
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1

Utilizing the Correlation between Constraints
and Objective Function for Constrained

Evolutionary Optimization
Yong Wang, Senior Member, IEEE, Jia-Peng Li, Xihui Xue, and Bing-Chuan Wang

Abstract—When solving constrained optimization problems by
evolutionary algorithms, the core issue is to balance constraints
and objective function. This paper is the first attempt to utilize
the correlation between constraints and objective function to keep
this balance. First of all, the correlation between constraints and
objective function is mined and represented by a correlation
index. Afterward, a weighted sum updating approach and an
archiving and replacement mechanism are proposed to make use
of this correlation index to guide the evolution. By the above
process, a novel constrained optimization evolutionary algorithm
is presented. Experiments on a broad range of benchmark test
functions indicate that the proposed method shows better or
at least competitive performance against other state-of-the-art
methods. Moreover, the proposed method is applied to the gait
optimization of humanoid robots.

Index Terms—Constrained optimization, evolutionary algo-
rithms, constraints, objective function, correlation, humanoid
robots

I. INTRODUCTION

MANY scientific and engineering problems can be for-
mulated as constrained optimization problems (COPs).

Without loss of generality, a COP can be formulated as
follows:

minimize : f(~x), ~x = (x1, . . . , xD) ∈ S, Li ≤ xi ≤ Ui
subject to : gj(~x) ≤ 0, j = 1, . . . , l

hj(~x) = 0, j = l + 1, . . . ,m
where f(~x) is the objective function, ~x = (x1, . . . , xD) is the
decision vector, Li and Ui are the lower and upper bounds
of xi, respectively, S =

∏D
i=1[Li, Ui] is the decision space,

gj(~x) is the jth inequality constraint, hj(~x) is the jth equality
constraint, and l and (m− l) are the number of inequality and
equality constraints, respectively.

In constrained optimization, the degree of constraint viola-
tion of ~x on the jth constraint is computed as

Gj(~x) =

{
max(0, gj(~x)), 1 ≤ j ≤ l
max(0, |hj(~x)| − δ) , l + 1 ≤ j ≤ m (1)

This work was supported in part by the Innovation-Driven Plan in Central
South University under Grant 2018CX010, in part by the National Natural
Science Foundation of China under Grant 61673397, in part by the Hunan
Provincial Natural Science Fund for Distinguished Young Scholars (Grant
No. 2016JJ1018), and in part by the Beijing Advanced Innovation Center
for Intelligent Robots and Systems under Grant 2018IRS06. (Corresponding
author: Bing-Chuan Wang).

Y. Wang, J.-P. Li, and X. Xue are with the School of Automation, Central
South University, Changsha 410083, China. (e-mail: ywang@csu.edu.cn;
ljpcsu@csu.edu.cn; 0909110918@csu.edu.cn).

B.-C. Wang is with the Department of Systems Engineering and Engi-
neering Management, City University of Hong Kong, Hong Kong. (e-mail:
bingcwang3-c@my.cityu.edu.hk).

As shown in (1), an equality constraint is relaxed by a positive
tolerance value δ. Subsequently, the degree of constraint
violation of ~x on all the constraints can be expressed as

G(~x) =

m∑
j=1

Gj(~x) (2)

A solution which satisfies G(~x) = 0 is called a feasible
solution; otherwise, it is called an infeasible solution. The
feasible solution with the smallest objective function value is
the feasible optimum of a COP. The target of solving a COP
is to locate the feasible optimum.

Because of their powerful search ability, evolutionary algo-
rithms (EAs) have attracted increasing attention for dealing
with COPs. When applying an EA for constrained optimiza-
tion, a constraint-handling technique should be integrated.
As a result, a variety of constraint-handling techniques has
been designed during the last two decades [1], [2], [3].
The current popular constraint-handling techniques can be
classified into four categories: 1) methods based on penalty
function [4], [5], [6], 2) methods based on treating constraints
and objective function separately [7], [8], [9], 3) methods
based on multiobjective optimization [10], [11], [12], and 4)
hybrid methods [13], [14], [15].

Methods based on penalty function employ a penalty factor
to control the use of f(~x) and G(~x). According to the manner
of setting the penalty factor, these methods can be divided
into three types: 1) static penalty methods, 2) dynamic penalty
methods, and 3) adaptive penalty methods. In the static penalty
methods, the penalty factor is set beforehand and kept the
same throughout the evolution. However, it is not a trivial
task to set a proper penalty factor in advance since it is
usually problem-dependent. In the dynamic penalty methods,
the penalty factor is varied with generation according to a
predefined trend function [6]. Though the dynamic penalty
methods achieve excellent performance on some COPs, the
need of predefining a trend function limits their ability to a
certain extent. In the adaptive penalty methods, the feedback
information from the evolving process is adopted to adjust the
penalty factor [16], [17]. Due to the utilization of feedback
information, this type of methods has a significant advantage
over the other two types of methods and most of the recent
work on penalty function falls into this scope [18], [19], [20].

Methods based on treating constraints and objective function
separately make use of f(~x) or G(~x) to compare solutions.
Among these methods, the feasibility rule [7] is the most

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 2

popular one in that it is free of the penalty factor and easy
to implement. When two solutions are compared based on the
feasibility rule, if both of them are infeasible, the one with
smaller G(~x) is preferred; if only one of them is feasible, the
feasible one is preferred; and if both of them are feasible,
the one with smaller f(~x) is preferred. However, the main
weakness of the feasibility rule is its preference to constraints.
Stochastic ranking is another representative [8]. When two
solutions are compared, the probability of comparing them
based on f(~x) or G(~x) is pf or (1 − pf), respectively.
Moreover, in order to increase the robustness, the bubble-
sort-like procedure is implemented. Due to the fact that it
can introduce the information of objective function, stochastic
ranking can remedy the weakness of the feasibility rule to
some degree. Similar to stochastic ranking, the ε constrained
method takes advantage of a parameter ε to control the use
of f(~x) [21], [22]. The ε constrained method [23] is also
integrated with the local search enhanced differential evolu-
tion (DE) for constrained optimization. In addition, a dual-
population mechanism is proposed in [24] to treat constraints
and objective function separately.

In methods based on multiobjective optimization, a COP
is transformed into a biobjective optimization problem
(f(~x), G(~x)), or a multiobjecitve optimization problem with
(m+1) objectives (f(~x), G1(~x), . . . , Gm(~x)). Afterward, mul-
tiobjective optimization techniques are adopted to tackle the
transformed problem [25]. In 2002, Mezura and Coello [26]
conducted comprehensive experiments on four methods based
on multiobjective optimization. The experimental results reveal
that methods based on Pareto dominance outperform other
methods [25], [27]. Hence, various Pareto dominance-based
methods have been proposed subsequently [10], [11], [12],
[28], [29]. Moreover, it is extensively recognized that the
biobjective transformation is more reasonable than the (m+1)-
objective transformation in this kind of methods.

