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Abstract—A mixed-integer programming (MIP) problem con-
tains not only constraints but also integer restrictions. Integer
restrictions divide the feasible region defined by constraints
into multiple discontinuous feasible parts with different sizes.
Several popular methods (e.g., rounding and truncation) have
been proposed to deal with integer restrictions. Although it is easy
for these methods to generate an integer, they tend to converge
to an integer which is located in a feasible part with a big size.
If the optimal solution is not in this feasible part, they are very
likely to converge to a local optimal solution due to the loss
of diversity of the population. To overcome this shortcoming, a
biobjective optimization-based two-phase method is proposed in
this paper. In the first phase, a measure function is designed to
compute the degree that a solution violates integer restrictions. By
employing this measure function as the second objective function
and removing integer restrictions, a MIP problem is transformed
into a constrained biobjective optimization problem (CBOP). It
can be proven that the Pareto optimal solution of the transformed
CBOP which satisfies integer restrictions is the optimal solution of
the original MIP problem. To solve the transformed CBOP, a new
comparison rule is designed. After the first phase, the population
can approach the Pareto optimal solution which satisfies integer
restrictions. Then, the second phase is implemented to enhance
the convergence precision and obtain the optimal solution. In
addition, we design 12 test problems to verify the effectiveness of
the proposed method. The results demonstrate that the proposed
method shows better performance against five state-of-the-art
evolutionary algorithms for MIP.

Index Terms—Mixed-integer programming, integer-restriction-
handling technique, constraint-handling technique, biobjective
optimization, evolutionary algorithms.

I. INTRODUCTION

Mixed-integer programming (MIP) problems arise in var-
ious fields such as chemical processes [1], electronic cir-
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cuits [2], and communications [3]. In general, the mathemat-
ical model of a MIP problem can be formulated as:

minimize : f(x, y)

subject to : gk(x, y) ≤ 0, k = 1, . . . , l

hk(x, y) = 0, k = l + 1, . . . , p

xLi ≤ xi ≤ xUi , i = 1, . . . , n1

yLi ≤ yi ≤ yUi , i = 1, . . . , n2

[x, y] ∈ S

yi is an integer

(1)

where x = (x1, x2, . . . , xn1
) is the continuous decision vector,

y = (y1, y2, . . . , yn2) is the integer decision vector, xLi and xUi
are the lower and upper bounds of xi, respectively, yLi and yUi
are the lower and upper bounds of yi, respectively, S is the
decision space, f(x, y) is the objective function, gk(x, y) is the
kth inequality constraint, and hk(x, y) is the (k− l)th equality
constraint. In total, the MIP problem in (1) has n1 continuous
decision variables, n2 integer decision variables, l inequality
constraints, and (p− l) equality constraints.

The degree of constraint violation of [x, y] is calculated as
follows:

Gk(x, y) =

{
max{0, gk(x, y)}, 1 ≤ k ≤ l
max{0, |hk(x, y)| − δ}, l + 1 ≤ k ≤ p

(2)

G(x, y) =

p∑
k=1

Gk(x, y) (3)

where δ is a positive tolerance value to relax equality con-
straints to a certain extent. The feasible region of a MIP
problem is a set containing all feasible solutions:

Ω = {[x, y]|G(x, y) = 0, [x, y] ∈ S} (4)

For a MIP problem, its feasible region Ω is defined by
constraints, and then integer restrictions divide Ω into several
discontinuous feasible parts. Next, the following MIP problem
is employed as an example to illustrate this characteristic:

minimize : 20x1 + 10x2

subject to : 5x1 + 4x2 ≤ 24

2x1 + 5x2 ≤ 13

x1, x2 > 0

x2 is an integer

(5)

As shown in Fig. 1, the blue area denotes the feasible
region defined by constraints, and the red lines denote the
discontinuous feasible parts defined by both constraints and
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Fig. 1. The blue area denotes the feasible region defined by constraints, and
the red lines denote the discontinuous feasible parts defined by both constraints
and integer restrictions.

integer restrictions. Owing to the discontinuous feasible parts,
a MIP problem is usually nonconvex and NP-hard [4].

To solve MIP problems, many classical methods have been
proposed, such as branch and bound [4], cutting planes [5], and
outer approximation [6], [7]. However, it is difficult for these
methods to deal with nonconvex, nondifferentiable, or nonlin-
ear MIP problems. Compared with classical methods, evolu-
tionary algorithms (EAs) are insensitive to the landscapes of
optimization problems such as nonconvexity and discontinuity,
and easy to implement. During the past decades, there has been
a growing interest in applying EAs to solve different kinds of
optimization problems [8]-[14]. When solving MIP problems,
EAs should be integrated with constraint-handling techniques
and integer-restriction-handling (IRH) techniques due to the
presence of both constraints and integer restrictions. To tackle
constraints, a variety of constraint-handling techniques has
been suggested. The current popular constraint-handling tech-
niques can be mainly classified into three categories [15]:
methods based on penalty functions [16], [17], methods based
on the preference of feasible solutions over infeasible solu-
tions [18]-[23], and methods based on multiobjective opti-
mization [24]-[29]. For coping with integer restrictions, the
most commonly used technique is transforming a continuous
value into an integer by rounding or truncation [30]-[34].
Several other techniques have also been proposed to handle
integer restrictions by directly generating an integer without
any conversion [35]. However, these techniques tend to enter a
feasible part with a big size. Note that if the optimal solution
is located in a feasible part with a small size, these techniques
may find a wrong feasible part and converge to a local optimal
solution. Obviously, the performance of these techniques is
significantly influenced by the sizes of the feasible parts.

Therefore, a question which arises naturally is whether we
can transform a MIP problem into another problem without
any integer restrictions, thus avoiding the influence of the
feasible parts. In addition, in current IRH techniques, the
solutions which do not satisfy integer restrictions are usually
neglected. Note, however, that some of these solutions may
be close to the optimal solution, which can contribute to the

search of the optimal solution. Therefore, another interesting
question is whether these solutions can be utilized.

Motivated by the above considerations, a novel biobjective
optimization-based two-phase method (called BOToP) is pro-
posed. In the first phase, a measure function is designed to
calculate the degree that a solution violates integer restrictions.
Then, a MIP problem is transformed into a constrained biob-
jective optimization problem (CBOP) by employing this mea-
sure function as the second objective function and removing
integer restrictions1. It can be proven that the Pareto optimal
solution of this CBOP which satisfies integer restrictions is the
optimal solution of the original MIP problem. Moreover, we
design a comparison rule to guide the population to approach
this Pareto optimal solution in the first phase. Then, the second
phase, which adopts rounding to handle integer restrictions, is
implemented to enhance the convergence precision and obtain
the final solution.

The main contributions of this paper can be summarized as
follows:

• The original MIP problem is transformed into a CBOP
in the first phase by a measure function. Compared
with directly solving the original MIP problem, solving
the transformed CBOP has the following advantage: the
integer restrictions have been removed from the trans-
formed CBOP; therefore, the feasible parts defined by
integer restrictions have also been eliminated and the
disadvantage that the population converges to a wrong
feasible part can be alleviated.

• A comparison rule is designed, which aims to approach
the Pareto optimal solution satisfying integer restrictions.
When comparing two feasible solutions, their nondom-
inated rankings are calculated. If they have the same
nondominated ranking, either the objective function or
the measure function is employed to compare them.
Based on our comparison rule, some feasible solutions
with low violation degree of integer restrictions and/or
good objective function values can be retained. Thus, the
information of these feasible solutions can be utilized and
the diversity of the population can be enhanced.

• Twelve MIP test problems are designed in this paper.
Systematic experiments have been conducted to compare
BOToP with five state-of-the-art EAs on these 12 test
problems. The results suggest that BOToP performs better
than the compared methods.

The rest of this paper is organized as follows. Section II
introduces differential evolution (DE) and multiobjective op-
timization problems (MOPs). The related work and the disad-
vantages of the commonly used IRH techniques are discussed
in Section III. The details of the proposed BOToP are present-
ed in Section IV. The experimental studies are implemented
in Section V. Finally, Section VI concludes this paper.

1To the best of our knowledge, BOToP is the first attempt to deal with a
MIP problem by transforming it into a CBOP.
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II. PRELIMINARY KNOWLEDGE

A. DE

DE is a very popular EA paradigm proposed by Storn and
Price [36]. It contains four processes: initialization, mutation,
crossover, and selection.

Initialization: There are NP individuals generated random-
ly in initialization:

xi = (xi,1, xi,2, . . . , xi,D), i = 1, 2, . . . , NP (6)

where xi is the ith individual and D is the number of decision
variables.

Mutation: For each individual xi, a mutant vector vi =
(vi,1, vi,2, . . . , vi,D) is created. The following two DE mu-
tation operators are used in this paper:
• DE/current-to-rand/1:

vi = xi + rand× (xr1 − xi) + F × (xr2 − xr3) (7)

• DE/rand-to-best/1:

vi = xr1 + rand× (xbest − xr1) + F × (xr2 − xr3)
(8)

where r1, r2 and r3 are three mutually different integers
chosen randomly from [1, NP ], xbest is the best individual in
the population, rand is a uniformly distributed random number
from [0, 1], and F is the scaling factor.

