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Abstract—When solving constrained optimization problems by
evolutionary algorithms, the search algorithm plays a crucial
role. In general, we expect that the search algorithm has the
capability to balance not only diversity and convergence but also
constraints and objective function during the evolution. For this
purpose, this paper proposes a composite differential evolution
for constrained optimization, which includes three different trial
vector generation strategies with distinct advantages. In order
to strike a balance between diversity and convergence, one of
these three trial vector generation strategies is able to increase
diversity, and the other two exhibit the property of convergence.
In addition, to accomplish the tradeoff between constraints and
objective function, one of the two trial vector generation strategies
for convergence is guided by the individual with the least degree
of constraint violation in the population, and the other is guided
by the individual with the best objective function value in the
population. After producing offspring by the proposed composite
differential evolution, the feasibility rule and the ε constrained
method are combined elaborately for selection in this paper.
Moreover, a restart scheme is proposed to help the population
jump out of a local optimum in the infeasible region for
some extremely complicated constrained optimization problems.
By assembling the above techniques together, a constrained
composite differential evolution is proposed. The experiments on
two sets of benchmark test functions with various features, i.e., 24
test functions from IEEE CEC2006 and 18 test functions with
10 dimensions and 30 dimensions from IEEE CEC2010, have
demonstrated that the proposed method shows better or at least
competitive performance against other state-of-the-art methods.

Index Terms—constrained optimization, evolutionary algorith-
m, composite differential evolution, constraint-handling tech-
nique
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CONSTRAINTS are everywhere. Many practical opti-
mization problems, such as vehicle configuration de-

sign [1], scheduling [2], [3], digital circuit structure design [4],
mixed-model two-sided assembly line [5], and antenna de-
sign [6], can be formulated as constrained optimization prob-
lems (COPs). Hence, how to solve COPs is of great practical
significance.

As a kind of population-based heuristic optimization al-
gorithms, evolutionary algorithms (EAs) [7] have attracted
increasing interest in solving COPs. As a result, a variety
of constrained EAs has been proposed [8], [9], [10]. A
constrained EA includes two main components: 1) search
algorithm and 2) constraint-handling technique. Search algo-
rithm plays the role of generating new candidate solutions,
and thus has a significant impact on the performance of
constrained EAs. During the past two decades, differential
evolution (DE) [11] has become one of the most popular
EA paradigms. DE has numerous attractive advantages. First
of all, its structure is simple and it can be implemented
easily in any programming language. In addition, it includes
few control parameters. Moreover, it has already achieved
top ranks in a lot of competitions at IEEE Congress on
Evolutionary Computation (IEEE CEC). Note that no other
single algorithm can accomplish this [12]. More importantly,
its search ability has been demonstrated in many real-world
applications [13], [14], [15].

Due to the above advantages, DE has been frequently
applied to solve COPs. Two primary ways of utilizing DE for
constrained optimization can be summarized as: 1) designing
a new DE, or 2) extending an existing DE originally designed
for global optimization to deal with constrained optimization.
In terms of case 2), many DE variants for global optimization
have been tailored to tackle COPs [16], [17], [18], [19].
As an outstanding global optimizer, composite differential
evolution (CoDE) [20] exhibits a few strengths, including
ease of implementation, powerful search ability, integrating
the strengths of different trial vector generation strategies, etc.
However, few current studies investigate CoDE for constrained
optimization.

Motivated by the above consideration, this paper seeks to
make use of the idea of CoDE to solve COPs. The underlying
idea behind CoDE is the utilization of three different trial
vector generation strategies of DE with a variety of character-
istics to address the key issue of global optimization, i.e., the
tradeoff between diversity and convergence. In order to extend
CoDE to tackle COPs, the tradeoff between constraints and
objective function should also be taken into account. To this
end, this paper proposes a constrained composite differential
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evolution, called C2oDE, to address these two issues.
Similar to CoDE, C2oDE also contains three different trial

vector generation strategies with distinct advantages. Specifi-
cally, one trial vector generation strategy for diversity and two
trial vector generation strategies for convergence are employed
to balance diversity and convergence. In addition, one of the
two trial vector generation strategies for convergence is guided
by the individual with the least degree of constraint violation
while the other is guided by the individual with the best
objective function value, with the aim of balancing constraints
and objective function. During the evolution, these three trial
vector generation strategies are used to generate three offspring
for each target vector. Afterward, a new comparison rule,
which combines the feasibility rule with the ε constrained
method, is proposed. Herein, the feasibility rule is applied
to preselect the best one from the three offspring as the
trial vector. Due to the fact that the feasibility rule prefers
constraints, the ε constrained method, which can incorporate
the information of objective function to a certain degree,
is used to compare each target vector with its trial vector.
Therefore, the new comparison rule can further promote the
balance between constraints and objective function. Moreover,
a restart scheme is designed to help the population jump out
of a local optimum in the infeasible region for some extremely
complex COPs.

By combining the strengthes of the above-mentioned tech-
niques, C2oDE achieves a reasonable tradeoff between diver-
sity and convergence as well as between constraints and objec-
tive function. The contributions of this paper are summarized
as follows:
• The principle of CoDE is successfully applied to design

a search algorithm for constrained optimization.
• The feasibility rule and the ε constrained method are inte-

grated in an effective way to select promising individuals
for the next population.

• A restart scheme is proposed to cope with COPs with
extremely complicated constraints.

• Systematic experiments have demonstrated that C2oDE
provides state-of-the-art performance on two benchmark
test suites.

The rest of this paper is organized as follows. Section II
introduces the preliminary knowledge. The related work on
constrained DE is reviewed in Section III. Section IV illus-
trates the proposed method in detail. Extensive experiments
and discussions are carried out in Section V. Section VI
concludes this paper.

II. PRELIMINARY KNOWLEDGE

A. Constrained Optimization Problems (COPs)

Without loss of generality, a COP [21], [22] can be de-
scribed as follows:

minimize f(~x), ~x = (x1, ..., xD) ∈ S, Li ≤ xi ≤ Ui

subject to : gj(~x) ≤ 0, j = 1, ..., l
hj(~x) = 0, j = l + 1, ...,m

where f(~x) is the objective function, ~x is the decision vector,
xi is the ith dimension of ~x, Li and Ui are the upper and lower
bounds of xi, respectively, D is the number of dimensions,

S =
∏D

i=1[Li, Ui] represents the decision space, gj(~x) is
the jth inequality constraint, l is the number of inequality
constraints, hj(~x) is the (j − l)th equality constraint, and
(m− l) is the number of equality constraints.

For COPs, the degree of constraint violation of the decision
vector ~x can be expressed as follows:

G(~x) =

m∑
j=1

Gj(~x) (1)

where Gj(~x) is the degree of constraint violation on the jth
constraint and calculated as follows:

Gj(~x) =

{
max(0, gj(~x)), 1 ≤ j ≤ l
max(0, |hj(~x)| − δ) , l + 1 ≤ j ≤ m (2)

In Equation (2), δ is a positive tolerance value to relax equality
constraints to a certain extent. ~x is called a feasible solution if
G(~x) = 0. The aim of solving COPs is to locate the optimum
in the feasible region.

B. Differential Evolution (DE)

The unique feature of DE is to make use of differential
vectors to generate offspring [12], [23]. In general, DE consists
of four stages, i.e., initialization, mutation, crossover, and
selection.

Firstly, an initial population including NP target vectors
(also called NP individuals) is randomly generated from the
decision space. In the mutation stage, a mutation operator
is implemented to generate a mutant vector for each target
vector ~xti (i ∈ {1, . . . , NP}) at generation t. Several mutation
operators have been proposed. As a representative, DE/rand/1
is described as follows:

~vti = ~xtr1 + F · (~xtr2 − ~x
t
r3) (3)

where ~vti is the mutant vector of the ith target vector ~xti,
~xtr1 , ~xtr2 , and ~xtr3 are three mutually distinct target vectors
randomly selected from the population, and F is the scaling
factor. Some other popular mutation operators are enumerated
as follows:
• DE/rand/2

~vti = ~xtr1 + F · (~xtr2 − ~x
t
r3) + F · (~xtr4 − ~x

t
r5) (4)

• DE/rand-to-best/1

~vti = ~xtr1 + F · (~xtbest − ~xtr1) + F · (~xtr2 − ~x
t
r3) (5)

• DE/current-to-best/1

~vti = ~xti + F · (~xtbest − ~xti) + F · (~xtr1 − ~x
t
r2) (6)

• DE/current-to-rand/1

~vti = ~xti + rand · (~xtr1 − ~x
t
i) + F · (~xtr2 − ~x

t
r3) (7)

where ~xtr1 , ~xtr2 , ~xtr3 , ~xtr4 , and ~xtr5 are five mutually distinct
target vectors randomly selected from the population, ~xtbest is
the best target vector in the current population, and rand is a
uniformly distributed random number between 0 and 1.

Different mutation operators have distinct characteristics.
DE/rand/1 is the most commonly used mutation operator in the
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Fig. 1. Framework of CoDE.

DE community [20], in which all individuals are selected in a
random manner for mutation. Due to the fact that an additional
differential vector is utilized, DE/rand/2/ can provide a better
perturbation than DE/rand/1. By making use of the information
of the best individual, both DE/rand-to-best/1 and DE/current-
to-best/1 can speed up the convergence. In DE/current-to-
rand/1, each target vector learns from a randomly selected
individual, thus promoting the diversity.

In the crossover stage, a crossover operator is conducted
on each pair of ~xti and ~vti to produce a trial vector ~uti. The
frequently used binomial crossover is introduced below:

uti,j =

{
vti,j , if randj < CR or j = jrand
xti,j , otherwise

(8)

where uti,j , xti,j , and vti,j are the jth dimension of ~uti, ~x
t
i,

and ~vti , respectively, randj is a random number uniformly
generated between 0 and 1, CR is the crossover control
parameter, and jrand is a random integer uniformly generated
between 1 and D.

Finally, a selection operator is performed on ~xti and ~uti, and
the better one is selected as the target vector of the (t+ 1)th
generation.

~xt+1
i =

{
~uti, if f(~uti) ≤ f(~xti)
~xti, otherwise

(9)

In DE, a combination of a mutation operator and a crossover
operator is called a trial vector generation strategy.

Currently, DE has been successfully applied to solve opti-
mization problems in a considerable number of fields, such as
electrical and power systems [24], [25], manufacturing science
and operational research [26], [27], automotive design [28],
and controller design [13], [14], [15].