According to the “no free lunch” theorem [30], there
does not exist a single constraint-handling technique that
can achieve the best performance on all kinds of COPs.
Consequently, numerous methods which hybridize different
constraint-handling techniques have been presented. For in-
stance, Peng et al. [13] proposed a novel dynamic weight-
based selection strategy. Moreover, this strategy is combined
with the feasibility rule. Datta et al. combined multiobjective
optimization with penalty function to solve COPs [31], [32],
[33]. An adaptive tradeoff model (ATM) is presented by Wang
et al. [15], [34]. In this model, the whole evolving process is
divided into three situations, i.e., infeasible situation, semi-
feasible situation, and feasible situation. In addition, different
constraint-handling techniques are designed in different situ-
ations. A ranking method, inspired by the idea of ATM, is
designed to improve the ability of DE to solve COPs [35].
It is noteworthy that the ensemble strategy is also proposed
to make use of the advantages of different constraint-handling
techniques [36].

It is well known that how to balance constraints and
objective function has a significant impact on the performance
of a constrained optimization EA (COEA). Unlike the previous
work, this paper proposes a new concept, i.e., the correlation

between constraints and objective function. Moreover, we
mine this correlation via a learning stage. Afterward, we
utilize this correlation via a weighted sum updating approach
and an archiving and replacement mechanism, and demon-
strate that this correlation can be effectively used to strike
the balance between constraints and objective function. By
mining and utilizing the correlation between constraints and
objective function, we propose an alternative COEA, named
CORCO. The main contributions of this paper are highlighted
as follows:
• This paper presents the first attempt to investigate the

correlation between constraints and objective function in
constrained evolutionary optimization.

• A learning stage is designed to mine the correlation
between constraints and objective function.

• A weighted sum updating approach and an archiving and
replacement mechanism are proposed to make use of the
correlation for constrained optimization.

• Systematic experiments have demonstrated that CORCO
provides state-of-the-art performance on three widely
used benchmark test suites and the gait optimization of
humanoid robots.

The rest of this paper is organized as follows. Section II
introduces the proposed method, including motivation, frame-
work, learning stage, evolving stage, and search algorithm
(i.e., base optimizer or core optimization algorithm). The
experiments and discussions are presented in Section III. Sec-
tion IV applies the proposed method to the gait optimization
of humanoid robots. Finally, Section V concludes this paper.

II. PROPOSED APPROACH

A. Motivation

When solving COPs by EAs, an important issue is how to
balance constraints (i.e., degree of constraint violation) and
objective function (i.e., improvement of objective function
value). Note, however, that it is hard to maintain such a balance
due to the fact that such a balance is not only dependent on
optimization problems, but also the phases of evolution. To
address this issue, a number of constraint-handling techniques
have been proposed as introduced in Section I. Among them,
methods based on penalty function try to balance constraints
and objective function by tuning the penalty factor, where
the fuzzy adaptive method is a popular one [20]. Methods
based on treating constraints and objective function separately
put different degree of emphasis on constraints and objective
function. Methods based on multiobjective optimization utilize
multiobjective optimization techniques to achieve the trade-
off between constraints and objective function. Additionally,
hybrid methods intend to combine the advantages of distinct
constraint-handling techniques to strike the balance between
constraints and objective function. However, all of these
methods have not yet mined and exploited the correlation
between constraints and objective function explicitly.

It is interesting to notice that there are two kinds of
relationships between constraints and objective function:
• The degree of constraint violation G(~x) decreases as the

objective function f(~x) decreases.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 3

Initialization

Comparison based on weighted

sum updating approach

After comparison, CI can be calculated
and utilized at the evolving stage

Learning

End

Evolving

Comparison based on objective

function value

Comparison based on the

feasibility rule

Comparison

DE

𝑃𝑡

𝑂𝑃𝑡

𝐴𝑡
𝐴𝑡+1

𝑃𝑡+1

DE

𝑃𝑡

𝑂𝑃𝑡

𝐴𝑡
𝐴𝑡+1

𝑃𝑡+1

Archiving and

replacement mechanism

Comparison based on the

feasibility rule

Fig. 1. Framework of CORCO.

• The degree of constraint violation G(~x) does not decrease
as the objective function f(~x) decreases.

In terms of the first kind of relationship, it is clear that
G(~x) and f(~x) have a similar variation tendency. As a result,
constraints are correlated to objective function. Under this
condition, the information of objective function may be very
helpful for the population to enter the feasible region, espe-
cially for COPs with extremely complex constraints. Note that
for COPs with extremely complex constraints, the landscape of
the infeasible region determined by constraints would be very
complicated. Under this condition, searching only guided by
constraints may make the population stagnate in the infeasible
region easily. Therefore, if the overall variation tendency of
objective function is similar to that of constraints and if the
landscape of objective function is simpler, the information of
objective function could help the population jump out of the
infeasible region.

In addition, with respect to the second kind of relationship,
it is obvious that G(~x) and f(~x) have different variation
tendencies; thus, constraints are not correlated to objective
function. Under this condition, too much information of ob-
jective function may prevent the population from entering the
feasible region. Hence, we need to suppress the information
of objective function and strengthen the information of con-
straints.

To sum up, the correlation between constraints and objective
function can provide an important guidance for the balance
of constraints and objective function, which is beneficial to
guide the population to find the feasible region. However, this
correlation is not discovered and utilized by existing COEAs.
So a new COEA, named CORCO, is designed in this paper
to address this issue.

B. CORCO

The framework of CORCO is given in Fig. 1. As shown in
Fig. 1, CORCO includes two main stages: the learning stage
and the evolving stage. The first stage is called the learning

Algorithm 1: Procedure of CORCO
1 t = 1;
2 Initialize P t = {~xt

1, . . . , ~x
t
NP };

3 Initialize At = {~at1, . . . ,~a
t
NP } = P t;

4 Set Ctr1 = 0 and Ctr2 = 0;
5 Calculate DI1 according to (3);
6 P t+1 = ∅ and OP t+1 = ∅;
7 /*The learning stage*/
8 while t ≤ LearnGen do
9 Implement the search algorithm in Algorithm 4 on P t to generate an

offspring population OP t = {~ut
1, . . . , ~u

t
NP };

10 for i = 1 : NP do
11 Compare ~ut

i and ~xt
i based on objective function value and the better

one denoted as ~xt+1
i is stored into P t+1;

12 Compare ~ut
i and ~ati based on the feasibility rule and the better one

denoted as ~at+1
i is stored into At+1;

13 Update Ctr1 and Ctr2;
14 t = t+ 1;

15 Calculate DILearnGen according to (4);
16 Calculate DV according to (5);
17 Calculate CI according to (6);
18 /*The evolving stage*/
19 while t > LearnGen && t ≤MaxGen do
20 Implement the search algorithm in Algorithm 4 on P t to generate an

offspring population OP t = {~ut
1, . . . , ~u

t
NP };

21 for i = 1 : NP do
22 Compare ~ut

i and ~xt
i based on the weighted sum updating approach in

Algorithm 2 and the better one denoted as ~xt+1
i is stored into P t+1;

23 Compare ~ut
i and ~ati based on the feasibility rule and the better one

denoted as ~at+1
i is stored into At+1;

24 t = t+ 1;
25 Implement the archiving and replacement mechanism in Algorithm 3;

26 Output: The best individual in P t.

stage because it is used to learn the correlation between
constraints and objective function. Subsequently, the evolving
stage utilizes the correlation to guide the evolution. Indeed, the
aim of the correlation is to decide how much information of
objective function is utilized to avoid a local optimum caused
by complex constraints. It can facilitate the population to enter
the feasible region. In this paper, we are more concerned about
the overall (global) variation tendencies of constraints and
objective function. Thus, we learn the correlation at the early
stage due to the fact that the population is distributed widely
and the overall trend can be caught. After learning, the rest of
computational resources are used for evolving.