Crossover: Through the binomial crossover, a trial vector
ui = (ui,1, ui,2, . . . , ui,D) is generated based on xi and vi:

ui,j =

{
vi,j , if randj < CR or j = jrand

xi,j , otherwise
(9)

where i = 1, 2, . . . , NP , j = 1, 2, . . . , D, CR ∈ [0, 1] is the
crossover control parameter, randj is a uniformly distributed
random number between 0 and 1, and jrand is an integer
randomly selected from [1, D].

Selection: Between xi and ui, the better one is selected into
the next generation:

xi =

{
ui, if f(ui) ≤ f(xi)
xi, otherwise

(10)

B. MOPs

Since the proposed method is based on multiobjective op-
timization, we next introduce MOPs and the related concepts.
A MOP can be expressed as:

minimize : f(x) = (f1(x), f2(x), . . . , fq(x)) (11)

where x = (x1, x2, . . . , xD) ∈ S is the decision vector
containing D decision variables, S is the decision space, and
f(x) is the objective vector containing q objective functions.

For MOPs, the most important concept is called Pareto
dominance. Assuming that there are two decision vectors a and
b, if ∀i ∈ {1, 2, . . . , q}, fi(a) ≤ fi(b) and ∃j ∈ {1, 2, . . . , q},
fj(a) < fj(b), a is said to Pareto dominate b. If no decision
vector in S can Pareto dominate a, then a is called a Pareto
optimal solution. The set of all the Pareto optimal solutions is
the Pareto set (PS). The Pareto front (PF) is the image of the
PS in the objective space.

III. RELATED WORK AND THE DISADVANTAGES OF
ROUNDING AND TRUNCATION

A. Related Work

When solving MIP problems by EAs, a key problem is
how to deal with integer restrictions. Current IRH techniques
can be briefly classified into two categories: 1) indirect IRH
techniques and 2) direct IRH techniques.

1) Indirect IRH Techniques: This kind of techniques trans-
forms a continuous value into an integer. The most easily
implemented and widely used indirect IRH techniques are
rounding and truncation. Many EAs have been introduced to
solve MIP problems based on rounding or truncation. For
example, Deep et al. [34] proposed an extended version of
the real-coded genetic algorithm (GA) [37], in which a mixed
truncation method is employed to handle integer restrictions.
Lampinen et al. [38] designed an improved DE to solve MIP
problems. In this algorithm, the truncation is only implemented
when evaluating a solution. In addition, Li et al. [39] proposed
a discrete hybrid DE, Mohamed [40] suggested an efficient
modified DE, Liao et al. [41] developed two hybrid DE, Luo
et al. [42] devised an improved particle swarm optimization
(PSO), Mohan et al. [43] proposed a controlled random search
technique, Lin et al. [44] presented a co-evolutionary hybrid
DE based on [45], and Jun et al. [46] employed a novel
population initialization technology and a dynamic nonlinear
scaling factor to enhance the search ability of DE. There
are also many other indirect IRH techniques. For example,
Babu et al. [1] introduced an additional equality constraint
to deal with binary variables. Moreover, many EAs have been
designed to solve MIP problems in the real world. Ponsich and
Coello Coello [47] studied the performance of DE on solv-
ing process engineering problems, which contain large-size
instances, constraints, and integer variables. Sahoo et al. [48]
proposed an efficient hybrid approach based on GA and PSO,
which is applied to solve reliability MIP problems in series-
parallel and bridge systems. Hinojosa et al. [49] discussed the
application of a mixed-integer-binary small-population-based
evolutionary PSO for optimal power flow. Ho-Huu et al. [30]
modified the improved (µ+λ) constrained DE [50] to solve
layout truss optimization problems. Balamurugan et al. [2]
proposed a hybrid integer-coded DE dynamic programming
scheme to solve the economic dispatch problem.

2) Direct IRH Techniques: This kind of techniques gen-
erates an integer without any transformation. For instance,
Kennedy et al. [51] extended the continuous PSO to deal with
combinatorial optimization problems and used a binary bit to
represent each dimension of an particle’s position vector. Datta
et al. proposed a real-integer-discrete-coded DE [35] and a
real-integer-discrete-coded PSO [52] to solve MIP problems.
Li et al. [53] designed a mixed-integer evolution strategy
based on maximum entropy principle. Wu et al. [54] proposed
an enhanced integer-coded PSO for solving system feeder
reconfiguration problems.

B. Disadvantages of Rounding and Truncation

Rounding and truncation are widely accepted to handle
integer restrictions. In this subsection, we are interested in
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Fig. 2. Contours of the objective function and the feasible region of P1. The
green area is the feasible region defined by constraints, the red line and red
points are the feasible parts defined by both constraints and integer restrictions,
and the optimal solution is located in feasible part I.

disclosing their disadvantages. To this end, an artificial test
function named P1 is designed as an example:

P1 : minimize : (x1 − 1)2 + (x2 − 3)2

subject to : (x1 + 1)2 + (x2 + 1)2 ≤ 1

x1 ∈ [−3, 1]

x2 ∈ {−3,−2,−1, 0, 1}

(12)

The optimal solution of P1 is (−1, 0) and the optimal ob-
jective function value is 13. The contours of the objective
function and the feasible region of P1 are shown in Fig. 2. The
green area is the feasible region defined by constraints, and the
red line and red points are the feasible parts defined by both
constraints and integer restrictions. Obviously, P1 contains
three discontinuous feasible parts, which are named as feasible
part I, feasible part II and feasible part III, respectively. Note
that the optimal solution is located in feasible part I.

When solving a MIP problem, our purpose is to find the
optimal solution which satisfies both constraints and integer
restrictions. To achieve this purpose, two tasks should be
accomplished: 1) entering the feasible parts and 2) obtaining
the optimal solution in the end. However, handling integer
restrictions by rounding or truncation may have a negative
effect on the accomplishment of these two tasks. Taking P1
as an example, the negative effects of rounding or truncation
are explained as follows:

1) Influence on Entering the Feasible Parts: When solving
P1, the population tends to enter feasible part II due to the
fact that the size of feasible part II is significantly greater than
that of feasible part I and feasible part III. As a result, feasible
part I, which contains the optimal solution, is often neglected.

2) Influence on Finding the Optimal Solution: Once the
whole population has entered a wrong feasible part, the
individuals could not jump out due to the loss of diversity.
As shown in Fig. 2, if all the individuals have entered feasible
part II, the values of x2 of these individuals are the same with
each other, i.e., -1. Then, no matter what operator is adopted
to generate offspring, the value of x2 of this offspring is -1.
Thus, the population stagnates in feasible part II.

To confirm our analysis, a set of experiments was im-
plemented. Since rounding and truncation have the similar

(a) (b)

(c) (d)

Fig. 3. Evolution of MIPDE-FR over a typical run on P1. (a) The 10th
generation. (b) The 50th generation. (c) The 200th generation. (d) The 500th
generation.

(a) (b)

(c) (d)

Fig. 4. Evolution of MIPDE-ε over a typical run on P1. (a) The 10th
generation. (b) The 50th generation. (c) The 200th generation. (d) The 500th
generation.

disadvantages, only the performance of rounding was tested
in the experimental study. Two DE-based algorithms, named
MIPDE-FR and MIPDE-ε, were designed. In MIPDE-FR
and MIPDE-ε, Deb’s feasibility rule [18] and ε constrained
method [20] were employed to handle constraints, respectively.
The parameters of MIPDE-FR and MIPDE-ε were the same
as in Section V-B. The setting of ε in MIPDE-ε was the same
with [20]. Fig. 3 and Fig. 4 provide a typical run derived from
MIPDE-FR and MIPDE-ε on solving P1, respectively. We can
observe that:
• From Fig. 3(a) and Fig. 3(b), MIPDE-FR can approach

the feasible parts in the early stage. However, the indi-
viduals are hard to enter feasible part I because it is too
small and easily ignored. As shown in Fig. 3(c), after
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Algorithm 1 BOToP
1: t = 0; // t denotes the generation number
2: FEs = 0; // FEs denotes the number of function

evaluations
3: X0 ← Initialization;
4: (Xt, t, FEs) ← The first phase(X0, t, FEs);
5: FinalSolution ← The second phase(Xt, t, FEs);

200 generations, all the individuals enter feasible part
II. Under this condition, the population cannot jump out
because of the poor diversity. It can be seen from Fig. 3(d)
that the population converges to a local optimal solution
in the end.

• MIPDE-ε mainly searches around feasible part I and
feasible part II in the early stage, as shown in Fig. 4(a)
and Fig. 4(b). However, similar to MIPDE-FR, MIPDE-ε
also misses feasible part I in the middle stage, as shown
in Fig. 4(c). At last, premature convergence occurs, as
shown in Fig. 4(d).