C. CoDE

CoDE is one of the top DE variants proposed by Wang et
al. [20] for global optimization. The main idea of CoDE is
to combine several effective trial vector generation strategies
with several appropriate DE parameter settings, which show
complementary characteristics, to improve DE’s performance.

In CoDE, a strategy pool comprised of three well-
studied trial vector generation strategies, i.e., DE/rand/1/bin,
DE/rand/2/bin, and DE/current-to-rand/1, is constructed in
advance. On the other hand, a parameter pool involving
three pairs of F and CR is constructed beforehand: [F=0.8;

CR=0.2], [F=1.0; CR=0.1], and [F=1.0; CR=0.9]. As depicted
in Fig. 1, three offspring, i.e., ~uti1 , ~uti2 , and ~uti3 , are generated
for each target vector ~xti via implementing the three trial
vector generation strategies in the strategy pool one by one.
Moreover, each trial vector generation strategy is associated
with a pair of F and CR randomly chosen from the parameter
pool. Subsequently, the best one among the three offspring
is preselected as the trial vector ~uti. Finally, the better one
between ~xti and ~uti is selected as the potential individual for
the next generation.

By utilizing distinct advantages of different trial vector gen-
eration strategies and parameter settings, CoDE accomplishes
outstanding performance. Owing to its simple structure, ease
of implementation, and effectiveness, CoDE is fully investi-
gated for constrained optimization in this paper.

D. Feasibility Rule

The feasibility rule proposed by Deb [29] is a well-
known constraint-handling technique. It compares pairwise
individuals as follows:

1) Between two infeasible individuals, the one with less
degree of constraint violation is preferred.

2) If one individual is feasible and the other is infeasible,
the feasible one is preferred.

3) Between two feasible individuals, the one with a smaller
objective function value is preferred.

E. ε Constrained Method

The ε constrained method proposed by Takahama and
Sakai [30], [31] is another representative constraint-handling
technique. When comparing two individuals, say ~xti and ~xtj ,
~xti is better than ~xtj if and only if the following conditions are
satisfied: f(~xi) < f(~xj), if G(~xi) ≤ ε ∧G(~xj) ≤ ε

f(~xi) < f(~xj), if G(~xi) = G(~xj)
G(~xi) < G(~xj), otherwise

(10)

In Equation (10), ε declines as the generation increases:

ε =

{
ε0(1− t

T )
cp, if t

T ≤ p
0, otherwise

(11)

cp = − logε0 + λ

log(1− p)
(12)

where ε0 is the initial threshold and set to be the maximum
degree of constraint violation of the initial population, T is the
maximum generation number, λ is set to 6 in this paper, and p
controls the degree that the information of objective function
is exploited.

III. RELATED WORK

DE has become a very popular search engine for constrained
optimization and this paper focuses mainly on constrained DE
(CDE). In this section, we survey the development of CDE
primarily during the last five years and classify CDE into three
classes: 1) single-strategy CDE, 2) multi-strategy CDE, and 3)
CDE coupled with other operators. For a more comprehensive
review, the interested reader can refer to [32].
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A. Single-Strategy CDE

As suggested by the name, single-strategy CDE signifies
that CDE just includes one trial vector generation strategy.

For example, De Melo and Carosio [33] conducted an
empirical analysis on five classical trial vector generation
strategies which are separatively integrated with a simple
penalty function. According to the experimental results, they
claimed that classical DE with a simple penalty function is
still very competitive.

In [19], the famous global optimizer JADE [34] is combined
with an archiving-based adaptive tradeoff model [35] for
constrained optimization.

Gao et al. [36] suggested a dual population scheme in which
one population is responsible for tackling constraints and the
other for optimizing objective function. Moreover, a modified
DE/rand/1/bin is designed to share the information between
two populations.

Takahama and Sakaia [37] presented an efficient CDE.
Through utilizing kernel regression, this method has the
capability to find approximately optimal solutions with a
very small number of function evaluations. In addition, the ε
constrained method serves as the constraint-handling technique
and DE/rand/1 with exponential crossover operator serves as
the search algorithm. Yi et al. [38] presented an ε constrained
DE with pre-estimated comparison based on gradient-based
approximation for solving COPs.

Wang and Cai [39] proposed a dynamic hybrid framework
referred as DyHF for constrained optimization. In DyHF,
the global and local search models are dynamically imple-
mented according to the feasibility proportion of the current
population. In the same year, Wang and Cai [40] combined
multiobjective optimization with DE and proposed CMODE.
In CMODE, an infeasible solution replacement mechanism
based on multiobjective optimization is devised to guide the
population toward promising solutions and the feasible region
simultaneously. Note that both DyHF and CMODE exploit
Pareto dominance [41] to compare individuals.

Hamza et al. [42] integrated a DE with multi-constraint
consensus. In this method, the constraint consensus [43] aims
at moving the infeasible solutions along the parallel direction
to the violated constraint, thus making them feasible quickly.
The constraint consensus has also been used in [44].

In the self-adaptive interior penalty based DE [45], the
scaling factor F and crossover control parameter CR of
DE/rand/1/bin are adjusted according to the success rate. Fan
and Yan [46] also developed a self-adaptive penalty based DE.
However, the two DE control parameters, i.e., F and CR,
together with the penalty factor, are adapted in the manner of
coevolution by the alopex algorithm [47]. In [48], a fuzzy
rule based penalty function approach is designed. Li and
Zhang [49] showed that a modified penalty method, called
minimum penalty method, is effective to handle constraints.

It is necessary to emphasize that for [38], [39], [40], [42],
[45], [46], [48], and [49], DE/rand/1/bin is directly employed
as the search algorithm.

B. Multi-Strategy CDE

In contrast to the first class, a number of CDE involves
multiple trial vector generation strategies as pinpointed by the
name.

For instance, Dong et al. [17] combined CoDE [20] with
oracle penalty function to solve COPs. Herein, CoDE is treated
as the search algorithm in a straightforward way.

Long et al. [50] integrated three trial vector generation
strategies, i.e., DE/rand/1/bin, DE/best/1/bin, and DE/current-
to-rand/1 to evolve the population. In this method, the initial
population is divided into three sub-populations with equal
size, and then each sub-population is assigned with a trial
vector generation strategy to update the individuals.

De Melo and Carosio [51] provided a systematic way
to ensemble five trial vector generation strategies, in which
each trial vector generation strategy is applied to generate
a corresponding solution and winner-take-all paradigm is
utilized to select the best one as the trial vector.

By taking advantage of the concept of multi-population
evolution, a cultural DE is developed in [52], in which each
population is managed by its private cultural DE.

In [53], DE/rand/1/bin is employed in the early stage
for exploration while DE/rand/1 with exponential crossover
operator is adopted in the later stage for exploitation.

Jia et al. [35] divided the evolutionary process into three
situations, i.e., the infeasible situation, the semi-feasible situa-
tion, and the feasible situation. In different situations, different
constraint-handling techniques are developed: multiobjective
optimization for the infeasible situation and adaptive penalty
function for the semi-feasible situation.

In [8], Wang et al. made use of DE/rand-to-best/1/bin to in-
troduce information of objective function into the population.
Meanwhile, DE/current-to-rand/1 is used to cope with rotated
optimization problems.

Ghasemishabankareh et al. [54] exploited a popular DE
variant (i.e., SaDE [55]) in a coevolution fashion and an
improved augmented Lagrangian to deal with constraints.

Adaptive mechanisms are also used in multi-strategy
CDE [56], where each trial vector generation strategy is
adaptively selected according to its performance.

C. CDE Coupled with Other Operators

Recently, CDE coupled with other operators has also at-
tracted much attention.

Dong and Wang [57] proposed a memetic DE for con-
strained optimization, in which DE/rand/1/bin serves as the
global search operator while the simplex crossover [58] plays
the role of local search. To handle constraints, a weight sum
method which somehow likes penalty method is designed.

In [59], the mixed-integer hybridizing DE is combined with
the Nelder-Mead simplex method [60] to solve mixed-integer
constrained optimization. Additionally, the Lagrange method
and self-adaptive penalty function are incorporated to deal with
constraints.

Zhao et al. [61] integrated three algorithms, in which DE
is responsible for accelerating the convergence at the later
iteration process of the backtracking search algorithm [62],
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Fig. 2. Principle of the designed search algorithm.

the mutation operator of the breeder genetic algorithm [63]
is employed to improve the population diversity, and the
parameter-free penalty method is used to handle constraints.

Parouha and Das [64] hybridized DE with particle swarm
optimization for constrained optimization. In this method, the
optimized population is divided into three parts. Afterward, DE
is used to evolve two of them and particle swarm optimization
is used for the remaining one.

In [65], DE is combined with an improved teaching-
learning-based optimization algorithm to solve constrained
engineering design problems.

Tran et al. [66] hybridized DE with artificial bee colony for
solving resource-constrained project scheduling problems.

Our work in this paper falls in the second class, i.e.,
attempting to design a search algorithm with multiple trial
vector generation strategies to solve COPs.

IV. PROPOSED METHOD

A. Motivation

When applying EAs to solve COPs, two issues deserve
much attention in order to obtain outstanding performance:
1) the tradeoff between diversity and convergence, and 2)
the tradeoff between constraints and objective function. At
present, more and more DE variants originally proposed for
global optimization have been extended to search for the
optimal solutions of COPs, due to their excellent search
ability. Note, however, that in global optimization the essential
purpose of the search algorithm is to balance diversity and
convergence. As a consequence, the performance of most
current CDE is limited due to the fact that the tradeoff
between constraints and objective function has been neglected
unreasonably in the search algorithm.

In view of the above drawback, this paper aims to make
use of the idea of CoDE [20], a state-of-the-art DE variant,
to design a search algorithm for constrained optimization. As
pointed out previously, the search algorithm and constraint-
handling technique are two important aspects of a constrained
EA. Therefore, we also present a constraint-handling technique
to suit the characteristics of CoDE. Additionally, a restart
scheme is designed to tackle COPs with extremely complicat-
ed constraints. By assembling the above techniques together,
an alternative CDE, i.e., C2oDE, is proposed in this paper.

Next, the search algorithm, constraint-handling technique,
restart scheme, and framework of C2oDE are introduced one
by one.