At the learning stage, in order to mine the correlation, the
concept of correlation index (CI) is proposed. The bigger the
value of CI , the stronger the correlation between constraints
and objective function. Meanwhile, a method to calculate CI
is introduced.

At the evolving stage, two methods are designed. One is
called the weighted sum updating approach, where the fitness
value of an individual is the weighted sum of normalized G(~x)
and normalized f(~x), and CI is used to calculate the weight
coefficient. The other is called the archiving and replacement
mechanism, in which some individuals of the main population
are replaced with some individuals in a predefined archive,
and CI is used to control the condition of replacement.
Overall, the weighted sum updating approach and the archiv-
ing and replacement mechanism aim at balancing constraints
and objective function. Moreover, CI plays an important
role in both methods. Consequently, if CI is calculated and
utilized properly, the balance between constraints and objective

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 4

function can be achieved.
Algorithm 1 gives the procedure of CORCO. At the

beginning of CORCO, two populations will be initialized,
namely, the main population P t = {~xt1, . . . , ~xtNP } and the
archive At = {~at1, . . . ,~atNP }, where t ∈ {1, . . . ,MaxGen}
is the current generation number, MaxGen is the maximum
generation number, NP is the population size, and the initial
archive is the same with the initial main population, that is,
A1 = P 1. After initialization, the diversity index of the initial
population is calculated as

DI1 =
1

D

D∑
i=1

std(x11,i, . . . , x
1
NP,i)

Ui − Li
(3)

where “std” is a function to calculate the standard deviation of
the members in a vector. Subsequently, the learning stage of
CORCO begins. At the end of the learning stage, the diversity
index of P t is calculated again as

DILearnGen =
1

D

D∑
i=1

std(xLearnGen1,i , . . . , xLearnGenNP,i)

Ui − Li
(4)

where LearnGen is the maximum generation number of the
learning stage. Afterward, two values will be calculated with
the information acquired from the learning stage. One is CI ,
and the other is the diversity variation (DV) of P t

DV = DI1 −DILearnGen (5)

Then, the evolving stage of CORCO begins. During the
evolving stage, the weighted sum updating approach is used
to update P t, while the feasibility rule [7] is used to update At.
In addition, to accelerate the convergence, the archiving and
replacement mechanism is implemented. When t =MaxGen,
the iteration ends.

C. Learning Stage

The main purpose of the learning stage is to calculate CI .
At the beginning of the learning stage, two counters are ini-
tialized, namely Ctr1 = 0 and Ctr2 = 0. In each generation
of the learning stage, P t generates an offspring population
OP t by the search algorithm, which will be introduced in
Section II-E. Afterward, each individual in OP t is compared
with the corresponding individual in P t based on the objective
function value, and the one with a smaller objective function
value will survive into P t+1. Meanwhile, each individual in
OP t is compared with the corresponding individual in At

based on the feasibility rule, and the one with smaller degree of
constraint violation will be stored into At+1. After the above
processes, we verify two conditions:
• Condition 1: If min

i=1,...,NP
f(~at+1

i) <

max
i=1,...,NP

f(~xt+1
i), then Ctr1 = Ctr1 + 1.

• Condition 2: If min
i=1,...,NP

G(~xt+1
i) ≤

max
i=1,...,NP

G(~at+1
i), then Ctr2 = Ctr2 + 1.

At the end of the learning stage (i.e., after LearnGen gener-
ations), CI is calculated as follows

CI =
min(Ctr1, Ctr2)

LearnGen
(6)

Next, we explain why CI calculated in this way can reflect
the correlation between constraints and objective function.
According to the comparison manners between OP t and P t

and between OP t and At, in general, P t+1 is composed
of solutions with relatively smaller objective function values,
while At+1 is composed of solutions with relatively smaller
degree of constraint violation. Once condition 1 is satisfied, it
means that At+1, which is guided by the degree of constraint
violation, can generate a solution with a smaller objective
function value, then the value of Ctr1 is increased by one.
Similarly, once condition 2 is satisfied, it means that P t+1,
which is guided by the objective function value, can generate
a solution with smaller degree of constraint violation, then the
value of Ctr2 is increased by one. When the learning stage
ends, a bigger value of CI means that the objective function
value and the degree of constraint violation have a more
similar variation tendency in many generations. Therefore, we
believe that the correlation between constraints and objective
function is stronger, and vice versa.

Remark 1: As we know, most of the standard correlation
analyses are derived under certain assumptions [37]. For exam-
ple, Pearson’s correlation coefficient is effective on time series
obeying normal distribution. However, the objective function
value series and the degree of constraint violation series of a
COP may not satisfy these assumptions. Additionally, when
calculating CI , most of the standard correlation analyses
should store all values of a series. Compared with the standard
correlation analyses, the proposed method does not impose any
assumptions on two series, which would be more effective on
different problems. Moreover, the proposed method calculates
CI without storing all values, which can save much storage
space. The advantage of the proposed method over Pearson’s
correlation coefficient has been verified in the experimental
study.

D. Evolving Stage

The evolving stage aims at utilizing CI and DV obtained
from the learning stage to guide the evolution. Two methods
are designed, i.e., the weighted sum updating approach and
the archiving and replacement mechanism.

1) Weighted Sum Updating Approach: This approach de-
fines the following fitness value for each individual ~xti in P t:

Fωt
i
(~xti) = ωti ∗ f̃(~xti) + (1− ωti) ∗ G̃(~xti) (7)

f̃(~xti) =
f(~xti)− f tmin
f tmax − f tmin

(8)

G̃(~xti) =
G(~xti)−Gtmin
Gtmax −Gtmin

(9)

where f̃(~xti) and G̃(~xti) are the normalized objective function
value and the normalized degree of constraint violation, re-
spectively, f tmin and f tmax are the minimum and maximum
objective function values of P t ∪ OP t, respectively, and
Gtmin and Gtmax are the minimum and maximum degree of

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 5

0 1000 2000 3000 4000 5000

t

0

0.5

1
lb(t)
ub(t)

Fig. 2. Variation of [lb(t), ub(t)] with respect to the generation number.

0 1000 2000 3000 4000 5000

t

0

0.5

1
lb(t)
ub(t)

(a) CI = 0.2

0 1000 2000 3000 4000 5000

t

0

0.5

1
lb(t)
ub(t)

(b) CI = 0.6

Fig. 3. Principle of CI (MaxGen = 5000 and DV = 0.2).

[lb(t), ub(t)]

(a) DV = 0.1

[lb(t), ub(t)]

(b) DV = 0.3

Fig. 4. Principle of DV (MaxGen = 5000 and CI = 0.4).

constraint violation of P t ∪OP t, respectively. ωti , calculated
by (10), is the weight coefficient of f̃(~xti).

ωti = lb(t) +
i

NP
(ub(t)− lb(t)), i = 1, . . . , NP (10)

Accordingly, (1 − ωti) is the weight coefficient of G̃(~xti). It
is necessary to note that when computing the fitness value
of each individual ~uti in OP t, the objective function value
and the degree of constraint violation of ~uti should also be
normalized based on (8) and (9). Moreover, ~xti and ~uti have
the same weight ωti .