In summary, when rounding or truncation is used to deal
with integer restrictions, the population is very likely to enter
a feasible part with a big size. If the optimal solution is not
in this feasible part, the population may be trapped into a
local optimal solution due to the loss of diversity. Therefore,
the performance of rounding or truncation is significantly
influenced by the sizes of the feasible parts.

To overcome this disadvantage, one of the possible ways is
to transform a MIP problem into another problem without any
feasible parts, thus alleviating the influence of multiple feasible
parts. In addition, when applying rounding or truncation to
handle integer restrictions, the solutions which do not satisfy
integer restrictions will be eliminated. Note that some of them
may be very close to the optimal solution, which are beneficial
to find the optimal solution. However, they are neglected un-
reasonably. Whether they can be utilized to enhance the search
performance is also an interesting question. Based on the
above considerations, we propose a biobjective optimization-
based two-phase method for solving MIP problems, called
BOToP.

IV. PROPOSED APPROACH

A. BOToP

The framework of BOToP is given in Algorithm 1. At
first, an initial population is randomly produced in the de-
cision space: X0 = {x0,1, x0,2, . . . , x0,NP }, where x0,j (j ∈
{1, 2, . . . , NP}) is an individual containing both continuous
decision variables and integer decision variables. During the
evolution, BOToP consists of two main phases. The aim of
the first phase is to make the population approach the optimal
solution of a MIP problem. This task is accomplished by
the following two steps: 1) transforming a MIP problem
into a CBOP with no integer restrictions, and 2) solving the
transformed CBOP by combining DE with a new comparison
rule. After the first phase, the second phase is implemented
to enhance the convergence precision and obtain the final
solution. Similar to most existing methods, the second phase

handles integer restrictions by rounding. Note that since the
population has approached the optimal solution of a MIP
problem after the first phase, the probability that the population
stalls in a wrong feasible part greatly reduces, even though
rounding is utilized in the second phase. Next, we introduce
these two phases in detail.

B. The First Phase

1) Transformation: A MIP problem is transformed into the
following CBOP:

minimize : (f(x, y), m(y))

subject to : gk(x, y) ≤ 0, k = 1, . . . , l

hk(x, y) = 0, k = l + 1, . . . , p

xLi ≤ xi ≤ xUi , i = 1, . . . , n1

yLi ≤ yi ≤ yUi , i = 1, . . . , n2

[x, y] ∈ S

(13)

The main difference between the transformed CBOP and the
original MIP problem is that integer restrictions are removed
from the transformed CBOP and yi is now treated as a
real number. Meanwhile, a measure function m(y), which
can measure the degree of y violating integer restrictions,
is considered as the second objective function. To measure
the degree of y violating integer restrictions, the most direct
method is to measure the distance between y and the integer
solution nearest to y (denoted as yint). This distance can be
represented as ||y − yint||, where yint can be obtained by
rounding y and || · || represents a kind of norm. In this paper,
L∞ norm2 (denoted as || · ||∞) is employed as it is one of the
simplest ways to calculate the distance between y and yint;
thus, m(y) is expressed as:

m(y) = ||y− yint||∞
= max(|y1 − round(y1)|, . . . , |yn2 − round(yn2)|)

(14)
where round(·) is the rounding operation. It is clear that if
m(y) = 0, then y satisfies integer restrictions. The relationship
between the transformed CBOP and the original MIP problem
can be described by the following two theorems.

Theorem 1: The optimal solution of the original MIP
problem is a Pareto optimal solution of the transformed CBOP.

Proof: Suppose that [x∗, y∗] is the optimal solution of the
original MIP problem, and it does not belong to the PS of the
transformed CBOP. According to the definition in Section II-
B, there must exist a solution (denoted as [x′, y′]) which
Pareto dominates [x∗, y∗]. Due to the fact that [x∗, y∗] is the
optimal solution of the original MIP problem, it must satisfy
integer restrictions, i.e., m(y∗) = 0. According to (14), it is
obvious that the value of m(y) is not negative, so m(y′) ≥ 0.
According to the definition of Pareto dominance, it can be
concluded that m(y′) = m(y∗) = 0 and f(x′, y′) < f(x∗, y∗).
However, this is a contradiction with the previous hypothesis:
[x∗, y∗] is the optimal solution of the original MIP. Therefore,

2Note that, based on different norms, m(y) can be written as different
forms. We investigated the influence of different forms in Section S-III of the
supplementary file, and found that the performance of BOToP is insensitive
to them.
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Algorithm 2 The first phase
Input: X0, t = 0, and FEs = 0
Output: Xt, t, and FEs

1: Evaluate the f value, m value, and G value of each
individual in Xt = {xt,1, xt,2, . . . , xt,NP };

2: FEs← FEs+NP ;
3: Xt+1 = ∅;
4: while FEs < MaxFEs/2 do
5: Generate a trial vector ut,j for each individual

xt,j (j ∈ {1, 2, . . . , NP}) through DE’s mutation
and crossover operators, and obtain the offspring set
Ut = {ut,1,ut,2, . . . ,ut,NP };

6: Evaluate the f value, m value, and G value of each
individual in Ut;

7: FEs← FEs+NP ;
8: Implement the nondominated sorting on all the feasible

solutions in Xt and Ut, and obtain their rankings;
9: for j = 1, 2, . . . , NP do

10: Select the better one between xt,j and ut,j according
to the comparison rule introduced in Section IV-B,
and store it into Xt+1;

11: end for
12: t← t+ 1;
13: end while

[x∗, y∗] must be a Pareto optimal solution of the transformed
CBOP.

Theorem 2: If the original MIP problem has only one
optimal solution, this solution is the only one Pareto optimal
solution of the transformed CBOP which satisfies integer
restrictions.

Proof: According to Theorem 1, [x∗, y∗], the optimal solu-
tion of the original MIP problem, is a Pareto optimal solution
of the transformed CBOP. Suppose that there exists another
Pareto optimal solution [x′′, y′′], which also satisfies integer
restrictions. It is clear that m(y∗) = m(y′′) = 0. Due to
the fact that [x∗, y∗] and [x′′, y′′] are nondominated with each
other, it can be obtained that f(x∗, y∗) = f(x′′, y′′). Since
the original MIP problem has only one optimal solution, so
[x∗, y∗] and [x′′, y′′] are the same solution. Therefore, we can
conclude that [x∗, y∗] is the only one Pareto optimal solution
which satisfies integer restrictions.

According to these two theorems, the optimal solution
of a MIP problem can be obtained by finding the Pareto
optimal solution of the transformed CBOP which satisfies
integer restrictions. The technical advantage of solving the
transformed CBOP over directly solving the original MIP
problem is the following: the feasible parts defined by integer
restrictions have been removed, thus reducing the possibility
that the population converges to a false feasible part.

2) Solving the Transformed CBOP: For each individual
xt,j (j ∈ {1, 2, . . . , NP}), offspring ut,j is generated by DE.
In BOToP, DE/current-to-rand/1 and DE/rand-to-best/1 in (7)
and (8) are employed as the mutation operators [23], each of
which is applied to xt,j with the same probability, i.e., 0.5.
Subsequently, the binomial crossover in (9) is only executed
after DE/rand-to-best/1. In order to approach the Pareto opti-

Algorithm 3 The second phase
Input: Xt, t, and FEs
Output: The best individual in Xt

1: Implement rounding on the integer decision variables of
each individual xt,j (j ∈ {1, 2, . . . , NP}) in Xt =
{xt,1, xt,2, . . . , xt,NP };

2: Evaluate the f value and G value of each individual in
Xt;

3: FEs← FEs+NP ;
4: Xt+1 = ∅;
5: while (FEs ≥MaxFEs/2)&(FEs < MaxFEs) do
6: for each individual xt,j in Xt do
7: Generate a trial vector ut,j through DE’s mutation

and crossover operators;
8: Implement rounding on the integer decision variables

of ut,j ;
9: Evaluate the f value and G value of ut,j ;

10: FEs← FEs+ 1;
11: Select the better one between xt,j and ut,j according

to Deb’s feasibility rule and store it into Xt+1;
12: if FEs ≥MaxFEs then
13: break
14: end if
15: end for
16: t← t+ 1;
17: end while

mal solution of the transformed CBOP which satisfies integer
restrictions, we propose a new comparison rule to select the
better one between xt,j and ut,j .

On the basis of the f values and m values, the nondomi-
nated sorting [55] is implemented on all the feasible solutions
in the current population Xt = {xt,1, xt,2, . . . , xt,NP } and the
offspring population Ut = {ut,1,ut,2, . . . ,ut,NP }.

Afterward, each feasible individual in Xt and Ut can obtain
a ranking. We divide these feasible individuals into two
categories: the feasible individuals with the best ranking (i.e.,
1) belong to category I, and the other feasible individuals
belong to category II. Then, xt,j and ut,j are compared as
follows:

• If both xt,j and ut,j are infeasible solutions, the one with
smaller degree of constraint violation is preferred.

• If only one of xt,j and ut,j is an infeasible solution, the
feasible one is preferred.

