≈ 1.24E+01±2.53E-01

Hybrid

Functions

cf17 3.82E+03±1.86E+03− 1.89E+03±4.74E+02 8.02E+05±3.22E+05− 1.57E+03±2.20E+02

cf18 1.25E+04±9.72E+03− 3.68E+02±9.41E+01 1.83E+04±3.13E+04− 8.74E+01±1.43E+01

cf19 3.51E+01±2.80E+01− 2.87E+01±2.30E+01 1.26E+01±1.56E+00− 9.37E+00±9.98E-01

cf20 5.01E+02±1.80E+02− 3.79E+02±1.16E+02 6.92E+03±2.23E+03− 7.47E+01±1.46E+01

cf21 2.67E+03±1.14E+03− 1.52E+03±3.72E+02 2.27E+05±9.07E+04− 1.01E+03±1.60E+02

cf22 1.16E+03±3.37E+02≈ 1.10E+03±3.94E+02 4.62E+02±9.13E+01− 2.52E+02±8.29E+01

Composition

Functions

cf23 3.15E+02±1.70E-08≈ 3.15E+02±3.19E-09 3.15E+02±4.78E-02− 2.16E+02±4.37E+00

cf24 2.59E+02±3.36E+01≈ 2.55E+02±2.34E+01 2.48E+02±3.12E+00− 2.41E+02±7.84E+00

cf25 2.13E+02±2.05E+01≈ 2.09E+02±6.95E+00 2.09E+02±1.92E+00− 2.02E+02±3.95E+00

cf26 1.32E+02±7.88E+01≈ 1.32E+02±7.01E+01 1.00E+02±7.12E-02≈ 1.00E+02±7.20E-02

cf27 1.31E+03±4.34E+02≈ 1.29E+03±4.31E+02 5.26E+02±4.44E+01− 4.17E+02±9.24E+01

cf28 1.93E+03±4.59E+02≈ 1.95E+03±4.84E+02 9.97E+02±1.11E+02≈ 1.03E+03±1.59E+02

cf29 1.54E+07±1.64E+07− 9.54E+06±1.36E+07 2.88E+06±5.52E+06≈ 2.83E+06±5.45E+06

cf30 4.31E+03±2.76E+03− 3.37E+03±1.36E+03 3.53E+03±1.12E+03− 2.13E+03±6.40E+02

+ 0 0

− 19 25

≈ 11 5

10

TABLE S-VIII
RUNTIME OF PSO-W, ACOS-PSO-W, PSO-CF, ACOS-PSO-CF, JADE, ACOS-JADE, JDE, ACOS-JDE, SADE, AND ACOS-SADE ON 30 TEST

FUNCTIONS WITH 30D FROM IEEE CEC2014 USING 300,000 FES.

Test Functions with 30D

from IEEE CEC2014

PSO-w ACoS-PSO-w PSO-cf ACoS-PSO-cf JADE ACoS-JADE jDE ACoS-jDE SaDE ACoS-SaDE

(second) (second) (second) (second) (second) (second) (second) (second) (second) (second)

Unimodal

Functions

cf1 2.2142 3.8724 2.3895 3.8101 3.3886 7.0318 3.0132 5.0854 7.9106 10.4659

cf2 1.8028 3.4501 1.7901 3.3946 2.7497 6.4724 2.6458 4.7716 7.7328 10.2672

cf3 1.8355 3.4861 1.7733 3.3074 2.9881 6.2536 2.5854 4.7484 7.6045 9.9706

Simple

Multimodal

Functions

cf4 1.7991 3.4287 1.8231 3.4503 2.8028 6.3221 2.6797 4.5554 7.4201 9.7892

cf5 2.0296 3.7182 1.9651 3.6389 3.2044 4.8771 3.1222 5.0557 7.1311 9.8812

cf6 17.8331 20.9827 16.7533 19.7588 19.6648 21.4436 19.2908 20.4357 22.8878 27.3678