At generation t, ~xti and ~uti have their own ωti , so we have
NP weights: {ωt1, . . . , ωtNP }. These NP weights are uni-
formly distributed in an interval defined by [lb(t), ub(t)], and
lb(t) and ub(t) are controlled by (11) and (12), respectively.

lb(t) =
1

1 + eα(t/MaxGen−CI) (11)

ub(t) =
1

1 + eα(t/MaxGen−CI−DV)
(12)

where α is a paramter to control the shapes of lb(t) and
ub(t), and is set to 25. The reasons for selecting the sigmoid

function in (11) and (12) are threefold. First, the sigmoid
function is widely utilized in the community of evolutionary
computation [38]. Additionally, the decreasing trend of a
sigmoid function can be controlled by a value between 0 and
1. In this manner, CI and DV can be incorporated into it
naturally. More importantly, when lb and ub are set according
to (11) and (12), we can guarantee that ub is bigger than lb.
For the sake of illustration, let MaxGen = 5000, CI=0.4,
and DV =0.2, the variation of [lb(t), ub(t)] with respect to the
generation number is presented in Fig. 2.

From (10)-(12), we can give the following comments:
• Feature 1: lb(t) and ub(t) are sigmoid curves and

decrease as t increases. Under this condition, the informa-
tion of objective function can be utilized to some extent,
which is beneficial to tackle COPs with disjoint feasible
regions or equality constraints [39].

• Feature 2: CI controls the generation at which the
weights begin to decrease. Fig. 3 gives an example, in
which MaxGen = 5000 and DV = 0.2. As shown in
Fig. 3, the bigger the value of CI , the later the decrease
of weights.

• Feature 3: DV controls the decrease speed of ub(t),
and thus controls the decrease speed of the range of
[lb(t), ub(t)]. Fig. 4 gives an example, where MaxGen =
5000 and CI = 0.4. The four black line segments in
Fig. 4 depict the ranges defined by [lb(t), ub(t)] when
t = 1500, 2000, 2500, and 3000, respectively. As can be
seen from Fig. 4, the bigger the value of DV , the slower
the decrease of the range of [lb(t), ub(t)].

The rationale of CI and DV is discussed in the following.
• The rationale of CI: The bigger the value of CI , the

stronger the correlation between constraints and objec-
tive function. Under this condition, more information of
objective function should be utilized especially for some
COPs with extremely complex constraints as pointed
out in Section II-A. Therefore, the weight coefficient
of objective function should decrease later, which is
consistent with the conclusion in Feature 2 and Fig. 3.

• The rationale of DV: The bigger the value of DV , the
more the diversity of P t has been lost at the learning
stage. Hence, to increase the diversity, the weight of each
individual should be distributed in a wider range. As
a result, the decrease of the weight range [lb(t), ub(t)]
should be slower, which is consistent with the conclusion
in Feature 3 and Fig. 4. One may be interested in why
a wider range of weights is beneficial to the diversity
of population. The reason should be attributed into the
search algorithm in this paper, where the offspring are
generated by DE [40]. One of the DE operators in this
paper is DE/rand-to-best/1/bin, where the best individual
is selected based on the weighted sum updating approach.
A wider distribution of weights implies that DE/rand-to-
best/1/bin will search in a bigger area, so the diversity
can be maintained.

Based on the above discussion, CI and DV have the
capability to adapt the weights. Algorithm 2 describes the
weighted sum updating approach.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 6

Algorithm 2: Weighted Sum Updating Approach
1 Calculate F (~xt

i) and F (~ut
i) via (7)-(12);

2 if F (~ut
i) < F (~xt

i) then
3 ~xt+1

i = ~ut
i ;

4 else
5 ~xt+1

i = ~xt
i ;

Algorithm 3: Archiving and Replacement Mechanism
1 if rand < (1− CI) then
2 r = argmax

i=1,...,NP
(G(~xt

i));

3 ~xt
r = ~atr ;

4 Calculate feasRate of P t;
5 if feasRate == 0 && rand < µ then
6 P t = At;

2) Archiving and Replacement Mechanism: At the learning
stage, P t is updated based on objective function value. In
addition, at the early evolving stage, the values of weights
are relatively larger according to the characteristics of (10)-
(12), and thus the updating of P t depends largely on objective
function. Therefore, a great deal of objective function infor-
mation is exploited in P t during the learning stage and early
evolving stage. It is necessary to note that if the correlation
between constraints and objective function is weak, too much
information of objective function will have a negative effect
on the balance between constraints and objective function in
P t. Moreover, under this condition, too much information of
objective function may result in the premature convergence of
P t in the infeasible region. To remedy this issue, an archiving
and replacement mechanism is proposed.

The main idea is to use some promising individuals in
At, the updating of which is based mainly on constraints,
to replace some low-quality individuals in P t. As shown
in Algorithm 3, the replacement contains two parts and is
controlled by two factors, i.e., the percentage of feasible
solutions in P t (feasRate) and CI .
• Part I: The individual with the maximum degree of

constraint violation in P t is replaced with the individual
with the same index in At according to the probability
(1− CI).

• Part II: Under the condition of part I, if the feasible rate
of P t is 0, then P t is replaced with At according to a
small probability, that is, µ.

The reason for the above replacement is not difficult to
understand. First of all, a smaller CI reflects the weaker corre-
lation between constraints and objective function. As pointed
out in Section II-A, under this condition, more information of
constraints should be used to guide the population toward the
feasible region. Hence, if rand < (1− CI) where rand is a
uniformly distributed random number between 0 and 1, part
I is implemented to introduce the information of constraints
by replacing the worst individual in terms of the degree of
constraint violation in P t. Moreover, the smaller the value of
CI , the higher the probability of replacement. In addition, if
the feasible rate of P t is equal to zero, which means that more
information of constraints is required, then all the individuals

in P t will be replaced with those in At with the probability
µ, which is set to 0.01 in this paper.

In fact, in the weighted sum updating approach, more
information of objective function will be utilized at the early
stage. Subsequently, through the archiving and replacement
mechanism, the information of constraints can be utilized to
some extent. Hence, combining the weighted sum updating
approach with the archiving and replacement mechanism can
be considered as an adaptive relaxation method which is con-
trolled by CI . In this manner, the balance between constraints
and objective function can be achieved.

E. Search Algorithm

In addition to constraint-handling technique, search al-
gorithm is another vital element of a COEA. In general,
a good search algorithm is expected to achieve both the
tradeoff between diversity and convergence and the tradeoff
between constraints and objective function. In CORCO, two
DE operators, which have been employed to solve COPs
successfully [39], [41], are combined to satisfy these two
tradeoffs. Their formulations are given as follows. For more
details of DE, please refer to two survey papers [42], [43].
• DE/current-to-rand/1

~uti = ~xti + rand · (~xtr1 − ~x
t
i) + F · (~xtr2 − ~x

t
r3) (13)

• DE/rand-to-best/1/bin

~vti = ~xtr1 + rand · (~xtbest − ~xtr1) + F · (~xtr2 − ~x
t
r3) (14)

ui,j =

{
vi,j , if randj < CR or j = jrand

xi,j , otherwise
, j = 1, . . . , D

(15)
where i = 1, . . . , NP , ~vti and ~uti are the ith mutant vector
and the ith trial vector, respectively, xti,j , v

t
i,j and uti,j

are the jth dimension of ~xti, ~v
t
i , and ~uti, respectively, ~xtr1 ,

~xtr2 , and ~xtr3 are mutually different individuals randomly
selected from P t, ~xtbest is the best individual in P t for ~xti,
F is the scaling factor, CR is the crossover control pa-
rameter, randj is a uniformly distributed random number
between 0 and 1, and jrand is a random integer selected
from {1, . . . , D}.