• If both xt,j and ut,j are feasible solutions:
Condition 1: If they have different nondominated rank-
ings, select the one with better nondominated ranking.
Condition 2: If they have the same nondominated ranking
and both of them belong to category I, select the one with
better m value.
Condition 3: If they have the same nondominated ranking
and both of them belong to category II, select the one with
better f value.

It can be observed that if both xt,j and ut,j are infeasible
solutions or if only one of xt,j and ut,j is an infeasible
solution, our comparison rule is the same with Deb’s feasibility
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rule [18]. However, if both xt,j and ut,j are feasible solutions,
our comparison rule is different from Deb’s feasibility rule.
Under this condition, three conditions are considered. The
reasons are explained in the following.

• Condition 1: According to Theorem 1, to find the op-
timal solution of the original MIP problem, one of the
important tasks is to approach the PF of the transformed
CBOP. This task can be accomplished through selecting
the feasible solution with better nondominated ranking.

• Condition 2: The feasible solutions in category I are
the feasible solutions in Xt and Ut closest to the PF
of the transformed CBOP. According to Theorem 2, to
find the Pareto optimal solution which satisfies integer
restrictions, the feasible solution with smaller m value
should be selected.

• Condition 3: When comparing two feasible solutions in
category II, we put more emphases on the f value. It is
because the comparison between two feasible solutions is
based on the m value in condition 2 and we would like
to make a balance between the two objective functions
(i.e., f and m) of the transformed CBOP.

In rounding and truncation, the information provided by
the solutions, which do not satisfy integer restrictions, will be
ignored. In contrast, the solutions with good f values and/or
good m values, which satisfy constraints yet do not satisfy
integer restrictions, could survive into the next generation
in our comparison rule, thus maintaining the diversity of
the population. Moreover, these solutions can promote the
exploration of the whole feasible region defined by constraints.
Thus, the search ability of the population can be enhanced.

Algorithm 2 introduces the implementation of the first
phase.

C. The Second Phase

Even though the population can approach the optimal solu-
tion of the original MIP problem in the first phase, it is hard
to converge to the optimal solution with a high precision. The
reason is that the total computational resources are mainly used
to find the PS of the transformed CBOP, rather than just the
optimal solution of the original MIP problem. To enhance the
convergence precision, the second phase is designed, as shown
in Algorithm 3. The second phase solves the original MIP
problem directly. It utilizes the same mutation and crossover
operators of DE as in the first phase to generate offspring.
Subsequently, rounding is implemented to make this offspring
satisfy integer restrictions. Then, the better one between a
parent and its offspring is selected to the next generation
according to Deb’s feasibility rule [18]. By doing this, the
population will finally converge to the optimal solution.

V. EXPERIMENTAL STUDY

A. Proof-of-Principle Results

P1 introduced in Section III-B was used to illustrate the
working principle of BOToP. In BOToP, P1 is transformed

(a) (b)

(c)

Fig. 5. A typical run derived from the first phase of BOToP on solving
P1CBOP . (a) The 10th generation. (b) The 50th generation. (c) The 200th
generation.
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Fig. 6. A typical run derived from the first phase of BOToP in the objective
space on solving P1CBOP . (a) The 10th generation. (b) The 50th generation.
(c) The 200th generation.

into the following CBOP:

P1CBOP : minimize : f(x1, x2) = (x1 − 1)2 + (x2 − 3)2

minimize : m(x1, x2) = |x2 − round(x2)|
subject to : (x1 + 1)2 + (x2 + 1)2 ≤ 1

x1, x2 ∈ [−3, 1]
(15)

Fig. 5 provides a typical run derived from the first phase of
BOToP on solving P1CBOP . The parameter settings of BOToP
were the same as in Section V-B. As shown in Fig. 5, the
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(a) (b)

(c)

Fig. 7. Implement the second phase at 201th generation. (a) The 200th
generation. (b) The 201th generation. (c) The 300th generation.

solutions which do not satisfy integer restrictions can also be
involved in the evolution when solving P1CBOP . It is because
P1CBOP removes the integer restrictions. From Fig. 5(a) and
Fig. 5(b), it can be seen that the population can approach
the area around feasible part I and the area on the right-
hand side of feasible part II in the early stage. The reasons
are twofold: 1) the solutions in these two areas are feasible
solutions, and 2) the solutions in these two areas have good
m values and f values. According to our comparison rule, the
individuals in these two areas are very likely to be preserved
to the next generation. Since the solutions around feasible part
I have better f values than those around feasible part II, the
population gradually concentrates on feasible part I during the
evolution. This phenomenon can be observed from Fig. 5(c).
As shown in Fig. 5(c), the population is close to the optimal
solution.

Next, we exhibit a typical run of the first phase of BOToP
in the objective space. As shown in Fig. 6(a), Fig. 6(b), and
Fig. 6(c), the population is able to gradually approach the
PF of P1CBOP . Our comparison rule has the capability to
guide the population toward the Pareto optimal solution which
satisfies integer restrictions (i.e., the Pareto optimal solution
with m(x1, x2) = 0). According to Theorem 2, it is the
optimal solution of the original MIP.

Finally, we show the behaviour of BOToP in the second
phase. To clearly observe this behaviour, we implemented
the second phase at the 201th generation. From the 201th
generation, rounding was implemented to make all the indi-
viduals satisfy integer restrictions. As shown in Fig. 7(b), the
population only contains the solutions which satisfy integer
restrictions. At last, the population can converge to the optimal
solution, as shown in Fig. 7(c).

TABLE I
CHARACTERISTICS OF THE TWELVE TEST PROBLEMS, WHERE D IS THE
NUMBER OF DECISION VARIABLES, IC IS THE NUMBER OF INEQUALITY
CONSTRAINTS, EC IS THE NUMBER OF EQUALITY CONSTRAINTS, n1 IS
THE NUMBER OF CONTINUOUS DECISION VARIABLES, AND n2 IS THE

NUMBER OF INTEGER DECISION VARIABLES.

Problem D IC EC n1 n2

F1 2 1 0 1 1
F2 3 1 0 1 2
F3 2 3 0 1 1
F4 2 2 0 1 1
F5 2 0 1 1 1
F6 2 2 0 1 1
F7 5 0 3 3 2
F8 8 6 0 5 3
F9 8 6 0 5 3
F10 8 6 0 5 3
F11 15 5 0 12 3
F12 15 5 0 10 5

B. Test Problems and Parameters Settings

Twelve test problems (F1-F12) were constructed in this
paper to investigate the effectiveness of BOToP. Specifically,
F1-F4 have many feasible parts with different sizes and the
optimal solution is located in a feasible part with a small size.
F5-F7 are designed based on the test functions collected in
IEEE CEC2006 [56]. Note that both F5 and F7 have equality
constraints. F8-F12 are five MIP problems with at least eight
decision variables. These five test problems are also designed
based on [56]. The characteristics of F1-F12 are listed in
Table I, where D is the number of decision variables, IC is the
number of inequality constraints, EC is the number of equality
constraints, n1 is the number of continuous decision variables,
and n2 is the number of integer decision variables. The details
of F1-F12 are presented in the supplementary file.

In the experimental study, the maximum number of function
evaluations (FEs), denoted as MaxFEs, and the population
size NP of BOToP were set to 1.8E+05 and 30, respectively.
The first half of FEs was used in the first phase, and the rest of
FEs was used in the second phase. For each test problem, 25
independent runs were performed. For equality constraints, the
tolerance value δ was set to 0.0001. Inspired by [23], the scal-
ing factor F and the crossover rate CR of DE were randomly
chosen from two parameter pools: Fpool = {0.6, 0.8, 1.0}
and CRpool = {0.1, 0.2, 1.0}. Subsequently, the mutation and
crossover operators of DE were implemented according to the
chosen F and CR values.

C. Is the First Phase Effective?

The unique characteristic of BOToP is its first phase. To
verify the effectiveness of the first phase, BOToP was com-
pared with another algorithm called MIPDE-FR, which has
been introduced in Section III-B. To ensure a fair comparison,
MIPDE-FR had the same parameter settings, mutation opera-
tor, and crossover operator with BOToP. The main differences
between MIPDE-FR and BOToP are twofold: 1) in MIPDE-
FR, only rounding was used to handle integer restrictions,
which means that MIPDE-FR does not have the first phase;
and 2) MIPDE-FR employed Deb’s feasibility rule to compare
individuals. Both MIPDE-FR and BOToP were applied to
solve the 12 test problems constructed in this paper.
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TABLE II
RESULTS OF MIPDE-FR AND BOTOP OVER 25 INDEPENDENT RUNS. Ave

AND Std Dev INDICATE THE AVERAGE AND STANDARD DEVIATION OF
THE BEST FEASIBLE OBJECTIVE FUNCTION VALUES, RESPECTIVELY. FR

AND SR INDICATE THE FEASIBLE RATE AND THE SUCCESSFUL RATE,
RESPECTIVELY.