cf7 2.0408 3.6955 2.1028 3.4738 2.8274 6.4546 2.6883 4.8135 7.7694 10.1482

cf8 1.7647 3.4323 1.6579 3.4091 2.7498 5.9133 2.5043 4.6337 7.5304 9.9611

cf9 1.9354 3.6409 1.8324 3.5451 3.0866 5.0762 2.8706 5.0569 7.1942 9.6662

cf10 2.4234 4.1563 2.3496 4.1261 3.5147 6.0472 3.1431 5.3699 7.7905 10.3124

cf11 2.5831 4.3876 2.4547 4.2967 3.8424 5.8652 3.7066 5.7097 7.9897 10.2332

cf12 4.8451 6.9136 4.8229 6.7826 6.0392 8.3581 5.9295 8.4344 10.0151 12.7009

cf13 1.8233 3.4658 1.7786 3.3718 2.9269 4.4212 2.7014 4.5587 6.6291 9.1342

cf14 1.8005 3.4181 1.7821 3.3554 2.8561 4.4291 2.6962 4.5533 6.5993 8.6736

cf15 1.9537 3.6559 1.9242 3.5005 3.0394 4.9871 2.6782 4.6438 6.9707 9.3157

cf16 2.0467 3.7589 1.9877 3.6301 3.2234 5.0719 3.0945 4.9776 7.2787 9.4789

Hybrid

Functions

cf17 2.3104 3.9045 2.3388 3.8691 3.1569 5.3063 3.0816 4.8847 7.6574 9.9113

cf18 1.9401 3.5804 2.0079 3.5527 2.9495 4.9686 2.7377 4.5271 7.1801 9.6157

cf19 4.8291 7.4193 4.7044 7.3484 6.4186 8.8967 6.1631 8.6438 10.6072 13.2464

cf20 1.9966 3.6338 1.9657 3.5297 3.0002 5.0601 2.7634 4.5224 7.0747 9.5677

cf21 2.2228 3.8929 2.3242 3.7191 3.2053 5.4611 3.0374 4.8535 7.4862 9.9057

cf22 2.4539 4.2028 2.4351 4.1052 3.6891 5.7394 3.3799 5.4157 7.7426 10.4195

Composition

Functions

cf23 5.2665 7.4386 5.2572 7.4443 6.4335 10.2934 6.1291 8.9888 11.3682 14.2865

cf24 4.1893 6.2041 4.1255 6.0506 5.1305 7.3717 4.8827 7.2648 8.9745 11.6183

cf25 4.8157 6.7232 4.8157 6.6979 5.8016 9.8592 5.6377 8.1103 10.6325 13.2666

cf26 22.6681 25.6779 22.4181 25.6285 24.3567 26.4984 23.7301 26.3194 28.1501 31.6183

cf27 22.5864 24.9456 21.1078 24.5395 23.1577 24.9597 21.1501 25.3616 26.0935 31.9194

cf28 6.3173 8.7162 6.3336 8.7289 7.6282 10.3412 7.2752 9.9322 11.9131 14.6997

cf29 6.8505 10.4318 7.0055 10.5782 8.3378 11.4457 8.6174 10.9918 13.2429 16.3783

cf30 4.5956 6.6341 4.6865 6.5721 5.6371 8.6383 5.6018 7.8296 10.2773 12.6853

Average Runime 4.7924 6.7622 4.6904 6.6405 5.9269 8.4621 5.6512 7.8349 10.1618 12.8835

Average Extra Runtime 1.9698 1.9501 2.5352 2.1837 2.7217

11

TABLE S-IX
RUNTIME OF PSO-W, ACOS-PSO-W, PSO-CF, ACOS-PSO-CF, JADE, ACOS-JADE, JDE, ACOS-JDE, SADE, AND ACOS-SADE ON 30 TEST

FUNCTIONS WITH 50D FROM IEEE CEC2014 USING 500,000 FES.