In (13), ~xi learns the information of a randomly select-
ed individual ~xr1 , thus enhancing the diversity. In contrast,
in (14), the information of the best individual is employed,
hence promoting the convergence. Although many adaptive
methods [44] based on success history have been presented,
in this paper these two operators are executed in a random
manner. Specifically, each of them is selected with the same
probability, i.e., ps = 0.5. The reasons are the following.
First, this manner is simple and its effectiveness has been
validated in [39]. Additionally, designing an adaptive strategy
is nontrivial.

In order to achieve the tradeoff between constraints and
objective function, the best individual in (14) is chosen based
on the weighted sum updating approach. To be specific, for
the ith individual in the population, the best individual is the
individual with the smallest fitness value in (7) with ωti . It

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 7

Algorithm 4: Search Algorithm
1 OP t = ∅;
2 if t ≤ LearnGen then
3 best = argmin

j=1,...,NP
f(~xt

j);

4 for i = 1 : NP do
5 Randomly select a F value from the pool {0.6, 0.8, 1.0};
6 Randomly select a CR value from the pool {0.1, 0.2, 1.0};
7 if rand < ps then
8 Select ~xt

r1
, ~xt

r2
, and ~xt

r3
from P t;

9 Generate ~ut
i according to (13);

10 else
11 if t > LearnGen then
12 best = argmin

j=1,...,NP
Fωt

i
(~xt

j);

13 Select ~xt
best, ~xt

r1
, ~xt

r2
, and ~xt

r3
from P t;

14 Generate ~ut
i according to (14) and (15);

15 OP t = OP t ∪ ~ut
i ;

should be noted that, at the learning stage, the best solution
is selected according to objective function value to mine CI
which is critical to calculate the weights.

Overall, the proposed search algorithm, described in Al-
gorithm 4, can balance not only diversity and convergence
but also constraints and objective function. It is necessary to
point out that the search algorithm in this paper is similar to
that of FROFI [39]. The main difference between them is the
selection of the best individual. In FROFI, the best individual
is selected according to objective function value. However, in
CORCO, the best individual is selected based on the weighted
sum updating approach.

F. Computational Time Complexity

At the learning stage, the computational time complexity
of the search algorithm is O(NP), and the computational
time complexity of updating the archive and the population
is O(NP). The calculation of DILearnGen, DV , and CI
has a computational time complexity of O(NP). In addition,
the computational time complexity of the evolving stage
is O(NP 2), which is dominated by the search algorithm.
In summary, the overall computational time complexity of
CORCO is O(NP 2).

III. EXPERIMENTAL STUDY

A. Proof-of-Principle Results

1) Significance of the Correlation Index: First of all, two
test functions (C09 with 10D from IEEE CEC2010 and g11
from IEEE CEC2006) were used to investigate the effec-
tiveness of the correlation between constraints and objective
function proposed in this paper.

C09 minimize : f(~x) =
∑D−1
i=1 (100(z2i − zi+1)

2 + (zi −
1)2)

subject to : h(~x) =
∑D
i=1(yisin(

√
|yi|)) = 0

where ~z = ~x+ 1− ~o, ~y = ~x− ~o, ~x ∈ [−500, 500]D, and ~o is
a shifted vector.

g11 minimize : f(~x) = x21 + (x2 − 1)2

subject to : h(~x) = x2 − x21 = 0
where ~x ∈ [−1, 1]2.

0 500 1000 1500 2000 2500 3000 3500

1E-15

1E-10

1E-05

1E+00

CORCO
OBJ
FR

Fig. 5. Evolution of the minimum degree of constraint violation on C09
with 10D from IEEE CEC2010.

-1
-1

-1

-0.5

-0.5

-0
.5

0

0

00.5 0.5

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

(a) Constraint

0.5

0.5

1

1

1

1.5

1.5
2

2
2.5

2.5

3
3

3.5
3.5
4

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

(b) Objective function

Fig. 6. Contours of g11 from IEEE CEC2006.

0 1000 2000 3000 4000 5000

1E-15

1E-10

1E-05

1E+00

CORCO
OBJ
FR

Fig. 7. Evolution of the minimum degree of constraint violation on g11 from
IEEE CEC2006.

C09 includes a complex nonlinear equality constraint; there-
fore, it is difficult to find feasible solutions. We run CORCO
on this test function. After the learning stage of CORCO,
we found that CI = 1, which indicates that the correlation
between constraints and objective function is very strong.
According to the previous analysis in Section II-A, under this
condition, if the comparison among individuals is based only
on constraints, an algorithm might not find any feasible solu-
tions. On the contrary, the information of objective function
may be beneficial to find feasible solutions. To verify this,
we designed two additional algorithms, called FR and OBJ.
In FR, we combined the search algorithm in Section II-E
with the feasibility rule [7]. In addition, OBJ also involves
the search algorithm in Section II-E, while the comparison
among individuals is based on objective function value. Note
that in FR and OBJ, the best individual is chosen based on the
feasibility rule and objective function value, respectively. The
evolution of the minimum degree of constraint violation of
FR, OBJ, and CORCO is described in Fig. 5. For the sake of
visualization, we added a very small real number (i.e., 10−15)
into the minimum degree of constraint violation. As shown
in Fig. 5, FR fails to find any feasible solution in the end.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 8

Fig. 8. Evolution of CORCO over a typical run on ATF1.

Fig. 9. Evolution of CORCO over a typical run on ATF2.

Fig. 10. Evolution of CORCO over a typical run on ATF3.

It is interesting to see that after about 700 generations, the
minimum degree of constraint violation in OBJ is equal to
zero, which confirms our analysis in Section II-A. Due to the
fact that CORCO also exploits the information of objective
function, similar to OBJ, CORCO is able to attain feasible
solutions at the early stage of evolution. Moreover, the best
solution achieved by CORCO is ~o, which is a Karush-Kuhn-
Tucker (KKT) point.

g11 has a relatively simple constraint. As a result, it is
easy to find feasible solutions for g11. Similarly, we run
CORCO on this test function and found that CI = 0, which
signifies that the correlation between constraints and objective
function is weak. In addition, Fig. 6 gives the contours of
constraint and objective function of g11. As shown in Fig. 6,
with the decrease of x2, the degree of constraint violation
decreases while the objective function value increases, which
again means a weak correlation between constraint and ob-
jective function of g11. According to the previous analysis in
Section II-A, under this condition, too much information of
objective function may prevent the population from entering
the feasible region. However, the information of constraints
is essential for the population to enter the feasible region.
Similarly, the evolution of the minimum degree of constraint
violation of FR, OBJ, and CORCO on g11 is described in
Fig. 7. From Fig. 7, OBJ cannot find any feasible solution.
In contrast, feasible solutions can be easily found by FR,
which is consistent with our analysis. Besides, because the
weight coefficient in the weighted sum updating approach is
large for the degree of constraint violation, CORCO is capable
of finding feasible solutions after about 1200 generations.
The experimental results are in line with the above analysis.