Problem Status MIPDE-FR BOToP
FR 100% 100%

F1 SR 0% 100%
Ave ± Std Dev 17.0000± 0.0000 13.0000± 0.0000

FR 100% 100%
F2 SR 56% 100%

Ave ± Std Dev 1.4400± 0.5066 1.0000± 0.0000
FR 100% 100%

F3 SR 12% 100%
Ave ± Std Dev −3.5600± 0.1658 -4.0000± 0.0000

FR 100% 100%
F4 SR 100% 100%

Ave ± Std Dev -6.0000± 0.0000 -6.0000± 0.0000
FR 100% 100%

F5 SR 0% 100%
Ave ± Std Dev 1.2500± 0.0000 0.2500± 0.0000

FR 100% 100%
F6 SR 92% 100%

Ave ± Std Dev −6699.7579± 290.1222 -6783.5818± 0.0000
FR 40% 84%

F7 SR 4% 20%
Ave ± Std Dev NA NA

FR 100% 100%
F8 SR 8% 80%

Ave ± Std Dev 7115.6596± 55.9088 7070.3408± 26.8423
FR 100% 100%

F9 SR 0% 40%
Ave ± Std Dev 7495.1141± 191.2120 7209.5545± 179.1296

FR 100% 100%
F10 SR 16% 64%

Ave ± Std Dev 7706.6959± 440.8140 7373.3323± 369.6853
FR 100% 100%

F11 SR 16% 44%
Ave ± Std Dev 36.9294± 5.4288 33.7144± 0.3114

FR 100% 100%
F12 SR 12% 60%

Ave ± Std Dev 88.0704± 38.4602 42.1461± 0.6974

The average and standard deviation (denoted as Ave and Std
Dev) of the best feasible objective function values resulting
from MIPDE-FR and BOToP over 25 independent runs are
summarized in Table II. Table II also records the feasible rate
(denoted as FR) and the successful rate (denoted as SR) of
MIPDE-FR and BOToP. For F1-F11, a run is successful if the
following condition is satisfied: |f(xbest)− f(x∗)| ≤ 0.0001,
where x∗ is the best known solution and xbest is the best
feasible solution provided by an algorithm. Due to the fact
that the optimal solution of F12 is hard to find, the successful
condition of F12 is revised to: f(xbest) ≤ 41.9000. “NA”
represents that an algorithm cannot achieve 100% FR over 25
independent runs.

From Table II, it is clear that the performance of BOToP is
significantly better than that of MIPDE-FR. To be specific,
for ten test problems (i.e., F1-F3, F5, F6, and F8-F12),
although both MIPDE and BOToP provide 100% FR, BOToP
achieves higher SR than MIPDE-FR. Moreover, for five out
of these ten test problems (i.e., F1-F3, F5, and F6), BOToP
successfully solves them over 25 runs. However, MIPDE-FR
cannot provide any successful run on F1, F5, and F9. For
F7, both MIPDE-FR and BOToP fail to consistently produce
feasible solutions. However, BOToP provides higher FR and
SR. With respect to F4, MIPDE-FR and BOToP show similar
performance. The poor performance of MIPDE-FR is largely
because the optimal solutions of most of the 12 test problems
are located in the feasible parts with small sizes. Thus, it is
easy for MIPDE-FR to converge to a false optimal solution

TABLE III
RESULTS OF SOTOP AND BOTOP OVER 25 INDEPENDENT RUNS. Ave AND

Std Dev INDICATE THE AVERAGE AND STANDARD DEVIATION OF THE
BEST FEASIBLE OBJECTIVE FUNCTION VALUES, RESPECTIVELY. FR AND

SR INDICATE THE FEASIBLE RATE AND THE SUCCESSFUL RATE,
RESPECTIVELY.

Problem Status SOToP BOToP
FR 100% 100%

F1 SR 100% 100%
Ave ± Std Dev 13.0000± 0.0000 13.0000± 0.0000

FR 0% 100%
F2 SR 0% 100%

Ave ± Std Dev NA 1.0000± 0.0000
FR 100% 100%

F3 SR 0% 100%
Ave ± Std Dev −3.500± 0.0000 -4.0000± 0.0000

FR 0% 100%
F4 SR 0% 100%

Ave ± Std Dev NA -6.0000± 0.0000
FR 100% 100%

F5 SR 100% 100%
Ave ± Std Dev 0.2500± 0.0000 0.2500± 0.0000

FR 0% 100%
F6 SR 0% 100%

Ave ± Std Dev NA -6783.5818± 0.0000
FR 48% 84%

F7 SR 8% 20%
Ave ± Std Dev NA NA

FR 0% 100%
F8 SR 0% 80%

Ave ± Std Dev NA 7070.3408± 26.8423
FR 100% 100%

F9 SR 0% 40%
Ave ± Std Dev 7183.6435± 0.1426 7209.5545± 179.1296

FR 100% 100%
F10 SR 0% 64%

Ave ± Std Dev 7233.6717± 0.1187 7373.3323± 369.6853
FR 100% 100%

F11 SR 0% 44%
Ave ± Std Dev 36.5705± 0.1601 33.7144± 0.3114

FR 100% 100%
F12 SR 0% 60%

Ave ± Std Dev 85.6429± 0.9900 42.1461± 0.6974

due to rounding. The superiority of BOToP can be attributed to
the two main components of the first phase: the transformation
from a MIP problem to a CBOP and the comparison rule. The
former aims at alleviating the misleading of multiple feasible
parts with different sizes, and the latter has the capability
to exploit the information of some solutions violating integer
restrictions.

In summary, the above results verify the advantage of
the first phase of BOToP over rounding when solving MIP
problems.

D. Is the Biobjective Optimization-based Transformation Ef-
fective?

As pointed out previously, the biobjective optimization-
based transformation in the first phase of BOToP is to re-
move the influence of integer restrictions. Another alternative
way is to directly solve the original MIP problem without
considering any integer restrictions in the first phase. Under
this condition, the original MIP problem is equivalent to a
traditional single-objective constrained optimization problem
because integer restrictions have been ignored. Based on the
above idea, we designed a compared method, called SOToP.
To verify the effectiveness of the biobjective optimization-
based transformation, the second phase of BOToP and SOToP
were the same. Table III summarizes the results derived from
BOToP and SOToP in terms of Ave, Std Dev, SR, and FR.
Again, “NA” denotes that an algorithm cannot achieve 100%
FR over 25 independent runs.
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As shown in Table III, BOToP outperforms SOToP on all
the 12 test problems except F1 and F5. SOToP fails to find any
feasible solution on F2, F4, F6, and F8, and cannot provide any
successful run on F2-F4, F6, and F8-F12 over 25 independent
runs. The poor performance of SOToP is not difficult to un-
derstand since we cannot theoretically analyze the relationship
between the original MIP problem and the transformed single-
objective constrained optimization problem. Therefore, the
transformation of SOToP cannot provide promising solutions
for the second phase. This conclusion has also been mentioned
in [57]. Different from SOToP, the transformation of BOToP
can guarantee that the Pareto optimal solution which satisfies
integer restrictions is the optimal solution of the original MIP
problem, thus providing a reasonable guideline toward the
optimal solution.

E. Is the Comparison Rule Effective?

As introduced in Section IV-B, in our comparison rule,
two feasible individuals are compared according to three
different conditions. To identify the benefit of these three
conditions, three variants of BOToP were devised: BOToP-
C1, BOToP-C1-C3 and BOToP-C1-C2. In BOToP-C1, only
condition 1 was employed. In BOToP-C1-C3 and BOToP-C1-
C2, condition 2 and condition 3 were eliminated, respectively.
Ave, Std Dev, FR, and SR derived from BOToP, BOToP-C1,
BOToP-C1-C2, and BOToP-C1-C3 are presented in Table S-I
of the supplementary file. When an algorithm cannot achieve
100% FR over 25 independent runs, its Ave and Std Dev are
denoted as “NA”.

As shown in Table S-I, the three BOToP variants provide
similar results with BOToP on F2, F4, F6, and F7. However,
when solving the other test problems, BOToP is more com-
petitive except that BOToP shows similar performance with
BOToP-C1-C2 and BOToP-C1 on F1 and F12, respectively.
To test the statistical significance, the Wilcoxon’s rank-sum
test at a 0.05 significance level was implemented between
BOToP and each of its three variants. In Table S-I, “−”,
“+”, and “≈” denote that BOToP performs better than, worse
than, and similar to its variant, respectively. From Table S-I, it
can be seen that BOToP surpasses BOToP-C1, BOToP-C1-C3,
and BOToP-C1-C2 on seven, seven, and four test problems,
respectively. However, the three variants cannot beat BOToP
on any test problem. The above phenomenon can be explained
as follows. Condition 2 and condition 3 aim to approach the
optimal solution and strike a balance between the two objective
functions of the transformed CBOP, respectively. Therefore,
without condition 2 or condition 3, the performance of BOToP
degrades significantly.

From the above discussion, we can conclude that all of the
three conditions are necessary.