Test Functions with 50D

from IEEE CEC2014

PSO-w ACoS-PSO-w PSO-cf ACoS-PSO-cf JADE ACoS-JADE jDE ACoS-jDE SaDE ACoS-SaDE

(second) (second) (second) (second) (second) (second) (second) (second) (second) (second)

Unimodal

Functions

cf1 5.2851 9.5367 5.4502 9.4047 7.1422 14.7701 6.9303 12.8697 15.1198 20.5759

cf2 4.2332 8.4885 4.1111 8.1127 5.8121 13.6929 5.9791 11.9432 13.986 19.7086

cf3 4.1933 8.4791 3.9686 8.1145 6.4448 13.6418 5.8346 11.9587 13.758 19.4487

Simple

Multimodal

Functions

cf4 4.1449 8.2917 4.1463 8.4678 6.5183 13.7654 6.1575 12.2024 14.2523 19.7847

cf5 4.7193 9.0402 4.5959 8.7729 7.0949 11.9777 7.1862 12.9257 13.5849 19.8751

cf6 49.6886 56.6993 48.1424 54.4512 51.1161 57.7224 50.9719 54.0292 58.9581 65.0065

cf7 4.8041 9.1333 4.3877 8.4499 5.9057 14.1342 5.8287 12.4163 14.6453 20.0929

cf8 3.7759 7.9644 3.4189 7.8126 5.3699 12.4307 5.0886 11.5266 13.775 19.2783

cf9 4.6789 8.7991 4.2335 8.5548 6.6893 11.6927 6.2278 12.3079 13.7503 19.5798

cf10 5.5222 9.8839 5.2883 9.7324 7.6872 13.5845 6.9255 13.2394 14.6066 20.4837

cf11 6.5415 10.9008 6.0839 10.6675 8.7899 14.0852 8.9508 14.7223 15.7978 21.9198

cf12 12.8893 17.7061 12.4262 17.4444 15.1317 20.5847 14.8504 22.0975 22.1256 28.7203

cf13 4.0718 8.3992 4.0044 8.1753 6.0442 10.1349 5.9759 11.9562 12.8343 18.3817

cf14 4.1043 8.3078 4.0331 8.0798 5.9245 10.2801 5.8887 11.7078 12.4708 18.2361

cf15 4.6523 8.8733 4.4801 8.5269 6.4959 11.5836 5.9439 11.9709 13.1504 19.1214

cf16 4.8173 9.1135 4.6508 8.9176 7.0584 11.8899 7.2277 13.0044 13.8892 20.1175

Hybrid

Functions

cf17 5.4829 9.6939 5.6649 9.5823 7.1815 14.6118 7.1746 12.7941 15.2678 20.6719

cf18 4.4876 8.6565 4.4833 8.5788 6.2662 12.3668 5.8823 11.7213 13.4671 19.3159

cf19 13.2878 18.6763 12.4123 18.3133 15.5912 22.7477 15.2789 22.5083 23.6379 29.1993

cf20 4.6144 8.8146 4.4165 8.6001 6.3337 11.6084 6.0314 11.7596 13.8077 19.2949

cf21 5.2315 9.3426 5.3638 9.2568 7.5373 13.3399 6.8743 12.5068 14.7619 20.1605

cf22 5.8024 10.2609 5.7874 10.1903 8.3072 13.4967 7.8257 14.0026 15.2748 21.3178

Composition

Functions

cf23 14.6306 19.6574 14.7443 19.5975 16.8101 25.8235 16.4084 24.6849 25.3783 32.2466

cf24 10.9654 15.9341 10.5038 15.5605 12.4776 21.9365 12.2149 19.8828 21.1163 27.3674

cf25 13.0102 17.9162 13.0076 17.9137 14.6446 23.8497 14.7218 22.1201 23.1034 29.3759