TABLE I
MAXIMUM NUMBER OF FUNCTION EVALUATIONS MaxFEs AND

POPULATION SIZE NP

Test Functions MaxFEs NP
24 test functions from IEEE CEC2006 5.0E+05 100

18 test functions with 10D from IEEE CEC2010 2.0E+05 60
18 test functions with 30D from IEEE CEC2010 6.0E+05 100
28 test functions with 50D from IEEE CEC2017 1.0E+06 100

28 test functions with 100D from IEEE CEC2017 2.0E+06 100

Moreover, the best solution provided by CORCO is (0.707,
0.500), which is a KKT point indeed.

The above experimental results reveal that the information
derived from constraints and objective function has different
effects on the balance of constraints and objective function
when solving different COPs. Meanwhile, CI calculated by
the learning stage of CORCO can reflect the correlation
between constraints and objective function of a COP; thus,
it can help to achieve the balance between constraints and
objective function.

2) Capability to Solve Challenging COPs: As we know,
COPs with disjoint feasible regions, equality constraints, or
the optimum located on the boundary between feasible and
infeasible regions are challenging. To ascertain the perfor-
mance of CORCO on these three kinds of COPs, three artificial
test functions (ATFs) designed in [39] were adopted. To be
specific, ATF1 involves an equality constraint, ATF2 has two
disjoint feasible regions, and the optimum of ATF3 is located
on the boundary between feasible and infeasible regions. When
these three test functions are solved, the population size NP
and the maximum number of function evaluations MaxFEs
were set to 40 and 40000, respectively. Additionally, other pa-
rameter settings were kept unchanged which will be specified
in Section III-B.

As shown in Fig. 8, CORCO has the capability to approach
the feasible region from both sides. As shown in Fig. 9,
CORCO can locate two disjoint feasible regions and find the
optimum finally. As shown in Fig. 10, CORCO is able to probe
the area around the boundary between feasible and infeasible
regions. Hence, it can locate the optimum on the boundary.
Overall, CORCO is capable of solving the above-mentioned
three kinds of challenging COPs.

B. Benchmark Test Functions and Parameter Settings

In order to systematically validate the effectiveness of
CORCO, three sets of benchmark test functions were em-
ployed to compare CORCO with other state-of-the-art COEAs.
These test functions include 24 test functions from IEEE
CEC2006 [45], 18 test functions with 10D and 30D from IEEE
CEC2010 [46], and 28 test functions with 50D and 100D from
IEEE CEC2017 [47]. They cover various tough properties such
as strong nonlinearity, multi-modality, extremely small feasible
region, and rotated landscape.

In the experimental study, the population size NP and the
maximum number of function evaluations MaxFEs, which
includes the function evaluations consumed at the learning and
evolving stages, were given in Table I. 25 independent runs
were performed on each test function and the tolerance value

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 9

TABLE II
EXPERIMENTAL RESULTS OF CORCO AND FOUR OTHER SELECTED METHODS OVER 25 INDEPENDENT RUNS ON THE 22 TEST FUNCTIONS FROM IEEE

CEC2006

IEEE CEC2006 NSES
Mean OFV±Std Dev

AIS-IRP
Mean OFV±Std Dev

FROFI
Mean OFV±Std Dev

APF-GA
Mean OFV±Std Dev

CORCO
Mean OFV±Std Dev

g01 -1.5000E+01±4.20E-30* -1.5000E+01±0.00E+00* -1.5000E+01±0.00E+00* -1.5000E+01±0.00E+00* -1.5000E+01±0.00E+00*
g02 -8.0362E-01±2.41E-32* -8.0219E-01±5.19E-10 -8.0362E-01±1.78E-07* -8.0352E-01±1.00E-04 -8.0362E-01±7.01E-09*
g03 -1.0005E+00±5.44E-19* -1.0005E+00±1.77E-11* -1.0005E+00±4.49E-16* -1.0004E+00±0.00E+00 -1.0005E+00±5.32E-15*
g04 -3.0666E+04±2.22E-24* -3.066553E+04±3.69E-13* -3.066553E+04±3.71E-12* -3.066553E+04±1.00E-04* -3.066553E+04±3.71E-12*
g05 5.1265E+03±0.00E+00* 5.1264981E+03±1.70E-02 5.1264967E+03±2.78E-12* 5.12754E+03±1.43E+00 5.1265E+03±3.00E-15*
g06 -6.9618E+03±0.00E+00* -6.961813E+03±1.90E-12* -6.961813E+03±0.00E+00* -6.961813E+03±0.00E+00* -6.961813E+03±0.00E+00*
g07 2.4306E+01±7.37E-09* 2.435572E+01±8.20E-03 2.430621E+01±6.32E-15* 2.430621E+01±0.00E+00* 2.4306E+01±8.00E-15*
g08 -9.5825E+02±2.01E-34* -9.5825E+02±0.00E+00* -9.5825E+02±1.42E-17* -9.5825E+02±0.00E+00* -9.5825E+02±1.42E-17*
g09 6.8063E+02±1.100E-25* 6.80650308E+02±1.20E-08 6.8063006E+02±3.64E-13* 6.8063006E+02±0.00E+00* 6.8063006E+02±3.00E-13*
g10 7.0492480E+03±2.07E-24* 7.049570318E+03±4.50E-04 7.0492480E+03±3.26E-12* 7.077682E+03±5.12E+01 7.0492480E+03±2.21E-08*
g11 7.499E-01±0.00E+00* 7.499E-01±1.40E-08* 7.499E-01±1.13E-16* 7.499E-01±0.00E+00* 7.499E-01±0.00E+00*
g12 -1.00E+00±0.00E+00* -1.00E+00±0.00E+00* -1.00E+00±0.00E+00* -1.00E+00±0.00E+00* -1.00E+00±0.00E+00*
g13 5.3942E-02±1.98E-34* 5.3942E-02±7.80E-10* 5.3942E-02±2.41E-17* 5.4042E-02±0.00E+00 5.3942E-02±3.28E-17*
g14 -4.776489E+01±0.00E+00* -4.776489E+01±1.00E-12* -4.776489E+01±2.34E-14* -4.776489E+01±1.00E-04* -4.776489E+01±2.30E-14*
g15 9.617150E+02±0.00E+00* 9.617150E+02±0.00E+00* 9.617150E+02±5.80E-13* 9.617150E+02±0.00E+00* 9.617150E+02±0.00E+00*
g16 -1.90516E+00±2.62E-30* -1.90516E+00±0.00E+00* -1.90516E+00±4.53E-16* -1.90510E+00±0.00E+00* -1.90516E+00±5.80E-13*
g17 8.853533E+03±2.51E-23* 8.853533E+03±1.90E-09* 8.853533E+03±0.00E+00* 8.888481E+03±2.90E+01 8.853533E+03±1.24E-12*
g18 -8.66025E-01±4.62E-33* -8.66025E-01±1.30E-15* -8.66025E-01±6.94E-16* -8.65925E-01±0.00E+00 -8.66025E-01±2.00E-15 *
g19 3.265559E+01±1.52E-05* 3.265559E+01±0.00E+00* 3.265559E+01±2.18E-14* 3.265559E+01±0.00E+00* 3.265559E+01±2.10E-14*
g21 1.937245E+02±1.62E-22* 1.9672451E+02±1.10E+00 1.937245E+02±2.95E-11* 1.99516E+02±2.35E+00 1.937245E+02±3.77E-08*
g23 -4.000551E+02±9.08E-26* -3.9987432E+02±2.00E+00 -4.000551E+02±1.71E-13* -3.947627E+02±3.87E+00 -4.000551E+02±2.28E-11*
g24 -5.50801E+00±0.00E+00* -5.50801E+00±0.00E+00* -5.50801E+00±9.06E-16* -5.50801E+00±0.00E+00* -5.50801E+00±0.00E+00*
* 22 15 22 13 22