Algorithm 1: Search Algorithm
1 /*DE/current-to-rand/1*/
2 Select ~xt

r1
, ~xt

r2
, and ~xt

r3
from the population;

3 Randomly choose a F value from Fpool;
4 ~vt

i1 = ~xt
i + rand · (~xt

r1
− ~xt

i) + F · (~xt
r2
− ~xt

r3
);

5 ~ut
i1 = ~vt

i1;
6 /*Modified DE/rand-to-best/1/bin*/
7 Select ~xt

Gbest (i.e., the individual with the least degree of constraint violation),
~xt
r1

, ~xt
r2

, ~xt
r3

, and ~xt
r4

from the population;
8 Randomly choose a F value from Fpool and a CR value from CRpool;
9 ~vt

i2 = ~xt
r1

+ F · (~xt
Gbest − ~xt

r2
) + F · (~xt

r3
− ~xt

r4
);

10 Generate ~ut
i2 by applying the binomial crossover on ~vt

i2 and ~xt
i ;

11 /*DE/current-to-best/1/bin*/
12 Select ~xt

fbest (i.e., the individual with the best objective function value), ~xt
r1

,
and ~xt

r2
from the population ;

13 Randomly choose a F value from Fpool and a CR value from CRpool;
14 ~vt

i3 = ~xt
i + F · (~xt

fbest − ~xt
i) + F · (~xt

r1
− ~xt

r2
);

15 Generate ~ut
i3 by applying the binomial crossover on ~vt

i3 and ~xt
i ;

B. Search Algorithm

An ideal search algorithm for constrained optimization
should not only reach a balance between diversity and con-
vergence, but also between constraints and objective function.
For this purpose, similar to CoDE, the designed search
algorithm depicted in Fig. 2 involves three different trial
vector generation strategies with distinct advantages. They
are DE/current-to-rand/1, modified DE/rand-to-best/1/bin, and
DE/current-to-best/1/bin.

As mentioned before, with respect to DE/current-to-rand/1
shown in Equation (7), each target vector ~xti learns the infor-
mation from a randomly selected individual ~xtr1 ; therefore,
this trial vector generation strategy is able to promote the
diversity of the population. In principle, DE/current-to-rand/1
can be decomposed into two steps: 1) implementing DE/rand/1
to generate the mutant vector ~vti for ~xti, and 2) applying the
arithmetic crossover on ~xti and ~vti as follows:

~uti = ~xti + rand · (~vti − ~xti) (13)

where rand is a uniformly distributed random number on
the interval [0,1]. As introduced in [20], [55], and [67], both
DE/rand/1 and the arithmetic crossover are independent on the
coordinate system and thus are rotation-invariant processes. As
a result, DE/current-to-rand/1 is also beneficial to solve rotated
optimization problems.

In terms of both the modified DE/rand-to-best/1/bin and
DE/current-to-best/1/bin, the information of the “best” indi-
vidual in the population is utilized to guide the search, thus
accelerating the convergence. As shown in Equation (14), the
modified DE/rand-to-best/1/bin is derived by replacing the
second ~xtr1 in Equation (5) with a randomly selected individual
~xtr2 from the population:

~vti = ~xtr1 + F · (~xtbest − ~xtr2) + F · (~xtr3 − ~x
t
r4) (14)

The reason for this modification is explained as follows.
There are two trial vector generation strategies for conver-
gence and one trial vector generation strategy for diversity
in the search algorithm, which might result in more biases
toward convergence than diversity. By this modification, the
modified DE/rand-to-best/1/bin has the potential to produce
more disturbances than the original one. Thus, the tradeoff
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between diversity and convergence can be achieved in the
search algorithm.

In addition, the “best” individual in the modified DE/rand-
to-best/1/bin is chosen as the individual with the least de-
gree of constraint violation while the “best” individual in
DE/current-to-best/1/bin is selected as the individual with
the best objective function value, with the aim of balancing
constraints and objective function. Needless to say, the above
balance is very important. It is because if the search is biased
only toward constraints, the population might enter the feasible
region with a very fast speed but subsequently converge to
a local optimum in the feasible region due to the lack of
diversity. On the other hand, the search biased only toward
objective function would be very likely to get stuck in the
infeasible region and could not find any feasible solution in
the end. It should be noted that if multiple solutions have
the same least degree of constraint violation or the same best
objective function value, a random one is selected from them.

Overall, the proposed search algorithm provides an effective
way to achieve the two desired tradeoffs in constrained
optimization, the details of which are given in Algorithm 1.
As shown in Algorithm 1, three offspring will be generated
for each target vector. Moreover, similar to [8], we establish
two parameter pools Fpool and CRpool for the scaling factor
F and the crossover control parameter CR, respectively.

C. Constraint-Handling Technique

In constrained evolutionary optimization, the constraint-
handling technique is in charge of how to compare individuals.
According to the characteristics of CoDE, the constraint-
handling technique should include two phases as shown in
Fig. 1: 1) how to preselect the best one from the three
offspring as the trial vector, and 2) how to compare the target
vector with its trial vector. According to the no free lunch
theorem [68], [69] and [70], it is better to employ two different
constraint-handling techniques rather than just one in the above
two phases.

The feasibility rule is selected as one candidate owing to
its attractive advantages, i.e., no additional parameters and
the ability to rapidly motivate the population toward the
feasible region. However, it is necessary to note that the
feasibility rule prefers constraints to objective function and
is a relatively greedy constrain-handling technique. Thus, we
introduce the ε constrained method as the other candidate.
From Equation (10), it can be seen that the ε constrained
method also considers the information of objective function
when comparing two individuals.

Obviously, there are two options to arrange these two
constraint-handling techniques: 1) the ε constrained method
in the first phase and the feasibility rule in the second phase,
or 2) the feasibility rule in the first phase and the ε constrained
method in the second phase. As shown in Fig. 1, the constraint-
handling technique in the second phase determines which
solution will survive into the next generation. In the case
of option 1), the feasibility rule in the second phase might
discard an individual with promising objective function value
selected by the ε constrained method in the first phase. That is,

t

ix
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t

iu
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t

iu t

iu

t

ix

1t

ix 

modified DE/

rand-to-best/1/bin

3

t

iu

feasibility rule

constrained method

Fig. 3. Framework of C2oDE.

option 1) would make the population bias toward constraints
ultimately. In the case of option 2), although some biases are
introduced by the feasibility rule in the first phase due to
its preference to constraints, the ε constrained method in the
second phase attempts to balance such biases by exploiting
the information of objective function. Moreover, the degree
that the information of objective function is exploited can be
controlled by the parameter p in Equation (12). In summary,
option 2) is adopted in this paper.

D. Restart Scheme

For some COPs with extremely complicated constraints,
the infeasible region is highly nonlinear and always exhibits
multimodal property. Under this condition, the population is
very easy to stagnate in the infeasible region. To address this
issue, a restart scheme is proposed in this paper.

Prior to applying the restart scheme, we need to judge
whether the population has already been trapped into a local
optimum in the infeasible region. It is intuitive that if the
population clusters in a very small search range of the
infeasible region, which means the difference/similarity among
infeasible individuals is very tiny/high, then we can claim
that premature convergence occurs in the infeasible region.
However, how to measure the similarity among infeasible
individuals should be studied in depth.

A possible way is to compute the average Euclidean distance
among all the individuals or the average standard deviation
of all the dimensions of the population. If such indicator is
less than a specified threshold, then one can conclude that the
similarity among all the individuals is very high. Nevertheless,
it is not trivial to set an appropriate threshold since different
problems possess different dimensions and search spaces.
Considering this, we use a unitary indicator, i.e., the degree
of constraint violation or objective function value, to measure
the similarity of the population. It is believed that this unitary
indicator is less sensitive to different problems.

Consequently, if the standard deviation of the degree of
constraint violation or the standard deviation of objective
function values of the population is less than a predefined
threshold µ and if the population is infeasible, the restart
scheme is triggered – all the individuals in the population
are regenerated from the decision space randomly without any
special skills.
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Algorithm 2: C2oDE
Input: NP : the population size

MaxFEs: the maximum number of function evaluations
Fpool: the pool of the scaling factor F
CRpool: the pool of the crossover control parameter CR

1 t=1; /*t denotes the generation number*/
2 Randomly generate an initial population Pt={~xt

1, ..., x
t
NP } from the decision

space S;
3 Evaluate the objective function values and the degree of constraint violation of

Pt;
4 FEs = NP ; /*FEs denotes the number of fitness evaluations*/
5 Tune the ε value of the ε constrained method according to Equation (11);
6 Pt+1 = ∅;
7 for i = 1 : NP do
8 Implement the search algorithm (Algorithm 1) to generate three offspring

~ut
i1, ~ut

i2, and ~ut
i3 for the target vector ~xt

i ;
9 Evaluate the objective function values and the degree of constraint violation

of ~ut
i1, ~ut

i2, and ~ut
i3;

10 Apply the feasibility rule to select the best one among ~ut
i1, ~ut

i2, and ~ut
i3 as

the trial vector ~ut
i for ~xt

i ;
11 Apply the ε constrained method to compare ~xt

i and ~ut
i , and store the better

one into Pt+1;
12 FEs = FEs + 3;

13 Implement the restart scheme;
14 t = t + 1;
15 Stopping Criterion: If FEs ≥MaxFEs, then stop and output the best

individual in P t, otherwise go to Step 5.

E. C2oDE

By integrating three important components, i.e., the search
algorithm, constraint-handling technique, and restart scheme,
C2oDE is obtained. The framework of C2oDE is given in
Fig. 3. C2oDE maintains a population consisting of NP target
vectors: Pt={~xt1, ~xt2, ..., ~xtNP }, their objective function val-
ues: f(~xt1), f(~x

t
2), ..., f(~x

t
NP ), and their degree of constraint

violation: G(~xt1), G(~x
t
2), ..., G(~x

t
NP ). As shown in Fig. 3,

at generation t, three trial vector generation strategies are
employed to generate three offspring (~uti1, ~uti2, and ~uti3) for
each target vector ~xti. Afterward, the feasibility rule is used to
preselect the best offspring as the trial vector ~uti. And then,
the ε constrained method is utilized to compare ~xti and ~uti.
Finally, the restart scheme is executed. The above procedure
is repeated until the maximum number of fitness evaluations
(MaxFES) is reached. The details of C2oDE are presented
in Algorithm 2. From Fig. 3 and Algorithm 2, it can be seen
that the implementation of C2oDE is simple.

Remark 1: Compared with other existing multi-strategy
CDE, the advantages of C2oDE are summarized from the
following three aspects:
• The search algorithm of C2oDE takes both the tradeoff

between constraints and objective function and the trade-
off between diversity and convergence into account.

• Two well-known constraint-handling techniques with
complementary properties are combined in an effective
way for selection.

• Its computational time complexity is the same with the
classical DE without any additional computation burden.