F. Comparison with Five State-of-the-Art EAs for Solving MIP
Problems

In this subsection, we compared BOToP with five other
state-of-the-art EAs: MDE [1], MDE-LS [41], MDE-IHS [41],
EMDE [40], and DEMV [58]. MDE is a modified version
of the traditional DE to solve chemical process synthesis

and design problems. MDE-LS is a hybrid algorithm which
incorporates a local search operator to enhance the exploita-
tion ability. MDE-IHS is a hybrid algorithm which adds a
second metaheuristic called harmony search. In EMDE, a
novel triangular mutation operator is designed to enhance
the search ability. DEMV is a recently proposed hybrid DE
algorithm, which introduces set-based DE operators to deal
with integer and categorical variables. Same with BOToP, NP
and MaxFEs of the five compared algorithms were set to 30
and 1.8E+05, respectively. For fairness, in our experiments, the
DE operators used in MDE, MDE-LS, MDE-IHS, and DEMV

were the same with BOToP. Since one contribution of EMDE
is the triangular mutation operator, EMDE was implemented
without any modification.

Ave, Std Dev, FR, and SR provided by BOToP and the
five compared algorithms are summarized in Table S-II of the
supplementary file. “NA” denotes that an algorithm cannot
achieve 100% FR over 25 runs. From Table S-II, BOToP
is better than MDE, MDE-LS, and MDE-IHS on all test
problems except F2 and F4. For F2 and F4, BOToP, MDE,
MDE-LS, and MDE-IHS show similar performance. BOToP
provides similar results with EMDE on F4 and F6, and
better results than EMDE on the remaining test problems. In
addition, BOToP shows better performance than DEMV on all
test problems expect F6. To detect the statistical difference,
the Wilcoxon’s rank-sum test at a 0.05 significance level was
implemented between BOToP and each of MDE, MDE-LS,
MDE-IHS, EMDE, and DEMV in Table S-II, where “−”, “+”,
and “≈” denote that BOToP performs better than, worse than,
and similar to the competitor, respectively. It can be seen that
BOToP has an edge over MDE, MDE-LS, MDE-IHS, EMDE,
and DEMV on eight, eight, eight, nine, and nine test problems,
respectively. However, MDE, MDE-LS, MDE-IHS, EMDE,
and DEMV cannot surpass BOToP on any test problem. The
above comparison demonstrates that, overall, BOToP is better
than the five competitors on solving the 12 test problems.

VI. CONCLUSION

In MIP, integer restrictions divide the feasible region defined
by constraints into several discontinuous feasible parts. When
employing rounding or truncation to handle integer restrictions
in MIP, the population runs the risk of converging to a local
optimal solution due to the fact that the evolution is remark-
ably influenced by the feasible parts with different sizes.
To overcome this disadvantage, a biobjective optimization-
based two-phase method (called BOToP) was proposed. In
the first phase, a MIP problem was transformed into a CBOP
with no integer restrictions. We had proven that the Pareto
optimal solution of the transformed CBOP which satisfies
integer restrictions is the optimal solution of the original MIP,
thus the optimal solution can be approached by solving the
transformed CBOP. DE was combined with a new comparison
rule to accomplish this task. Afterward, the second phase,
which employed rounding to handle integer restrictions, was
implemented to enhance the convergence precision and obtain
the final solution. From the comparative studies on the 12 test
problems designed in this paper, the effectiveness of some
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components in BOToP (i.e., the first phase, the biobjective
optimization-based transformation, and the comparison rule)
was verified. Moreover, the results also showed that the
performance of BOToP is better than that of five other state-
of-the-art EAs.

However, BOToP also has some limitations. Firstly, it is
worth noting that BOToP requires a specification of the maxi-
mum number of FEs beforehand to the execution. Secondly, in
BOToP, the solutions which do not satisfy integer restrictions
are also evaluated by the objective function and constraints.
However, in some applications, only the solution satisfying
integer restrictions can be evaluated by the objective function
and constraints. The following is an example:

minimize :z =

{
cos(6.8πx1/2), if x2 = 0

−cos(7πx1/2), if x2 = 1
(16)

where x1 ∈ [0, 1]. In this example, the objective function value
of a solution can be computed only when x2 = 0 or x2 = 1.
In the future, we will try to solve this kind of MIP problems.
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Supplementary File for “A Biobjective Perspective
for Mixed-Integer Programming”

S-I. RESULTS

TABLE S-I
RESULTS OF BOTOP, BOTOP-C1, BOTOP-C1-C3, AND BOTOP-C1-C2 OVER 25 INDEPENDENT RUNS. Ave AND Std Dev INDICATE THE AVERAGE AND
STANDARD DEVIATION OF THE BEST FEASIBLE OBJECTIVE FUNCTION VALUES, RESPECTIVELY. FR AND SR INDICATE THE FEASIBLE RATE AND THE

SUCCESSFUL RATE, RESPECTIVELY. THE WILCOXON’S RANK-SUM TEST AT A 0.05 SIGNIFICANCE LEVEL IS PERFORMED BETWEEN BOTOP AND EACH
OF BOTOP-C1, BOTOP-C1-C3, AND BOTOP-C1-C2.

Problem Status BOToP-C1 BOToP-C1-C3 BOToP-C1-C2 BOToP
FR 100% 100% 100% 100%

F1 SR 24% 36% 100% 100%
Ave ± Std Dev 16.0400± 1.6330− 15.5600± 1.9596− 13.0000± 0.0000 ≈ 13.0000± 0.0000

FR 100% 100% 100% 100%
F2 SR 100% 100% 100% 100%

Ave ± Std Dev 1.0000± 0.0000 ≈ 1.0000± 0.0000 ≈ 1.0000± 0.0000 ≈ 1.0000± 0.0000
FR 100% 100% 100% 100%

F3 SR 44% 52% 88% 100%
Ave ± Std Dev −3.7200± 0.2533− −3.7600± 0.2550− −3.9400± 0.1685 ≈ -4.0000± 0.0000

FR 100% 100% 100% 100%
F4 SR 100% 100% 100% 100%

Ave ± Std Dev -6.0000± 0.0000 ≈ -6.0000± 0.0000 ≈ -6.0000± 0.0000 ≈ -6.0000± 0.0000
FR 100% 100% 100% 100%

F5 SR 80% 60% 88% 100%
Ave ± Std Dev 0.5668± 0.4714− 0.6460± 0.4951− 0.3688± 0.3284 ≈ 0.2500± 0.0000

FR 100% 100% 100% 100%
F6 SR 100% 100% 100% 100%

Ave ± Std Dev -6783.5818± 0.0000 ≈ -6783.5818± 0.0000 ≈ -6783.5818± 0.0000 ≈ -6783.5818± 0.0000
FR 84% 76% 80% 84%

F7 SR 24% 16% 24% 20%
Ave ± Std Dev NA ≈ NA ≈ NA ≈ NA

FR 100% 100% 100% 100%
F8 SR 40% 68% 0% 80%

Ave ± Std Dev 7112.2720± 82.0650− 7073.5611± 26.5236 ≈ 7112.3704± 40.7376− 7070.3408± 26.8423
FR 100% 100% 100% 100%

F9 SR 4% 20% 0% 40%
Ave ± Std Dev 7372.9783± 216.8699− 7336.3361± 191.7481− 7417.3329± 217.9000− 7209.5545± 179.1296

FR 100% 100% 100% 100%
F10 SR 12% 52% 12% 64%

Ave ± Std Dev 7683.0022± 344.7027− 7629.3333± 538.3727− 7847.9998± 514.6091− 7373.3323± 369.6853
FR 100% 100% 100% 100%

F11 SR 32% 40% 24% 44%
Ave ± Std Dev 33.9406± 0.7684− 34.4502± 1.3163− 33.8014± 0.6402− 33.7144± 0.3114

FR 100% 100% 100% 100%
F12 SR 60% 12% 24% 60%

Ave ± Std Dev 42.2539± 1.5335 ≈ 53.1226± 17.3967− 42.3356± 1.5276 ≈ 42.1461± 0.6974
−/ + / ≈ 7/0/5 7/0/5 4/0/8 /
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TABLE S-II
RESULTS OF MDE, MDE-LS, MDE-IHS, EMDE, DEMV , AND BOTOP OVER 25 INDEPENDENT RUNS. Ave AND Std Dev INDICATE THE AVERAGE AND
STANDARD DEVIATION OF THE BEST FEASIBLE OBJECTIVE FUNCTION VALUES, RESPECTIVELY. FR AND SR INDICATE THE FEASIBLE RATE AND THE

SUCCESSFUL RATE, RESPECTIVELY. THE WILCOXON’S RANK-SUM TEST AT A 0.05 SIGNIFICANCE LEVEL IS PERFORMED BETWEEN BOTOP AND EACH
OF MDE, MDE-LS, MDE-IHS, EMDE, AND DEMV .