TABLE III
EXPERIMENTAL RESULTS OF CORCO AND FIVE OTHER SELECTED METHODS OVER 25 INDEPENDENT RUNS ON THE 18 TEST FUNCTIONS WITH 10D

FROM IEEE CEC2010

IEEE CEC2010 with 10D AIS-IRP
Mean OFV±Std Dev

εDEag
Mean OFV±Std Dev

DE-AOPS
Mean OFV±Std Dev

FROFI
Mean OFV±Std Dev

ECHT-DE
Mean OFV±Std Dev

CORCO
Mean OFV±Std Dev

C01 -7.47E-01±1.30E-03≈ -7.47E-01±1.32E-03≈ -7.47E-01±2.82E-16≈ -7.47E-01±1.35E-03≈ -7.47E-01±1.40E-03≈ -7.47E-01±2.87E-03
C02 -2.27E+00±2.00E-03+ -2.26E+00±2.39E-02+ -1.87E+00±4.90E-01− -2.02E+00±1.41E-01− -2.27E+00±6.70E-03+ -2.21E+00±6.88E-02
C03 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C04 -9.97E-06±4.28E-03− -9.92E-06±1.55E-07− -1.00E-05±0.00E+00≈ -1.00E-05±0.00E+00≈ -1.00E-05±0.00E+00≈ -1.00E-05±0.00E+00
C05 -4.80E+02±6.30E+00− -4.84E+02±3.89E-13≈ -4.84E+02±3.48E-13≈ -4.84E+02±8.09E-07≈ -4.11E+02±7.63E+01− -4.84E+02±3.00E-13
C06 -5.80E+02±7.30E-08+ -5.79E+02±3.63E-03≈ -5.79E+02±1.41E-13≈ -5.79E+02±5.04E-04≈ -5.62E+02±4.51E+01− -5.79E+02±4.82E-10
C07 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 1.33E-01±7.28E-01− 0.00E+00±0.00E+00
C08 4.09E+00±1.46E+00+ 6.73E+00±5.56E+00− 6.59E+00±5.12E+00− 7.11E+00±4.79E+00− 6.16E+00±6.45E+00− 5.27E+00±5.26E+00
C09 2.70E+01±7.50E+01− 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 2.50E+01±3.92E+01− 1.47E-01±8.05E-01− 0.00E+00±0.00E+00
C10 1.62E+03±5.00E+02− 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 4.17E+01±8.69E-06− 1.71E+00±7.66E+00− 0.00E+00±0.00E+00
C11 -9.20E-04±8.23E-04− -1.52E-03±6.34E-11≈ -1.52E-03±7.80E-18≈ -1.52E-03±5.63E-14≈ -4.40E-03±1.57E-02∇− -1.52E-03±4.32E-14
C12 -4.36E+02±6.02E+01+ -3.37E+02±1.78E+02+ -6.73E+01±1.14E+02− -3.84E+02±2.17E+02+ -1.72E+02±2.21E+02∇− -1.14E+02±2.54E+02
C13 -6.79E+01±3.11E-01− -6.84E+01±1.03E-06≈ -6.84E+01±2.63E-14≈ -6.84E+01±2.52E-09≈ -6.51E+01±2.38E+00− -6.84E+01±2.90E-14
C14 1.22E-04±2.90E-08− 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 7.02E+05±3.19E+06− 0.00E+00±0.00E+00
C15 0.00E+00±0.00E+00≈ 1.80E-01±8.81E-01− 0.00E+00±0.00E+00≈ 3.09E+00±1.37E+00− 2.34E+13±5.30E+13− 0.00E+00±0.00E+00
C16 0.00E+00±0.00E+00≈ 3.70E-01±3.71E-01− 0.00E+00±0.00E+00≈ 1.19E-02±2.07E-02− 3.93E-02±4.28E-02− 0.00E+00±0.00E+00
C17 2.93E+00±2.29E+00− 1.25E-01±1.94E-01− 0.00E+00±0.00E+00≈ 7.83E-02±2.25E-01− 1.12E-01±3.32E-01− 0.00E+00±0.00E+00
C18 1.66E+00±1.27E+00− 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
− 9 5 3 7 13 /
+ 4 2 0 1 1 /
≈ 5 11 15 10 4 /

TABLE IV
STATISTICAL TEST RESULTS OF CORCO AND FIVE OTHER SELECTED
METHODS BY THE MULTIPLE-PROBLEM WILCOXON’S SIGNED RANK
TEST ON THE 18 TEST FUNCTIONS WITH 10D FROM IEEE CEC2010

CORCO VS R+ R− p-value α=0.1 α=0.05
AIS-IRP 120.0 33.0 3.95E-02 Yes Yes
εDEag 106.5 64.5 ≥ 0.2 No No

DE-APOS 118.5 52.5 1.61E-01 No No
FROFI 112.0 41.0 9.83E-02 Yes No

ECHT-DE 151.0 20.0 2.80E-03 Yes Yes

δ in (1) was set to 0.0001. Note that the settings of MaxFEs,
number of runs, and δ were in accordance with the suggestions
in [45], [46], and [47], and they were the same for all
compared algorithms. In addition, LearnGen in CORCO was
set to bMaxGen/20c, where MaxGen = bMaxFEs/NP c.

TABLE V
RANKING OF CORCO AND FIVE OTHER SELECTED METHODS BY THE

FRIEDMAN’S TEST ON THE 18 TEST FUNCTIONS WITH 10D FROM IEEE
CEC2010

Algorithm Ranking
CORCO 2.7778

DE-APOS 3.1111
εDEag 3.3611
FROFI 3.5

AIS-IRP 3.8333
ECHT-DE 4.4167

C. Experiments on the 24 Benchmark Test Functions from
IEEE CEC2006

Firstly, the performance of CORCO was compared with that
of four excellent COEAs on the 24 test functions from IEEE

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 10

TABLE VI
EXPERIMENTAL RESULTS OF CORCO AND FIVE OTHER SELECTED METHODS OVER 25 INDEPENDENT RUNS ON THE 18 TEST FUNCTIONS WITH 30D