V. EXPERIMENTAL STUDY

A. Benchmark Test Functions and Parameter Settings

Two sets of benchmark test functions were selected to
assess the performance of C2oDE. The first set contains 24
test functions at IEEE CEC2006 [21], and the second set

TABLE I
MAXIMUM NUMBER OF FUNCTION EVALUATIONS MaxFEs AND

POPULATION SIZE NP

Test Functions MaxFEs NP
24 test functions from IEEE CEC2006 2.4E+05 50

18 test functions with 10D from IEEE CEC2010 2.0E+05 35
18 test functions with 30D from IEEE CEC2010 6.0E+05 60

contains 18 test functions with 10 dimensions (10D) and
30 dimensions (30D) at IEEE CEC2010 [22]. These 60 test
functions can systematically investigate the performance of a
constrained EA since they exhibit a variety of characteristics
such as different dimensions of decision space, different
types of objective function (i.e., linear, nonlinear, quadratic,
polynomial, and cubic), and different kinds of constraints
(i.e., linear/nonlinear and equality/inequality). All these test
functions are minimization problems and their details can be
found in [21] and [22].

For the experiments in this paper, the settings of MaxFEs
and the population size NP are given in Table I. Note that
a proper setting of NP is related to the benchmark test suite
as well as the dimension of a test function. In addition, 25
independent runs were performed for each test function and
the tolerance value δ for equality constraints was set to 10−4.
As the same with [8], Fpool = [0.6, 0.8, 1.0] and CRpool =
[0.1, 0.2, 1.0]. Meanwhile, p in the ε constrained method and
µ in the restart scheme were set to 0.5 and 10−8, respectively.

B. Experiments on IEEE CEC2006 Test Suite

Firstly, C2oDE was applied to solve 24 test functions from
IEEE CEC2006. The performance of C2oDE was compared
with that of four state-of-the-art CDE (i.e., CMODE [40],
FROFI [8], NDE [71], and DW [72]). From [21], we know that
it is extremely difficult to find a feasible solution for g22 and
there are no feasible solutions for g20. Thus, we excluded
these two functions and focused on the remaining 22 test
functions. The experimental results are given in Table II, where
“Mean OFV” and “Std Dev” denote the average and standard
deviation of the objective function values obtained over 25
independent runs, respectively. For each test function, a run
is successful if the following success condition is satisfied:
f(~xbest)-f(~x∗) ≤ 0.0001, where ~x∗ is the best-known solution
and ~xbest is the best feasible solution provided by a method.
In Table II, “*” means that a method can satisfy the success
condition in all 25 runs for a test function.

As shown in Table II, among the five compared CDE,
CMODE, FROFI, and C2oDE successfully solve all the 22
test functions. NDE fails to consistently find the optimal
solution of g02. DW cannot attain the optimal solution
of g17 consistently. The experimental results demonstrate
that, overall, C2oDE presents better or similar performance
compared with the four competitors on the 22 test functions
from IEEE CEC2006.

C. Experiments on IEEE CEC2010 Test Suite

In this subsection, the performance of C2oDE was further
tested by making use of other 36 test functions from IEEE
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TABLE II
EXPERIMENTAL RESULTS OF C2ODE AND OTHER FOUR SELECTED METHODS OVER 25 INDEPENDENT RUNS ON 22 TEST FUNCTIONS FROM IEEE

CEC2006

IEEE CEC2006 CMODE
Mean OFV±Std Dev

FROFI
Mean OFV±Std Dev

NDE
Mean OFV±Std Dev

DW
Mean OFV±Std Dev

C2oDE
Mean OFV±Std Dev

g01 -1.5000E+01±7.62E-12* -1.5000E+01±0.00E+00* -1.50000E+01±0.00E+00* -1.5000E+01±5.02E-14* -1.5000E+01±0.00E+00*
g02 -8.0362E-01±2.28E-07* -8.0362E-01±1.02E-05* -8.01809E-01±5.10E-04 -8.0362E-01±9.99E-08* -8.0362E-01±3.82E-07*
g03 -1.0005E+00±9.78E-09* -1.0005E+00±1.25E-12* -1.0005E+00±0.00E+00* -1.0005E+00±4.27E-12* -1.0005E+00±4.67E-16*
g04 -3.0666E+04±2.34E-26* -3.066553E+04±3.71E-12* -3.066553E+04±0.00E+00* -3.066553E+04±0.00E+00* -3.066553E+04±3.71E-12*
g05 5.1265E+03±1.36E-26* 5.1264967E+03±5.68E-11* 5.1264967E+03±0.00E+00* 5.1264967E+03±4.22E-10* 5.1265E+03±2.78E-12*
g06 -6.9618E+03±1.32E-26* -6.961813E+03±1.37E-25* -6.961813E+03±0.00E+00* -6.961813E+03±0.00E+00* -6.961813E+03±0.00E+00*
g07 2.4306E+01±6.41E-09* 2.430621E+01±5.32E-14* 2.430621E+01±1.35E-14* 2.430621E+01±5.28E-10* 2.4306E+01±5.01E-13*
g08 -9.5825E-02±1.32E-14* -9.5825E-02±3.58E-15* -9.5825E-02±0.00E+00* -9.5825E+02±2.78E-18* -9.5825E-02±1.42E-17*
g09 6.8063E+02±9.85E-14* 6.8063006E+02±2.73E-11* 6.8063006E+02±0.00E+00* 6.8063006E+02±2.23E-11* 6.8063006E+02±3.20E-13*
g10 7.0492480E+03±3.15E-09* 7.0492480E+03±8.32E-11* 7.0492480E+03±3.41E-09* 7.0492480E+03±3.26E-12* 7.0492480E+03±7.33E-09*
g11 7.499E-01±0.00E+00* 7.499E-01±8.54E-15* 7.499E-01±0.00E+00* 7.499E-01±1.13E-16* 7.499E-01±1.13E-16*
g12 -1.00E+00±0.00E+00* -1.00E+00±0.00E+00* -1.00E+00±0.00E+00* -1.00E+00±0.00E+00* -1.00E+00±0.00E+00*
g13 5.3942E-02±1.25E-17* 5.3942E-02±2.68E-15* 5.3942E-02±0.00E+00* 5.3942E-02±6.03E-14* 5.3942E-02±1.69E-17*
g14 -4.776489E+01±3.79E-11* -4.776489E+01±5.12E-12* -4.776489E+01±5.14E-15* -4.776489E+01±3.47E-10* -4.776489E+01±2.24E-14*
g15 9.617150E+02±0.00E+00* 9.617150E+02±5.03E-10* 9.617150E+02±0.00E+00* 9.617150E+02±4.47E-13* 9.617150E+02±5.80E-13*
g16 -1.90516E+00±2.48E-16* -1.90516E+00±9.33E-15* -1.90510E+00±0.00E+00* -1.90516E+00±0.00E+00* -1.90516E+00±4.53E-16*
g17 8.853533E+03±2.06E-06* 8.853533E+03±4.32E-15* 8.853533E+03±0.00E+00* 8.880233E+03±3.63E+01 8.853533E+03±8.92E-06*
g18 -8.66025E-01±3.45E-11* -8.66025E-01±2.43E-08* -8.66025E-01±0.00E+00* -8.66025E-01±3.30E-07* -8.66025E-01±1.66E-07 *
g19 3.265559E+01±7.79E-06* 3.265559E+01±1.19E-09* 3.265559E+01±3.73E-05* 3.265559E+01±3.37E-07* 3.265559E+01±1.01E-06*
g21 1.937245E+02±8.32E-05* 1.937245E+02±3.86E-09* 1.937245E+02±6.26E-11* 1.937245E+02±3.66E-09* 1.937245E+02±2.87E-10*
g23 -4.000551E+02±1.10E-05* -4.000551E+02±1.61E-09* -4.000551E+02±3.45E-09* -4.000551E+02±6.49E-06* -4.000551E+02±5.24E-08*
g24 -5.50801E+00±1.23E-25* -5.50801E+00±1.36E-13* -5.50801E+00±0.00E+00* -5.50801E+00±0.00E+00* -5.50801E+00±1.35E-16*
* 22 22 21 21 22

TABLE III
EXPERIMENTAL RESULTS OF C2ODE AND OTHER FIVE SELECTED METHODS OVER 25 INDEPENDENT RUNS ON 18 TEST FUNCTIONS WITH 10D FROM