Problem Status MDE MDE-LS MDE-IHS EMDE DEMV BOToP
FR 100% 100% 100% 100% 100% 100%

F1 SR 0% 0% 0% 0% 64% 100%
Ave ± Std Dev 17.0000± 0.0000− 17.0000± 0.0000− 17.0000± 0.0000− 17.0000± 0.0000− 14.4400± 1.9596− 13.0000± 0.0000

FR 100% 100% 100% 100% 100% 100%
F2 SR 100% 100% 100% 0% 16% 100%

Ave ± Std Dev 1.0000± 0.0000 ≈ 1.0000± 0.0000 ≈ 1.0000± 0.0000 ≈ 2.0000± 0.0000− 1.9200± 0.5715− 1.0000± 0.0000
FR 100% 100% 100% 100% 100% 100%

F3 SR 16% 32% 60% 0% 88% 100%
Ave ± Std Dev −3.5800± 0.1871− −3.6600± 0.2380− −3.8000± 0.2499− −3.5000± 0.0000− −3.9400± 0.1658 ≈ -4.0000± 0.0000

FR 100% 100% 100% 100% 100% 100%
F4 SR 100% 100% 100% 100% 48% 100%

Ave ± Std Dev -6.0000± 0.0000 ≈ -6.0000± 0.0000 ≈ -6.0000± 0.0000 ≈ -6.0000± 0.0000 ≈ −4.7200± 1.7205− -6.0000± 0.0000
FR 100% 100% 100% 100% 100% 100%

F5 SR 4% 4% 24% 0% 0% 100%
Ave ± Std Dev 1.2005± 0.1980− 1.2005± 0.1980− 1.0025± 0.4316− 1.2500± 0.0000− 1.2500± 0.0000− 0.2500± 0.0000

FR 100% 100% 100% 100% 100% 100%
F6 SR 92% 92% 92% 100% 100% 100%

Ave ± Std Dev −6699.7579± 290.1222 ≈ −6699.7579± 290.1222 ≈ −6699.3903± 290.0129 ≈ -6783.5818± 0.0000 ≈ -6783.5818± 0.0000 ≈ -6783.5818± 0.0000
FR 32% 20% 84% 72% 12% 84%

F7 SR 0% 0% 8% 0% 0% 20%
Ave ± Std Dev NA ≈ NA ≈ NA ≈ NA ≈ NA ≈ NA ≈

FR 100% 100% 100% 100% 100% 100%
F8 SR 12% 12% 0% 0% 0% 80%

Ave ± Std Dev 7123.4498± 55.4274− 7118.5641± 46.0454− 7393.4986± 376.7446− 7512.6569± 317.7695− 11181.4292± 2281.8714− 7070.3408± 26.8423
FR 100% 100% 100% 100% 100% 100%

F9 SR 4% 0% 0% 0% 0% 40%
Ave ± Std Dev 7550.2372± 140.8965− 7375.6312± 217.3625− 8062.9040± 741.0874− 7810.6665± 437.0184− 11901.9253± 3186.3343− 7209.5545± 179.1296

FR 100% 100% 100% 100% 72% 100%
F10 SR 12% 8% 0% 32% 0% 64%

Ave ± Std Dev 7883.9998± 491.0423− 7654.6665± 156.9033− 8380.9085± 1760.7817− 7998.6661± 788.4285− NA− 7373.3323± 369.6853
FR 100% 100% 100% 100% 100% 100%

F11 SR 0% 0% 0% 16% 0% 44%
Ave ± Std Dev 38.9841± 6.3478− 50.3621± 8.5924− 98.7962± 22.4980− 39.3675± 7.0430− 78.4360± 13.9930− 33.7144± 0.3114

FR 100% 100% 100% 100% 100% 100%
F12 SR 4% 0% 0% 0% 0% 60%

Ave ± Std Dev 85.8413± 22.1436− 94.9773± 15.3228− 142.6916± 73.6463− 98.4292± 47.8409− 65.9677± 6.7737− 42.1461± 0.6974
−/ + / ≈ 8/0/4 8/0/4 8/0/4 9/0/3 9/0/3 /
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S-II. TEST PROBLEMS F1-F12

F1 : minimize : f(x, y) = (x− 1)2 + (y − 3)2

subject to :

g(x, y) = (x+ 1)2 + (y + 1)2 − 1 ≤ 0

x ∈ [−3, 1]
y ∈ {−3,−2,−1, 0, 1}

The optimal solution is x∗ = −1 and y∗ = 0, and f(x∗, y∗) = 13.0000.

F2 : minimize : f(x, y) = x2 + (y1 − 1)2 + (y2 − 2)2

subject to :

g(x, y) = x2 + y21 + 0.5y22 − 1.5 ≤ 0

x ∈ [−1, 100]
y1, y2 ∈ {−1, 0, . . . , 100}

The optimal solution is x∗ = 0 and y∗ = (1, 1), and f(x∗, y∗) = 1.0000.

F3 : minimize : f(x, y) = −x− y

subject to :

g1(x, y) = −x+ y − 2.005 ≤ 0

g2(x, y) = x− y + 0.5 ≤ 0

g3(x, y) = 0.505x+ y − 3.505 ≤ 0

x ∈ [−1, 100]
y ∈ {−1, 0, . . . , 100}

The optimal solution is x∗ = 1 and y∗ = 3, and f(x∗, y∗) = −4.0000.

F4 : minimize : f(x, y) = −x− y

subject to :

g1(x, y) = y − 3.4 ≤ 0

g2(x, y) = x− y ≤ 0

x ∈ [−1, 100]
y ∈ {−1, 0, . . . , 100}

The optimal solution is x∗ = 3 and y∗ = 3, and f(x∗, y∗) = −6.0000.

F5 : minimize : f(x, y) = (x− 0.5)2 + (y − 1)2

subject to :

h(x, y) = −x2 + y = 0

x ∈ [−1, 3.1]
y ∈ {−1, 0, . . . , 4}

The best known optimal solution is x∗ = 1 and y∗ = 1, and f(x∗, y∗) = 0.2500.

F6 : minimize : f(x, y) = (x− 10)3 + (y − 20)3

subject to :

g1(x, y) = −(x− 5)2 − (y − 4.86)2 + 100 ≤ 0

g2(x, y) = (x− 8)2 + (y − 5.48)2 − 60 ≤ 0

x ∈ [−1, 100]
y ∈ {−1, 0, . . . , 100}
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The best known optimal solution is x∗ = 14.22498780 and y∗ = 1, and f(x∗, y∗) = −6783.5818.

F7 : minimize : f(x, y) = exp(x1x2x3y1y2)

subject to :

h1(x, y) = x2
1 + x2

2 + x2
3 + y21 + y22 − 10 = 0

h2(x, y) = x2y1 − 5x3y2 = 0

h3(x, y) = x3
1 + y31 + 1 = 0

x1 ∈ [−2.3, 2.3]
x2, x3 ∈ [−3.2, 3.2]
y1 ∈ {−2,−1, 0, 1, 2}
y2 ∈ {−3,−2,−1, 0, 1, 2, 3}

The best known optimal solution is x∗ = (−1.25994205,−2.48314049, 0.496648098) and y∗ = (1,−1), and f(x∗, y∗) =
0.2114.

F8 : minimize : f(x, y) = x1 + x2 + y1

subject to :

g1(x, y) = −1 + 0.0025(x3 + x4) ≤ 0

g2(x, y) = −1 + 0.0025(−x3 + y2 + y3) ≤ 0

g3(x, y) = −1 + 0.01(x5 − y2) ≤ 0

g4(x, y) = −x1x4 + 833.33252x3 + 100x1 − 83333.333 ≤ 0

g5(x, y) = −y1y3 + 1250y2 + x3y1 − 1250x3 ≤ 0

g6(x, y) = −x2x5 + 1250000 + x2y2 − 2500y2 ≤ 0

x1 ∈ [100, 10000]

x2 ∈ [1000, 10000]

x3, x4, x5 ∈ [10, 1000]

y1 ∈ {1000, 1020, . . . , 10000}
y2, y3 ∈ {20, 40, . . . , 1000}

The best known optimal solution is x∗ = (555.55433833, 5000, 180, 220, 400) and y∗ = (1500, 300, 280), and f(x∗, y∗) =
7055.5544.

F9 : minimize : f(x, y) = x1 + x2 + y1

subject to :

g1(x, y) = −1 + 0.0025(x3 + x4) ≤ 0

g2(x, y) = −1 + 0.0025(−x3 + y2 + y3) ≤ 0

g3(x, y) = −1 + 0.01(x5 − y2) ≤ 0

g4(x, y) = −x1x4 + 833.33252x3 + 100x1 − 83333.333 ≤ 0

g5(x, y) = −y1y3 + 1250y2 + x3y1 − 1250x3 ≤ 0

g6(x, y) = −x2x5 + 1250000 + x2y2 − 2500y2 ≤ 0

x1 ∈ [100, 10000]

x2 ∈ [1000, 10000]

x3, x4, x5 ∈ [10, 1000]

y1 ∈ {1000, 1050, . . . , 10000}
y2, y3 ∈ {50, 100, . . . , 1000}
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The best known optimal solution is x∗ = (833.33171, 5000, 200, 200, 400) and y∗ = (1250, 300, 300), and f(x∗, y∗) =
7083.3317.