cf26 63.8244 70.8617 63.3021 69.9452 65.9136 71.7998 65.5865 73.7435 73.9766 81.8428

cf27 62.8366 69.5244 61.3084 68.6068 61.1054 67.0864 61.3795 67.8372 68.6311 78.1318

cf28 17.9415 23.6857 17.8963 23.6539 20.9666 27.0057 20.3048 27.9469 28.0773 35.3722

cf29 19.2817 26.9251 19.1166 26.8671 22.4686 30.1808 22.5619 29.9646 30.9617 38.5667

cf30 12.3805 17.2641 12.5688 17.2178 14.8115 21.7373 14.4585 21.5516 22.4387 28.8285

Average Runime 12.7299 17.5611 12.4665 17.2523 14.6547 21.1187 14.4224 20.7968 22.2202 28.4007

Average Extra Runtime 4.8312 4.7858 6.4640 6.3744 6.1805

12

NP 2*NP 3*NP 4*NP 5*NP

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

10

10.2

10.4

Archive Size

Fu
nc

tio
n

E
rr

or
 V

al
ue

(a) cf16 with 30D

NP 2*NP 3*NP 4*NP 5*NP

5

10

15

20

25

30

35

40

45

50

Archive Size

Fu
nc

tio
n

E
rr

or
 V

al
ue

(b) cf20 with 30D

NP 2*NP 3*NP 4*NP 5*Np

500

1000

1500

2000

2500

Archive Size

Fu
nc

tio
n

E
rr

or
 V

al
ue

(c) cf30 with 30D

Fig. S-1. Box plots of the function error values derived from ACoS-JADE with different archive size on cf16 with 30D, cf20 with 30D, and cf30 with 30D.

13

0.01
0.03

0.05
0.07

0.09

0.01
0.05

0.1

0.2

0.5

9.0

9.5

10

Constriction Factor

Punishment Coefficient

A
ve

ra
ge

 F
un

ct
io

n
E

rr
or

 V
al

ue

(a) cf16 with 30D

0.01
0.03

0.05
0.07

0.09

0.01
0.05

0.1

0.2

0.5

0

5

10

15

20

25

30

Constriction Factor

Punishment Coefficient

A
ve

ra
ge

 F
un

ct
io

n
E

rr
or

 V
al

ue

(b) cf20 with 30D

0.01
0.03

0.05
0.07

0.09

0.01
0.05

0.1

0.2

0.5

0

500

1000

1500

Constriction Factor

Punishment Coefficient

A
ve

ra
ge

 F
un

ct
io

n
E

rr
or

 V
al

ue

(c) cf30 with 30D

Fig. S-2. Average function error values provided by ACoS-JADE with different combinations of constriction factor ε and punishment efficient η on cf16
with 30D, cf20 with 30D, and cf30 with 30D.

	Introduction
	Particle Swarm Optimization (PSO) and Differential Evolution (DE)
	Particle Swarm Optimization (PSO)
	Differential Evolution (DE)

	Coordinate Systems and Their Related Work
	Coordinate Systems
	Original Coordinate System
	Eigen Coordinate System
	Difference Between the Original Coordinate System and the Eigen Coordinate System

	Related Work on the Eigen Coordinate System

	Proposed Approach
	ACoS
	Updating of the Eigen Coordinate System
	Updating of the Probability Vector
	Applying ACoS to PSO and DE
	Difference between ACoS and Other Methods

	Experimental Study
	Principle Analysis
	ACoS for Two Popular PSO Variants
	ACoS for Three State-of-the-Art DE Variants
	Comparison between ACoS and Other Eigen Coordinate System-Based Methods
	Benefit of ACoS's Components
	Evolution of the Probability Vector in ACoS
	Applying ACoS to Other NIOAs

	Conclusion
	References
	Biographies
	Zhi-Zhong Liu
	Yong Wang
	Shengxiang Yang
	Ke Tang