IEEE CEC2010

IEEE CEC2010 with 10D
CMODE

Mean OFV±Std Dev
FROFI

Mean OFV±Std Dev
ECHT-DE

Mean OFV±Std Dev
AIS-IRP

Mean OFV±Std Dev
Co-CLPSO

Mean OFV±Std Dev
C2oDE

Mean OFV±Std Dev
C01 -7.47E-01±2.35E-13 + -7.47E-01±1.35E-03 + -7.47E-01±1.40E-03+ -7.47E-01±1.30E-03+ -7.34E-01±1.78E-02− -7.44E-01±7.39E-03
C02 -1.48E+00±4.88E-01∇− -2.02E+00±1.41E-01 − -2.27E+00±6.70E-03 ≈ -2.27E+00±2.00E-03≈ -2.27E+00±1.46E-02≈ -2.26E+00±4.64E-02
C03 2.84E+00±4.23E+00 − 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 3.75E-09±4.81E-04− 3.55E-01±1.78E+00− 0.00E+00±0.00E+00
C04 -9.99E-04±2.90E-08 − -1.00E-05±0.00E+00 ≈ -1.00E-05±0.00E+00≈ -9.97E-06±4.28E-03− 9.34E-06±1.07E-06− -1.00E-05±0.00E+00
C05 -4.50E+02±1.61E+02∇− -4.84E+02±8.09E-07≈ -4.11E+02±7.63E+01− -4.80E+02±6.30E+00− -4.84E+02±1.98E-02≈ -4.84E+02±3.48E-13
C06 -5.78E+02±1.60E-02 − -5.79E+02±5.04E-04 ≈ -5.62E+02±4.51E+01− -5.80E+02±7.30E-08+ -5.79E+02±5.73E-04≈ -5.79E+02±6.17E-02
C07 6.69E-15±8.95E-15 − 0.00E+00±0.00E+00≈ 1.33E-01±7.28E-01− 1.17E-08±2.70E+00− 7.97E-01±1.63E+00− 0.00E+00±0.00E+00
C08 8.94E+00±3.98E+00 − 7.11E+00±4.79E+00≈ 6.16E+00±6.45E+00+ 4.09E+00±1.46E+00+ 6.09E-01±1.43E+00+ 7.30E+00±5.18E+00
C09 2.13E+06±1.04E+07∇− 2.50E+01±3.92E+01− 1.47E-01±8.05E-01+ 2.70E+01±7.50E+01− 1.99E+10±9.97E+10− 5.17E+00±5.19E+01
C10 1.35E+05±1.61E+06∇− 4.17E+01±8.69E-06− 1.71E+00±7.66E+00+ 1.62E+03±5.00E+02− 4.97E+10±2.49E+11− 3.67E+01±1.38E+01
C11 -7.7E-02±2.85E-02∇− -1.52E-03±5.63E-14≈ -4.40E-03±1.57E-02∇− -9.20E-04±8.23E-04− -1.61E-01±6.60E-01∇− -1.52E-03±4.89E-13
C12 -6.14E+02±2.74E+02∇− -3.84E+02±2.17E+02+ -1.72E+02±2.21E+02∇− -4.36E+02±6.02E+01+ -2.34E+00±2.43E+01− -7.63E+01±1.22E+02
C13 -5.79E+01±4.09E+00 − -6.84E+01±2.52E-09≈ -6.51E+01±2.38E+00− -6.79E+01±3.11E-01− -6.53E+01±2.58E+00− -6.84E+01±2.77E-14
C14 8.18E-09±1.64E-08 − 0.00E+00±0.00E+00≈ 7.02E+05±3.19E+06− 1.22E-04±2.90E-08− 3.19E-01±1.10E+00− 0.00E+00±0.00E+00
C15 1.20E+02±3.48E+02 − 3.09E+00±1.37E+00 + 2.34E+13±5.30E+13− 5.19E-09±1.10E-08+ 2.99E+00±3.31E+00+ 3.71E+00±1.65E-01
C16 6.82E-05±1.49E-04 − 1.19E-02±2.07E-02 − 3.93E-02±4.28E-02− 9.96E-18±6.27E-15− 5.99E-03±1.33E-02− 0.00E+00±0.00E+00
C17 4.37E-02±1.12E-01 − 7.83E-02±2.25E-01 − 1.12E-01±3.32E-01− 2.93E+00±2.29E+00− 3.80E-01±4.53E-01− 1.61E-02±8.04E-02
C18 5.75E+00±2.64E+02 − 5.23E-26±1.71E-25 − 0.00E+00±0.00E+00≈ 1.66E+00±1.27E+00− 2.32E-01±9.96E-01− 0.00E+00±0.00E+00
− 17 6 10 12 13 /
+ 1 3 4 5 2 /
≈ 0 9 4 1 3 /

TABLE IV
RESULTS OF THE MULTIPLE-PROBLEM WILCOXON’S TEST FOR C2ODE
AND OTHER FIVE SELECTED METHODS ON 18 TEST FUNCTIONS WITH

10D FROM IEEE CEC2010

C2oDE VS R+ R− p-value α=0.1 α=0.05
CMODE 158.5 12.5 3.3000E-05 Yes Yes
FROFI 98.0 55.0 2.5616E-01 No No

ECHT-DE 123.5 29.5 5.5410E-03 Yes Yes
AIS-IRP 111.0 42.0 1.1649E-02 Yes Yes

Co-CLPSO 139.0 14.0 3.6000E-04 Yes Yes

CEC2010 (18 test functions with 10D and 18 test functions
with 30D), which are more complicated than the 24 test func-
tions from IEEE CEC2006. For the purpose of comparison,
five competitive methods were selected. Among them, three
are CDE (i.e., CMODE [40], FROFI [8], and ECHT-DE [73]),
and two are other constrained EAs (i.e., AIS-IRP [74] and Co-
CLPSO [75]).

Due to the fact that the optimal solutions of this test suite
cannot be known a priori, the average and standard deviation
of the objective function values derived from a method over

TABLE V
RANKING OF C2ODE AND OTHER FIVE SELECTED METHODS BY THE

FRIEDMAN’S TEST ON 18 TEST FUNCTIONS WITH 10D FROM IEEE
CEC2010

Algorithm Ranking
C2oDE 2.2778
FROFI 2.7222

AIS-IRP 3.2222
ECHT-DE 3.8889
Co-CLPSO 4.25

CMODE 4.6389

25 independent runs were recorded. Afterward, statistical tests
were implemented to compare C2oDE with each competitor.
Specifically, we applied the Wilcoxon’s rank sum test at a 0.05
significance level to compare C2oDE with each of CMODE
and FROFI. It is because the objective function values of
CMODE and FROFI in 25 runs can be available from our
previous study. In addition, only the average and standard
deviation of objective function values can be obtained from
the original papers of ECHT-DE, AIS-IRP and Co-CLPSO.
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TABLE VI
EXPERIMENTAL RESULTS OF C2ODE AND OTHER FIVE SELECTED METHODS OVER 25 INDEPENDENT RUNS ON 18 TEST FUNCTIONS WITH 30D FROM

IEEE CEC2010

IEEE CEC2010 with 30D
CMODE

Mean OFV±Std Dev
FROFI

Mean OFV±Std Dev
ECHT-DE

Mean OFV±Std Dev
AIS-IRP

Mean OFV±Std Dev
Co-CLPSO

Mean OFV±Std Dev
C2oDE

Mean OFV±Std Dev
C01 -8.21E-01±3.3E-03 ≈ -8.21E-01±2.36E-03≈ -8.00E-01±1.79E-02− -8.20E-01±3.25E-04≈ -7.16E-01±5.03E-02− -8.20E-01±2.52E-03
C02 9.75E-01±6.25E+01− -2.00E+00±4.35E-02− -1.99E+00±2.10E-01− -2.21E+00±2.84E-03≈ -2.20E+00±1.93E-01≈ -2.22E+00±5.20E-02
C03 2.18E+01±1.25E+01 ≈ 2.87E+01±6.24E-08≈ 9.89E+01±6.26E+01− 6.68E+01±4.26E+02− 3.51E+01±3.31E+01∇− 3.06E+01±2.12E+01
C04 6.72E-04±4.24E-04 − -3.33E-06±4.13E-10+ -1.03E-06±9.01E-03+ 1.98E-03±1.61E-03− 1.13E-01±5.63E-01∇− 5.46E-06±2.75E-05
C05 2.77E+02±2.03E+02∇− -4.81E+02±2.84E+00≈ -1.06E+02±1.67E+02− -4.36E+02±2.51E+01− -3.12E+02±8.83E+01− -4.82E+02±7.02E-01
C06 -4.96E+02±2.15E+02 ∇− -5.29E+02±5.71E-01− -1.38E+02±9.89E+01− -4.54E+02±4.79E+01− -2.45E+02±3.95E+01− -5.31E+02±8.97E-02
C07 5.24E-05±5.89E-05 − 0.00E+00±0.00E+00≈ 1.33E-01±7.28E-01− 1.07E+00±1.61E+00− 1.12E+00±1.83E+00− 0.00E+00±0.00E+00
C08 3.68E-01±2.62E-01 − 0.00E+00±0.00E+00≈ 3.36E+01±1.11E+02− 1.65E+00±6.41E-01− 4.75E+01±1.13E+02− 0.00E+00±0.00E+00
C09 1.72E+13±1.07E+13∇− 4.30E+01±3.27E+01− 4.24E+01±1.38E+02− 1.57E+00±1.96E+00≈ 1.48E+08±2.45E+08− 1.85E+00±4.90E+00
C10 1.60E+13±7.00E+12∇− 3.13E+01±8.22E-02≈ 5.34E+01±8.83E+01≈ 1.78E+01±1.88E+01+ 1.40E+09±5.84E+09− 3.13E+01±5.73E-06
C11 9.5E-03±9.7E-03∇− -3.92E-04±2.64E-06≈ 2.60E-03±6.00E-03∇− -1.58E-04±4.67E-05− 2.82E-02±3.21E-02∇− -3.92E-04±1.60E-06
C12 -3.46E+00±7.35E+02∇− -1.99E-01±1.42E-06≈ 2.51E+01±1.37E+02∇− 4.29E-06±4.52E-04− -1.99E-01±1.18E-04∇− -1.99E-01±3.09E-07
C13 -3.89E+01±2.17E+00 − -6.83E+01±1.95E-01≈ -6.46E+01±1.67E+00− -6.62E+01±2.27E-01− -6.08E+01±1.12E+00− -6.81E+01±6.25E-01
C14 9.31E+00±2.46E+00 − 9.80E-29±4.90E-28≈ 1.24E+05±6.77E+05− 8.68E-07±3.14E-07− 1.28E+00±1.90E+00− 0.00E+00±0.00E+00
C15 1.51E+13±8.26E+12 − 2.16E+01±8.03E-05≈ 1.94E+11±4.35E+11− 3.41E+01±3.82E+01− 5.11E+01±9.18E+01− 2.16E+01±2.92E-07
C16 6.30E-02±2.72E-02 − 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 8.21E-02±1.12E-01− 5.24E-16±4.67E-16− 0.00E+00±0.00E+00
C17 3.12E+02±2.75E+02 ∇− 1.59E-01±3.82E-01− 2.75E-01±3.78E-01− 3.61E+00±2.54E+00− 1.39E+00±4.26E+00− 6.58E-02±1.46E-01
C18 7.36E+03±3.12E+03 − 4.87E-01±1.25E+00− 0.00E+00±0.00E+00+ 4.02E+01±1.80E+01− 1.09E+01±3.72E+01− 4.47E-20±2.24E-19
− 16 5 14 14 17 /
+ 0 1 2 1 0 /
≈ 2 12 2 3 1 /

TABLE VII
RESULTS OF THE MULTIPLE-PROBLEM WILCOXON’S TEST FOR C2ODE
AND OTHER FIVE SELECTED METHODS ON 18 TEST FUNCTIONS WITH

30D FROM IEEE CEC2010

C2oDE VS R+ R− p-value α=0.1 α=0.05
CMODE 169.5 1.5 1.91E-05 Yes Yes
FROFI 111.5 41.5 7.77E-02 Yes No

ECHT-DE 166.0 5.0 7.63E-05 Yes Yes
AIS-IRP 148.5 4.5 1.30E-04 Yes Yes

Co-CLPSO 153.0 0.0 1.53E-05 Yes Yes

As a result, the t-test at a 0.05 significance level was used
to compare C2oDE with each of ECHT-DE, AIS-IRP and
Co-CLPSO. When a method obtains the smallest average
objective function value on a test function, the corresponding
experimental results are highlighted in gray. Furthermore, the
multiple-problem Wilcoxon’s test and the Friedman’s test were
implemented via KEEL software [76]. Note that the post-hoc
test of the Friedman’s test is based on the Bonferroni-Dunn
method.