F10 : minimize : f(x, y) = x1 + x2 + y1

subject to :

g1(x, y) = −1 + 0.0025(x3 + x4) ≤ 0

g2(x, y) = −1 + 0.0025(−x3 + y2 + y3) ≤ 0

g3(x, y) = −1 + 0.01(x5 − y2) ≤ 0

g4(x, y) = −x1x4 + 833.33252x3 + 100x1 − 83333.333 ≤ 0

g5(x, y) = −y1y3 + 1250y2 + x3y1 − 1250x3 ≤ 0

g6(x, y) = −x2x5 + 1250000 + x2y2 − 2500y2 ≤ 0

x1 ∈ [100, 10000]

x2 ∈ [1000, 10000]

x3, x4, x5 ∈ [10, 1000]

y1 ∈ {1000, 1100, . . . , 10000}
y2, y3 ∈ {100, 200, . . . , 1000}

The best known optimal solution is x∗ = (833.33171, 5000, 200, 200, 400) and y∗ = (1300, 300, 300), and f(x∗, y∗) =
7133.3317.

F11 : minimize : f(x) =
5∑

j=1

5∑
i=1

cijx(10+i)x(10+j) + 2

5∑
j=1

djx
3
(10+j) −

10∑
i=1

bixi

subject to :

gj(x) = −2
5∑

i=1

cijx(10+i) − 3djx
2
(10+j) − ej +

10∑
i=1

aijxi ≤ 0, j = 1, . . . , 5

x1, x2, x4, x6, . . . , x11, x13, x14, x15 ∈ [0, 10]

x3, x5, x12 ∈ {0, 1, . . . , 10}

where b = [−40,−2,−0.25,−4,−4,−1,−40,−60, 5, 1] and the remaining data is in Table S-III. The best known optimal solu-
tion is x∗ = (x1, x2, x4, x6, . . . , x11, x13, x14, x15) = (0, 0, 0, 9.99999985, 0, 0, 0, 0, 0.28879805, 0.43951302, 0.31935496, 0.44885950)

TABLE S-III
DATASET FOR TEST PROBLEMS F11 AND F12

j 1 2 3 4 5
ej -15 -27 -36 -18 -12
c1j 30 -20 -10 32 -10
c2j -20 39 -6 -31 32
c3j -10 -6 10 -6 -10
c4j 32 -31 -6 39 -20
c5j -10 32 -10 -20 30
dj 4 8 10 6 2
a1j -16 2 0 1 0
a2j 0 -2 0 0.4 2
a3j -3.5 0 2 0 0
a4j 0 -2 0 -4 -1
a5j 0 -9 -2 1 -2.8
a6j 2 0 -4 0 0
a7j -1 -1 -1 -1 -1
a8j -1 -2 -3 -2 -1
a9j 1 2 3 4 5
a10j 1 1 1 1 1
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and y∗ = (x3, x5, x12) = (4, 4, 0), and f(x∗, y∗) = 33.5066.

F12 : minimize : f(x) =
5∑

j=1

5∑
i=1

cijx(10+i)x(10+j) + 2

5∑
j=1

djx
3
(10+j) −

10∑
i=1

bixi

subject to :

gj(x) = −2
5∑

i=1

cijx(10+i) − 3djx
2
(10+j) − ej +

10∑
i=1

aijxi ≤ 0, j = 1, . . . , 5

x1, x2, x4, x6, . . . , x9, x11, x13, x14 ∈ [0, 10]

x3, x5, x10, x12, x15 ∈ {0, 1, . . . , 10}

where b = [−40,−2,−0.25,−4,−4,−1,−40,−60, 5, 1] and the remaining data is in Table S-III. The best known optimal solu-
tion is x∗ = (x1, x2, x4, x6, . . . , x9, x11, x13, x14) = (0, 0, 0, 9.99999999, 0, 0, 2.96750117, 0.39963905, 0.82151768, 0.64848398)
and y∗ = (x3, x5, x10, x12, x15) = (2, 4, 0, 0, 1), and f(x∗, y∗) = 41.7399.
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S-III. INFLUENCE OF THE FORM OF m(Y)

In this section, we investigated the influence of the form of m(y). Four different forms were considered:

L1 : m(y) = |y1 − round(y1)|+ · · ·+ |yn2
− round(yn2

)|

L2 : m(y) =
√
|y1 − round(y1)|2 + · · ·+ |yn2 − round(yn2)|2

Lave : m(y) = avg(|y1 − round(y1)|, . . . , |yn2 − round(yn2)|)

L∞ : m(y) = max(|y1 − round(y1)|, . . . , |yn2 − round(yn2)|)

Based on these four forms, four variants of BOToP were devised, which were named as BOToP-L1, BOToP-L2, BOToP-Lave,
and BOToP-L∞. Note that BOToP-L∞ is the original BOToP. The results provided by these four variants are given in Table
S-IV. From Table S-IV, we can observe that these four variants provide similar results. Therefore, BOToP is insensitive to the
form of m(x).

TABLE S-IV
RESULTS OF BOTOP-L1 , BOTOP-L2 , BOTOP-Lave , AND BOTOP-L∞ OVER 25 INDEPENDENT RUNS. Ave AND Std Dev INDICATE THE AVERAGE AND
STANDARD DEVIATION OF THE BEST FEASIBLE OBJECTIVE FUNCTION VALUES, RESPECTIVELY. FR AND SR INDICATE THE FEASIBLE RATE AND THE
SUCCESSFUL RATE, RESPECTIVELY. THE WILCOXON’S RANK-SUM TEST AT A 0.05 SIGNIFICANCE LEVEL IS PERFORMED BETWEEN BOTOP-L∞ AND

EACH OF BOTOP-L1 , BOTOP-L2 , AND BOTOP-Lave .

Problem Status BOToP-L1 BOToP-L2 BOToP-Lave BOToP-L∞
FR 100% 100% 100% 100%

F1 SR 100% 100% 100% 100%
Ave ± Std Dev 13.0000± 0.0000 ≈ 13.0000± 0.0000 ≈ 13.0000± 0.0000 ≈ 13.0000± 0.0000

FR 100% 100% 100% 100%
F2 SR 100% 100% 100% 100%

Ave ± Std Dev 1.0000± 0.0000 ≈ 1.0000± 0.0000 ≈ 1.0000± 0.0000 ≈ 1.0000± 0.0000
FR 100% 100% 100% 100%

F3 SR 100% 100% 100% 100%
Ave ± Std Dev -4.0000± 0.0000 ≈ -4.0000± 0.0000 ≈ -4.0000± 0.0000 -4.0000± 0.0000

FR 100% 100% 100% 100%
F4 SR 100% 100% 100% 100%

Ave ± Std Dev -6.0000± 0.0000 ≈ -6.0000± 0.0000 ≈ -6.0000± 0.0000 ≈ -6.0000± 0.0000
FR 100% 100% 100% 100%

F5 SR 100% 100% 100% 100%
Ave ± Std Dev 0.2500± 0.0000 ≈ 0.2500± 0.0000 ≈ 0.2500± 0.0000 ≈ 0.2500± 0.0000

FR 100% 100% 100% 100%
F6 SR 100% 100% 100% 100%

Ave ± Std Dev -6783.5818± 0.0000 ≈ -6783.5818± 0.0000 ≈ -6783.5818± 0.0000 ≈ -6783.5818± 0.0000
FR 84% 88% 80% 84%

F7 SR 24% 20% 24% 20%
Ave ± Std Dev NA ≈ NA ≈ NA ≈ NA

FR 100% 100% 100% 100%
F8 SR 84% 76% 80% 80%

Ave ± Std Dev 7062.5760± 25.0670 ≈ 7092.5611± 26.8736 ≈ 7083.3704± 29.0367 ≈ 7070.3408± 26.8423
FR 100% 100% 100% 100%

F9 SR 40% 32% 32% 40%
Ave ± Std Dev 7233.9783± 190.9721 ≈ 7213.3461± 192.4831 ≈ 7297.0925± 182.8655 ≈ 7209.5545± 179.1296

FR 100% 100% 100% 100%
F10 SR 32% 36% 32% 64%

Ave ± Std Dev 7453.0022± 378.5025 ≈ 7414.9998± 334.5341 ≈ 7289.3443± 327.9877 ≈ 7373.3323± 369.6853
FR 100% 100% 100% 100%

F11 SR 32% 40% 32% 44%
Ave ± Std Dev 33.7406± 0.3676 ≈ 33.7702± 0.3222 ≈ 33.7210± 0.3900 ≈ 33.7144± 0.3114

FR 100% 100% 100% 100%
F12 SR 56% 64% 52% 60%

Ave ± Std Dev 42.2539± 0.7347 ≈ 42.1426± 0.8567 ≈ 42.3452± 0.7296 ≈ 42.1461± 0.6974
−/ + / ≈ 0/0/12 0/0/12 0/0/12 /
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