In terms of the 18 test functions with 10D from IEEE
CEC2010, Tables III, IV, and V summarize the average
and standard deviation of objective function values, results
of the multiple-problem Wilcoxon’s test, and results of the
Friedman’s test, respectively. In Table III, “∇” means that
feasible solutions cannot be found by the corresponding
method at the end of some runs. Additionally, “−”, “+” and
“≈” denote that the performance of the corresponding method
is worse than, better than, and similar to that of C2oDE,
respectively, according to the Wilcoxon’s rank sum test/t-
test. From Table III, it can be seen that C2oDE outperforms
CMODE, FROFI, ECHT-DE, AIS-IRP, and Co-CLPSO on 17,
six, 10, 12, and 13 test functions, respectively. In contrast,
CMODE, FROFI, ECHT-DE, AIS-IRP, and Co-CLPSO per-
form better than C2oDE on one, three, four, five, and two
test functions, respectively. According to the multiple-problem
Wilcoxon’s test in Table IV, the R+ values are bigger than the
R− values in all cases. Moreover, the significant differences
can be observed in four cases at α=0.05, i.e., C2oDE versus
CMODE, C2oDE versus ECHT-DE, C2oDE versus AIS-IRP,

TABLE VIII
RANKING OF C2ODE AND OTHER FIVE SELECTED METHODS BY THE

FRIEDMAN’S TEST ON 18 TEST FUNCTIONS WITH 30D FROM IEEE
CEC2010

Algorithm Ranking
C2oDE 1.6944
FROFI 2.1111

AIS-IRP 3.4444
ECHT-DE 4.1111
Co-CLPSO 4.7222

CMODE 4.9167

and C2oDE versus Co-CLPSO. As far as the Friedman’s test is
concerned, C2oDE achieves the first rank followed by FROFI.
Taking all these results into consideration, we can conclude
that C2oDE has an edge over the five competitors on the 18
test functions with 10D from IEEE CEC2010.

In terms of the 18 test functions with 30D from IEEE
CEC2010, Tables VI, VII, and VIII record the average and
standard deviation of objective function values, results of
the multiple-problem Wilcoxon’s test, and results of the
Friedman’s test, respectively. As shown in Table VI, C2oDE
surpasses CMODE, FROFI, ECHT-DE, AIS-ISP, and Co-
CLPSO on 16, five, 14, 14, and 17 test functions, respectively.
However, the performance of FROFI, ECHT-DE, and AIS-ISP
is better than that of C2oDE on only one, two, and one test
function, respectively. In particular, CMODE and Co-CLPSO
cannot beat C2oDE even on one test function. Regarding the
multiple-problem Wilcoxon’s test, C2oDE provides higher R+

values than R− values in all cases. Moreover, the p-values are
less than 0.1 in all cases and less than 0.05 in four cases, i.e.,
C2oDE versus CMODE, C2oDE versus ECHT-DE, C2oDE
versus AIS-IRP, and C2oDE versus Co-CLPSO. With respect
to the Friedman’s test, C2oDE ranks the first followed by
FROFI. In conclusion, C2oDE provides superior results on the
18 test functions with 30D from IEEE CEC2010. Moreover, it
seems that the advantage of C2oDE over the five competitors
increases as the number of dimension increases.

To visualize the experimental results, the convergence
graphs of C2oDE, FROFI, and CMODE were plotted on six
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(a) C02 with 10D (b) C14 with 10D (c) C18 with 10D

(d) C02 with 30D (e) C14 with 30D (f) C18 with 30D

Fig. 4. Convergence graphs of C2oDE, FROFI, and CMODE on six representative test functions from IEEE CEC2010.

TABLE IX
EXPERIMENTAL RESULTS OF C2ODE AND CODE OVER 25 INDEPENDENT

RUNS ON 36 TEST FUNCTIONS FROM IEEE CEC2010

Instance 10D 30D
C2oDE

Mean OFV±Std Dev
(feasible rate)

CoDE
Mean OFV±Std Dev

(feasible rate)

C2oDE
Mean OFV±Std Dev

(feasible rate)

CoDE
Mean OFV±Std Dev

(feasible rate)
C01 -7.44E-01±7.39E-03 -7.47E-01±1.88E-03 ≈ -8.20E-01±2.52E-03 -8.11E-01±1.69E-03 −
C02 -2.26E+00±4.64E-02 -1.34E+00±7.11E-01 − -2.22E+00±5.20E-02 9.21E-01±1.06E+00 −
C03 0.00E+00±0.00E+00 3.55E-01±1.78E+00 − 3.06E+01±2.12E+01 (0%) −
C04 -1.00E-05±0.00E+00 -6.74E-06±2.63E-06 − 5.46E-06±2.75E-05 (0%) −
C05 -4.84E+02±3.48E-13 (36%) − -4.82E+02±7.02E-01 (0%) −
C06 -5.79E+02±6.17E-02 (28%) − -5.31E+02±8.97E-02 (0%) −
C07 0.00E+00±0.00E+00 7.37E-25±2.41E-24 − 0.00E+00±0.00E+00 1.49E+01±2.51E+00 −
C08 7.30E+00±5.18E+00 1.71E+00±3.99E+00 + 0.00E+00±0.00E+00 6.56E+01±4.65E+01 −
C09 5.17E+00±5.19E+01 4.13E-24±5.38E-24 + 1.85E+00±4.90E+00 (24%) −
C10 3.67E+01±1.38E+01 2.17E+01±2.13E+01 + 3.13E+01±5.73E-06 (4%) −
C11 -1.52E-03±4.89E-13 -1.52E-03±1.39E-07 ≈ -3.92E-04±1.60E-06 (0%) −
C12 -7.63E+01±1.22E+02 (84%) − -1.99E-01±3.09E-07 (4%) −
C13 -6.84E+01±2.77E-14 -6.84E+01±1.83E-02≈ -6.81E+01±6.25E-01 -5.92E+01±8.71E-01 −
C14 0.00E+00±0.00E+00 5.09E-25±8.48E-25− 0.00E+00±0.00E+00 2.12E+01±1.93E+00 −
C15 3.71E+00±1.65E-01 2.06E+00±1.86E+00+ 2.16E+01±2.92E-07 4.39E+12±2.64E+12 −
C16 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 3.39E-05±2.09E-05 −
C17 1.61E-02±8.04E-02 1.17E-04±1.86E+00+ 6.58E-02±1.46E-01 (60%) −
C18 0.00E+00±0.00E+00 2.50E+01±1.10E+02− 4.47E-20±2.24E-19 1.19E+04±8.70E+03 −
− / 9 / 18
+ / 5 / 0
≈ / 4 / 0

representative test functions from IEEE CEC2010, i.e., C02
with 10D, C14 with 10D, C18 with 10D, C02 with 30D,
C14 with 30D, and C18 with 30D. Since the source codes
of ECHT-DE, AIS-IRP, and Co-CLPSO cannot be available,
their convergence graphs are not provided. Fig. 4 depicts the
evolution of the mean of the best feasible objective function
value. As shown in Fig. 4, C2oDE converges faster than
CMODE on all these six test functions. In addition, C2oDE
shows faster convergence speed than FROFI on all these six
test functions except for C14 with 30D. In terms of C14 with
30D, C2oDE and FROFI have similar convergence speed.

According to the above comprehensive experiments on
two benchmark test sets, C2oDE exhibits very competitive
performance when tackling COPs.

D. Comparing C2oDE with the Original CoDE for Con-
strained Optimization

The aim of this subsection is to ascertain whether the
original CoDE designed for global optimization can be directly

applied to solve COPs. To this end, the search algorithm of
C2oDE was replaced with the original CoDE. Subsequently,
the 36 test functions from IEEE CEC2010 were used to
produce the experimental results for CoDE. The average and
standard deviation of objective function values over 25 runs are
summarized in Table IX. It is noteworthy that the feasible rate,
i.e., percentage of runs where at least one feasible solution is
found, is recorded if an algorithm fails to consistently provide
feasible solutions over all 25 runs. In addition, the Wilcoxon’s
rank sum test at a 0.05 significance level was executed to
compare C2oDE with CoDE. The cell with the smaller average
objective function value is highlighted in gray.

As shown in Table IX, overall, CoDE performs better than,
similar to, and worse than C2oDE on five, four, and 27
test functions, respectively. More importantly, CoDE cannot
consistently find feasible solutions in 12 cases. Therefore, the
above comparison indicates that the original CoDE without
any modifications is not a good choice as the search algorithm
for constrained optimization, which verifies the motivation of
this paper.

E. Contribution of the Feasibility Rule and the ε Constrained
Method

In this paper, our constraint-handing technique includes two
phases. Moreover, the feasibility rule and the ε constrained
method are used for the first and second phases, respectively.
In order to identify their main contribution, two C2oDE vari-
ants, i.e., C2oDE-FR and C2oDE-ECM, were implemented.
To be specific, in C2oDE-FR, the feasibility rule was utilized
in both phases while in C2oDE-ECM, the ε constrained
method was utilized in both phases. The 18 test functions
with 30D from IEEE CEC2010 were employed to produce
the experimental results.

The average and standard deviation of objective function
values over 25 runs, and the feasible rate are summarized
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TABLE X
EXPERIMENTAL RESULTS OF C2ODE, C2ODE-FR, AND C2ODE-ECM

OVER 25 INDEPENDENT RUNS ON 18 TEST FUNCTIONS WITH 30D FROM
IEEE CEC2010

Instance
C2oDE

Mean OFV±Std Dev
(feasible rate)

C2oDE-FR
Mean OFV±Std Dev

(feasible rate)

C2oDE-ECM
Mean OFV±Std Dev

(feasible rate)
C01 -8.20E-01±2.52E-03 -8.16E-01±6.59E-03≈ -8.20E-01±2.14E-03≈
C02 -2.22E+00±5.20E-02 2.70E+00±9.16E-01− -2.23E+00±5.00E-02≈
C03 3.06E+01±2.12E+01 1.74E+13±5.10E+13 − 3.35E+01±2.14E+01≈
C04 5.46E-06±2.75E-05 -3.28E-06±1.57E-07 + 6.23E-06±1.35E-05≈
C05 -4.82E+02±7.02E-01 4.49E+02±1.18E+02− -4.81E+02±5.86E-01≈
C06 -5.31E+02±8.97E-02 4.88E+02±1.14E+02− -5.31E+02±1.02E-01≈
C07 0.00E+00±0.00E+00 5.43E-28±2.72E-27≈ 1.37E-27±6.86E-27≈
C08 0.00E+00±0.00E+00 3.21E-29±1.21E-28 ≈ 5.43E-28±2.72E-27 ≈
C09 1.85E+00±4.90E+00 8.07E+13±1.84E+13− 1.13E+01±2.13E+01 −
C10 3.13E+01±5.73E-06 8.01E+13±2.77E+13− 3.13E+01±3.94E-06≈
C11 -3.92E-04±1.60E-06 -3.92E-04±1.11E-09≈ (92%) −
C12 -1.99E-01±3.09E-07 (88%)− -1.99E-01±8.41E-08≈
C13 -6.81E+01±6.25E-01 -6.80E+01±7.95E-01≈ -6.83E+01±3.59E-01≈
C14 0.00E+00±0.00E+00 1.60E-01±7.97E-01− 0.00E+00±0.00E+00≈
C15 2.16E+01±2.92E-07 3.59E+14±2.01E+14− 2.18E+01±1.14E+00 −
C16 0.00E+00±0.00E+00 1.10E+00±3.83E-02− 0.00E+00±0.00E+00≈
C17 6.58E-02±1.46E-01 2.04E+03±7.35E+02− 2.30E-01±4.35E-01 −
C18 4.47E-20±2.24E-19 4.39E+04±2.07E+04− 5.60E-18±2.16E-17≈
− / 12 4
+ / 1 0
≈ / 5 14

in Table X. Besides, the Wilcoxon’s rank sum test at a 0.05
significance level was applied to compare C2oDE with each
of C2oDE-FR and C2oDE-ECM. If a method obtains the
smallest average objective function value on a test function,
the corresponding experimental results are highlighted in gray.
As shown in Table X, C2oDE outperforms C2oDE-FR and
C2oDE-ECM on 12 and four test functions, respectively. In
contrast, C2oDE-FR and C2oDE-ECM cannot perform better
than C2oDE on more than one test function.

Therefore, the experimental results reveal the contribution
of the feasibility rule and the ε constrained method for the
first and second phases, respectively.

F. Investigation on How to Select the Best Individual

In the search algorithm of C2oDE, the individual with the
least degree of constraint violation is chosen as the “best”
individual in the modified DE/rand-to-best/1/bin while the
individual with the best objective function value is selected as
the “best” individual in DE/current-to-best/1/bin. In this sub-
section, we empirically investigated how to select the “best”
individual. To this end, three C2oDE variants, i.e., C2oDE-
Exc, C2oDE-Obj, and C2oDE-Const, were implemented. In
C2oDE-Exc, the manners of selecting the “best” individu-
al in the modified DE/rand-to-best/1/bin and DE/current-to-
best/1/bin were exchanged. Specifically, the “best” individual
in the modified DE/rand-to-best/1/bin was selected in terms of
the objective function value while the “best” individual in the
DE/current-to-best/1/bin was selected according to the degree
of constraint violation. In C2oDE-Obj, both the modified
DE/rand-to-best/1/bin and DE/current-to-best/1/bin selected
the “best” individual according to the objective function value.
On the contrary, both of them selected the “best” individual in
terms of the degree of constraint violation in C2oDE-Const.
The 18 test functions with 30D from IEEE CEC2010 were
adopted for comparison.

The average and standard deviation of objective function
values over 25 runs, and the feasible rate are summarized
in Table XI. Also, the Wilcoxon’s rank sum test at a 0.05

TABLE XI
EXPERIMENTAL RESULTS OF C2ODE, C2ODE-EXC, C2ODE-OBJ, AND
C2ODE-CONST OVER 25 INDEPENDENT RUNS ON 18 TEST FUNCTIONS

WITH 30D FROM IEEE CEC2010

Instance
C2oDE

Mean OFV±Std Dev
(feasible rate)

C2oDE-Exc
Mean OFV±Std Dev

(feasible rate)

C2oDE-Obj
Mean OFV±Std Dev

(feasible rate)

C2oDE-Const
Mean OFV±Std Dev

(feasible rate)
C01 -8.20E-01±2.52E-03 -8.20E-01±2.51E-03≈ -8.18E-01±3.65E-03≈ -8.20E-01±2.67E-03≈
C02 -2.22E+00±5.20E-02 -2.11E+00±8.73E-02≈ -2.20E+00±7.06E-02≈ -2.07E+00±1.07E-01−
C03 3.06E+01±2.12E+01 3.05E+01±6.49E+00 ≈ 3.67E+01±2.63E+01 ≈ 2.87E+01±1.57E-09 ≈
C04 5.46E-06±2.75E-05 2.32E-04±6.13E-04 − 2.89E-05±1.19E-05 − 1.79E-03±1.96E-03 −
C05 -4.82E+02±7.02E-01 -3.77E+02±2.10E+02− -4.82E+02±5.24E-01 ≈ -2.63E+02±2.60E+02 −
C06 -5.31E+02±8.97E-02 -5.30E+02±2.51E-02≈ -5.31E+02±2.50E-02≈ -5.29E+02±1.23E+00≈
C07 0.00E+00±0.00E+00 2.49E-24±3.75E-24− 0.00E+00±0.00E+00 ≈ 25.21E-20±1.85E-19−
C08 0.00E+00±0.00E+00 1.84E-20±5.22E-20 − 5.43E-28±2.72E-27 ≈ 2.46E-16±9.08E-16−
C09 1.85E+00±4.90E+00 1.42E+01±2.37E+01− 7.87E+00±1.88E+01− 2.65E+01±2.95E+01−
C10 3.13E+01±5.73E-06 3.13E+01±2.63E-06≈ 3.13E+01±3.82E-06≈ 3.13E+01±4.70E-06≈
C11 -3.92E-04±1.60E-06 -3.92E-04±1.11E-09≈ (84%) − -3.92E-04±2.35E-09≈
C12 -1.99E-01±3.09E-07 (80%)− -1.99E-01±1.81E-08 ≈ -1.99E-01±4.96E-06 ≈
C13 -6.81E+01±6.25E-01 -6.77E+01±5.30E-01≈ -6.82E+01±5.38E-01≈ -6.69E+01±7.63E-01≈
C14 0.00E+00±0.00E+00 9.74E-22±1.65E-21− 0.00E+00±0.00E+00 ≈ 8.38E-18±1.96E-17−
C15 2.16E+01±2.92E-07 2.16E+01±1.10E-07≈ 2.16E+01±2.79E-07≈ 2.16E+01±1.78E-07≈
C16 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈
C17 6.58E-02±1.46E-01 1.90E-01±4.62E-01− 4.62E-01±1.69E+00− (96%) −
C18 4.47E-20±2.24E-19 6.48E-20±2.28E-19≈ 6.72E-04±3.35E-03 − 4.99E-05±2.49E-04 −
− / 8 5 9
+ / 0 0 0
≈ / 10 13 9

TABLE XII
EXPERIMENTAL RESULTS OF C2ODE AND C2ODE-WOR OVER 25

INDEPENDENT RUNS ON THREE TEST FUNCTIONS WITH 10D (C11 WITH
10D, C12 WITH 10D, AND C17 WITH 10D) AND ONE TEST FUNCTION

WITH 30D (C12 WITH 30D) FROM IEEE CEC2010

Instance
C2oDE

Mean OFV±Std Dev
(feasible rate)

C2oDE-WoR
Mean OFV±Std Dev

(feasible rate)
C11 with 10D -1.52E-03±4.89E-13 (4%)
C12 with 10D -7.63E+01±1.22E+02 (0%)
C17 with 10D 1.61E-02±8.04E-02 (76%)
C12 with 30D -1.99E-01±3.09E-07 (92%)

significance level was used to compare C2oDE with each of
C2oDE-Exc, C2oDE-Obj, and C2oDE-Const. The experimen-
tal results with the smallest average objective function value
among the four compared methods are highlighted in gray on
each test function. As shown in Table XI, C2oDE surpasses
C2oDE-Exc, C2oDE-Obj, and C2oDE-Const on eight, five,
and nine test functions, respectively. However, C2oDE-Exc,
C2oDE-Obj, and C2oDE-Const cannot beat C2oDE on any
test function.

The above experimental results suggest that the manner of
selecting the “best” individual in C2oDE is reasonable.

G. Effectiveness of the Restart Scheme
In order to analyze the effectiveness of the proposed restart

scheme, a method called C2oDE-WoR was implemented
by removing the restart scheme from C2oDE. The 36 test
functions from IEEE CEC2010 were selected for experiments.

The average and standard deviation of objective function
values resulting from C2oDE-WoR were computed. The exper-
imental results of those test functions, for which C2oDE and
C2oDE-WoR do not have significant performance difference
based on the Wilcoxon’s rank sum test at a 0.05 significance
level, were omitted. As a result, Table XII provides the
experimental results for four test functions. In Table XII, the
feasible rate is also provided if a method cannot attain feasible
solutions consistently.

As shown in Table XII, the restart scheme plays a very
important role in the performance of C11 with 10D, C12 with
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10D, C17 with 10D, and C12 with 30D. Without the restart
scheme, C2oDE-WoR tends to converge to a local optimum in
the infeasible region. Especially, for C11 with 10D, C2oDE-
WoR can just find feasible solutions in one run, and for C12
with 10D, C2oDE-WoR is unable to find any feasible solution.
It is interesting to observe that C2oDE-WoR performs similarly
to C2oDE on C11 with 30D and C17 with 30D. This is not
difficult to understand because the relatively larger MaxFEs
and the population size were specified under this condition.

Therefore, C2oDE gets great benefit from the restart scheme
to jump out the infeasible region once the population searches
to stall.

Remark 2: We also presented the parameter sensitivity
analysis of C2oDE in Section S-I of the supplementary file.

VI. CONCLUSIONS

This paper extended an outstanding global optimizer, i.e.,
CoDE, to tackle COPs. Firstly, the principle of CoDE was
inspired to design a search algorithm, which includes three
complementary trial vector generation strategies. Among them,
one was responsible for diversity and the other two facilitated
convergence, thus achieving a tradeoff between diversity and
convergence. In order to balance constraints and objective
function, one of the two trial vector generation strategies
for convergence was guided by the individual with the least
degree of constraint violation and the other was guided by the
individual with the best objective function value. In addition, a
constraint-handling technique consisting of the feasibility rule
and the ε constrained method was developed. The constraint-
handling technique was coupled with the search algorithm in
a natural way. Furthermore, a restart scheme was designed
to deal with complex constraints. By the above procedure, a
new constrained DE, i.e., C2oDE, was proposed. Systematic
experiments on two benchmark test suites demonstrated that:

1) C2oDE showed better or at least competitive perfor-
mance against other state-of-the-art constrained EAs.

2) C2oDE had a great advantage over the original CoDE
for solving COPs.

3) The restart scheme was able to enhance C2oDE’s ability
to reach feasible solutions on some extremely difficult
COPs.

In the future, it is interesting to generalize C2oDE for
solving constrained multiobjective optimization problems
(CMOPs). When solving a CMOP, a set of solutions, which
is uniformly distributed on the feasible Pareto front, is
desired. Thus, diversity is a critical factor which affects the
performance of an algorithm for CMOPs. C2oDE already
contains a trial vector generation strategy for diversity,
i.e., DE/current-to-rand/1. In order to further enhance the
diversity for solving CMOPs, C2oDE can be improved
from the following two aspects: 1) since C2oDE is an open
framework, it is easy to add more trial vector generation
strategies for diversity to C2oDE, such as DE/rand/2/bin; and
2) the polynomial mutation [29], [77] and the improved BGA
mutation [9], [78], which have been proven to be effective
for promoting the diversity of population, can be incorporated
into C2oDE.

The Matlab source code of C2oDE can
be downloaded from Y. Wang’s homepage:
http://www.escience.cn/people/yongwang1/index.html
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[7] T. Bäck, D. Fogel, and Z. Michalewicz, “Handbook of evolutionary
computation,” Release, vol. 97, no. 1, p. B1, 1997.

[8] Y. Wang, B.-C. Wang, H.-X. Li, and G. G. Yen, “Incorporating objective
function information into the feasibility rule for constrained evolutionary
optimization,” IEEE Transactions on Cybernetics, vol. 46, no. 12, pp.
2938–2952, 2016.

[9] Y. Wang and Z. Cai, “Constrained evolutionary optimization by means
of (µ+λ)-differential evolution and improved adaptive trade-off model,”
Evolutionary Computation, vol. 19, no. 2, pp. 249–285, 2011.

[10] B. Tessema and G. G. Yen, “An adaptive penalty formulation for
constrained evolutionary optimization,” IEEE Transactions on Systems,
Man, and Cybernetics-Part A: Systems and Humans, vol. 39, no. 3, pp.
565–578, 2009.

[11] R. Storn and K. Price, “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
Global Optimization, vol. 11, no. 4, pp. 341–359, 1997.

[12] S. Das and P. N. Suganthan, “Differential evolution: a survey of the state-
of-the-art,” IEEE Transactions on Evolutionary Computation, vol. 15,
no. 1, pp. 4–31, 2011.

[13] W.-Y. Chiu, “Multiobjective controller design by solving a multiobjec-
tive matrix inequality problem,” IET Control Theory & Applications,
vol. 8, no. 16, pp. 1656–1665, 2014.

[14] H. G. Harno and I. R. Petersen, “Synthesis of linear coherent
quantum control systems using a differential evolution algorithm,” IEEE
Transactions on Automatic Control, vol. 60, no. 3, pp. 799–805, 2015.

[15] W.-Y. Chiu, “Pareto optimal controller designs in differential games,” in
2014 CACS International Automatic Control Conference (CACS). IEEE,
2014, pp. 179–184.
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Supplementary File for “Composite Differential
Evolution for Constrained Evolutionary

Optimization”

S-I. PARAMETER SENSITIVITY ANALYSIS

The sensitivity of the parameter p of the ε constrained method was investigated in this subsection. As introduced in Section
II-E, p controls the extent that the information of objective function is utilized. Too much information of objective function
will cause slow convergence speed toward the feasible region while the search with too little information of objective function
may run the high risk of getting stuck in a local optimum. Hence, this parameter is vital to the tradeoff between constraints
and objective function.

We ran C2oDE with seven different values of p, i.e., p=0.0, p=0.2, p=0.4, p=0.6, p=0.8, p=1.0, and p=0.5 over 25 independent
runs on the 18 test functions with 30D from IEEE CEC2010. It is noteworthy that in the original C2oDE, p was equal to
0.5. The Wilcoxon’s rank sum test at a 0.05 significance level was utilized to compare p=0.5 with each of p=0.0, p=0.2,
p=0.4, p=0.6, p=0.8, and p=1.0. The average and standard deviation of objective function values are summarized in Table S-I.
Similarly, the feasible rate is given in the case that a method cannot achieve 100% feasible rate for a test function. Besides,
when a method obtains the smallest average objective function value on a test function, the corresponding experimental results
are highlighted in gray.

As shown in the Table S-I, p=0.5 outperforms p=0.0, p=0.2, p=0.4, p=0.6, p=0.8, and p=1.0 on 12, 10, four, two, four,
and 11 test functions, respectively. On the contrary, the six competitors cannot perform better than p=0.5 on more than one
test function. Moreover, they suffer from infeasible convergence in the infeasible region for different number of test functions.
Therefore, p=0.5 is recommended in this paper.

TABLE S-I
EXPERIMENTAL RESULTS OF C2ODE WITH SEVEN VARYING p OVER 25 INDEPENDENT RUNS ON 18 TEST FUNCTIONS WITH 30D FROM IEEE CEC2010

IEEE CEC2010 with 30D
p = 0.0

Mean OFV±Std Dev
(feasible rate)

p = 0.2
Mean OFV±Std Dev

(feasible rate)

p = 0.4
Mean OFV±Std Dev

(feasible rate)

p = 0.6
Mean OFV±Std Dev

(feasible rate)

p = 0.8
Mean OFV±Std Dev

(feasible rate)

p = 1.0
Mean OFV±Std Dev

(feasible rate)

p = 0.5 (C2oDE)
Mean OFV±Std Dev

(feasible rate)
C01 -8.16E-01±6.59E-03≈ -8.18E-01±4.20E-03≈ -8.19E-01±3.50E-03≈ -8.21E-01±2.65E-03≈ -8.12E-01±4.45E-02− -6.28E-01±2.32E-02− -8.20E-01±2.52E-03
C02 2.70E+00±9.16E-01− -1.51E+00±3.94E-01− -2.16E+00±1.30E-01≈ -2.24E+00±5.20E-02≈ -2.24E+00±3.33E-02≈ (40%)− -2.22E+00±5.20E-02
C03 1.74E+13±5.10E+13 − 2.87E+01±2.52E-09≈ 2.87E+01±3.18E-08≈ 3.85E+01±3.33E+01≈ 4.32E+01±5.10E+01≈ (8%) − 3.06E+01±2.12E+01
C04 -3.28E-06±1.57E-07 + -2.82E-06±1.42E-06+ -3.11E-06±4.52E-07+ 2.77E-05±1.16E-04 − 4.77E-04±2.76E-04 − (0%)− 5.46E-06±2.75E-05
C05 4.49E+02±1.18E+02− 1.39E+02±2.89E+02− -4.41E+02±8.62E+01− -4.82E+02±6.24E-01≈ -4.83E+02±3.75E-01≈ (44%)− -4.82E+02±7.02E-01
C06 4.88E+02±1.14E+02− -3.62E+02±2.18E+02− -5.30E+02±1.33E+00≈ -5.31E+02±1.20E-02≈ -5.31E+02±1.47E-02≈ (0%)− -5.31E+02±8.97E-02
C07 5.43E-28±2.72E-27≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 5.43E-28±2.72E-27≈ 0.00E+00±0.00E+00≈ 5.43E-28±2.72E-27≈ 0.00E+00±0.00E+00
C08 3.21E-29±1.21E-28 ≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 5.63E-28±2.81E-27≈ 0.00E+00±0.00E+00≈ 7.79E+01±3.42E+02− 0.00E+00±0.00E+00
C09 8.07E+13±1.84E+13− 1.26E+13±2.46E+13− 1.51E+01±2.32E+01− 3.33E+00±1.39E+01≈ 6.72E+00±1.96E+01≈ 3.00E+00±1.41E+01≈ 1.85E+00±4.90E+00
C10 8.01E+13±2.77E+13− 8.01E+13±1.73E+13− 3.13E+01±1.26E-05≈ 3.13E+01±9.34E-06≈ 3.13E+01±4.17E-05≈ 3.13E+01±4.28E-02≈ 3.13E+01±5.73E-06
C11 -3.92E-04±1.11E-09≈ -3.92E-04±8.82E-10≈ -3.92E-04±9.26E-10≈ -3.92E-04±1.73E-10≈ (0%) − (0%) − -3.92E-04±1.60E-06
C12 (88%)− (76%)− (88%)− (80%)− (92%) − (0%) − -1.99E-01±3.09E-07
C13 -6.80E+01±7.95E-01≈ -6.81E+01±8.66E-01≈ -6.84E+01±2.91E-01≈ -6.83E+01±4.10E-01≈ -6.80E+01±7.08E-01≈ (0%)− -6.81E+01±6.25E-01
C14 1.60E-01±7.97E-01− 3.19E-01±1.10E+00− 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C15 3.59E+14±2.01E+14− 5.86E+10±1.15E+11− 2.16E+01±4.44E-07≈ 2.16E+01±2.10E-07≈ 2.16E+01±3.16E-07≈ 2.16E+01±5.33E-07≈ 2.16E+01±2.92E-07
C16 1.10E+00±3.83E-02− 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C17 2.04E+03±7.35E+02− 1.14E-01±2.95E-01− 1.38E-01±1.97E-01− 7.80E-02±1.49E-011≈ 5.26E-02±2.04E-01≈ (96%)− 6.58E-02±1.46E-01
C18 4.39E+04±2.07E+04− 2.56E-03±7.97E-03− 2.54E-29±7.97E-28≈ 4.32E-27±1.35E-26≈ 1.146E-24±4.00E-24≈ 1.14E-18±5.70E-18≈ 4.47E-20±2.24E-19
− 12 10 4 2 4 11 /
+ 1 1 1 0 0 0 /
≈ 5 7 13 16 14 7 /


	Introduction
	Preliminary Knowledge
	Constrained Optimization Problems (COPs)
	Differential Evolution (DE)
	CoDE
	Feasibility Rule
	 Constrained Method

	Related Work
	Single-Strategy CDE
	Multi-Strategy CDE
	CDE Coupled with Other Operators

	Proposed Method
	Motivation
	Search Algorithm
	Constraint-Handling Technique
	Restart Scheme
	C2oDE

	Experimental Study
	Benchmark Test Functions and Parameter Settings
	Experiments on IEEE CEC2006 Test Suite
	Experiments on IEEE CEC2010 Test Suite
	Comparing C2oDE with the Original CoDE for Constrained Optimization
	Contribution of the Feasibility Rule and the  Constrained Method
	Investigation on How to Select the Best Individual
	Effectiveness of the Restart Scheme

	Conclusions
	References
	Biographies
	Bing-Chuan Wang
	Han-Xiong Li
	Jia-Peng Li
	Yong Wang

	C2oDE-Supplementary-File.pdf
	Parameter Sensitivity Analysis