FROM IEEE CEC2010

IEEE CEC2010 with 30D AIS-IRP
Mean OFV±Std Dev

εDEag
Mean OFV±Std Dev

DE-AOPS
Mean OFV±Std Dev

FROFI
Mean OFV±Std Dev

ECHT-DE
Mean OFV±Std Dev

CORCO
Mean OFV±Std Dev

C01 -8.20E-01±3.25E-04− -8.21E-01±7.10E-04≈ -8.22E-01±8.64E-04≈ -8.21E-01±2.36E-03≈ -8.00E-01±1.79E-02− -8.21E-01±2.98E-03
C02 -2.21E+00±2.84E-03+ -2.15E+00±1.20E-02≈ -1.94E+00±2.70E-01− -2.00E+00±4.35E-02− -1.99E+00±2.10E-01− -2.13E+00±1.22E-01
C03 6.68E+01±4.26E+02− 2.88E+01±8.05E-01− 0.00E+00±0.00E+00≈ 2.87E+01±6.24E-08− 9.89E+01±6.26E+01− 0.00E+00±0.00E+00
C04 1.98E-03±1.61E-03− 8.16E-03±3.07E-03− -3.33E-06±7.20E-14≈ -3.33E-06±4.13E-10≈ -1.03E-06±9.01E-03− -3.33E-06±4.00E-03
C05 -4.36E+02±2.51E+01− -4.50E+02±2.90E+00− -4.84E+02±7.07E-12≈ -4.81E+02±2.84E+00− -1.06E+02±1.67E+02− -4.84E+02±5.56E-04
C06 -4.54E+02±4.79E+01− -5.28E+02±4.75E-01− -5.31E+02±3.23E-11≈ -5.29E+02±5.71E-01≈ -1.38E+02±9.89E+01− -5.30E+02±8.12E-03
C07 1.07E+00±1.61E+00− 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 1.33E-01±7.28E-01− 0.00E+00±0.00E+00
C08 1.65E+00±6.41E-01− 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 3.36E+01±1.11E+02− 0.00E+00±0.00E+00
C09 1.57E+00±1.96E+00− 1.07E+01±2.82E+01− 0.00E+00±0.00E+00≈ 4.30E+01±3.27E+01− 4.24E+01±1.38E+02− 0.00E+00±0.00E+00
C10 1.78E+01±1.88E+01− 3.33E+01±4.55E-01− 0.00E+00±0.00E+00≈ 3.13E+01±8.22E-02− 5.34E+01±8.83E+01− 0.00E+00±0.00E+00
C11 -1.58E-04±4.67E-05− -2.86E-04±2.71E-05− -3.92E-04±1.20E-10≈ -3.92E-04±2.64E-06≈ 2.60E-03±6.00E-03∇− -3.92E-04±3.36E-07
C12 4.29E-06±4.52E-04− 3.56E+02±2.89E+02∇− -1.99E-01±1.01E-08≈ -1.99E-01±1.42E-06≈ -2.51E+01±1.37E+02∇− -1.99E-01±2.19E-08
C13 -6.62E+01±2.27E-01− -6.54E+01±5.73E-01− -6.46E+01±3.03E+00− -6.83E+01±1.95E-01≈ -6.46E+01±1.67E+00− -6.80E+01±6.63E-01
C14 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 1.24E+05±6.77E+05− 0.00E+00±0.00E+00
C15 3.41E+01±3.82E+01− 2.16E+01±1.10E-04− 0.00E+00±0.00E+00≈ 2.16E+01±8.03E-05− 1.94E+11±4.35E+11− 0.00E+00±0.00E+00
C16 8.21E-02±1.12E-01− 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C17 3.61E+00±2.54E+00− 6.33E+00±4.99E+00− 0.00E+00±0.00E+00≈ 1.59E-01±3.82E-01− 2.75E-01±3.78E-01− 0.00E+00±0.00E+00
C18 4.02E+01±1.80E+01− 8.75E+01±1.66E+02− 0.00E+00±0.00E+00≈ 4.87E-01±1.25E+00− 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
− 16 12 2 8 16 /
+ 1 0 0 0 0 /
≈ 1 6 16 10 2 /

TABLE VII
STATISTICAL TEST RESULTS OF CORCO AND FIVE OTHER SELECTED
METHODS BY THE MULTIPLE-PROBLEM WILCOXON’S SIGNED RANK
TEST ON THE 18 TEST FUNCTIONS WITH 30D FROM IEEE CEC2010

CORCO VS R+ R− p-value α=0.1 α=0.05
AIS-IRP 152.0 1.0 3.05E-05 Yes Yes
εDEag 160.5 10.5 3.74E-04 Yes Yes

DE-AOPS 100.5 52.5 ≥ 0.2 No No
FROFI 143.5 27.5 9.69E-03 Yes Yes

ECHT-DE 169.5 1.5 1.91E-05 Yes Yes

CEC2006:

• Method based on multiobjective optimization:
NSES [12].

• Methods based on treating constraints and objective func-
tion separately: AIS-IRP [48] and FROFI [39].

• Method based on penalty function: APF-GA [5].

Table II summarizes the mean objective function value and
standard deviation (denoted as “Mean OFV” and “Std Dev”)
derived from the five compared methods over 25 independent
runs. Since it is very difficult to find a feasible solution for g20
and g22, Table II does not include the experimental results for
them. The true optima of these 24 test functions are known
a priori [45]. Hence, it is possible to judge whether a run is
successful or not. A run is successful if and only if f(~x′) −
f(~x∗) < 10−4, where f(~x∗) is the true optimum of a test
function and f(~x′) is the best feasible solution provided by a
COEA. In Table II, “*” denotes that a method can yield 25
successful runs on the corresponding test function.

As shown in Table II, NSES, FROFI, and CORCO can
consistently solve 22 test functions. However, AIS-IRP and
APF-GA fail to achieve 100% successful runs on seven and
nine test functions, respectively. The experimental results
suggest that CORCO outperforms or performs similarly to the
four competitors on the 24 test functions from IEEE CEC2006.

TABLE VIII
RANKING OF CORCO AND FIVE OTHER SELECTED METHODS BY THE

FRIEDMAN’S TEST ON THE 18 TEST FUNCTIONS WITH 30D FROM IEEE
CEC2010

Algorithm Ranking
CORCO 2

DE-AOPS 2.4722
FROFI 2.9167
εDEag 4.1111

AIS-IRP 4.4444
ECHT-DE 5.0556

D. Experiments on the 18 Benchmark Test Functions from
IEEE CEC2010

Subsequently, we tested the performance of CORCO on the
18 more complicated test functions with 10D and 30D from
IEEE CEC2010. Five well-established COEAs were selected
as the competitors:
• Methods based on treating constraints and objective

function separately: AIS-IRP [48], εDEag [22], DE-
AOPS [49], and FROFI [39].

• Hybrid method: ECHT-DE [50].
Different from the 24 test functions from IEEE CEC2006,

the true optima of the 18 test functions with 10D and 30D from
IEEE CEC2010 are unknown [46]. Hence, we cannot compute
the number of successful runs. Based on the mean objective
function value and standard deviation (denoted as “Mean
OFV” and “Std Dev”), we implemented the statistical test
between CORCO and each of the five competitors. Due to the
fact that the experimental results of FROFI over 25 runs can be
obtained from our previous study, the Wilcoxon’s rank sum test
at a 0.05 significance level was adopted to compare CORCO
with FROFI. However, we can just obtain “Mean OFV” and
“Std Dev” of AIS-IRP, εDEag, DE-AOPS, and ECHT-DE
from their original papers. Therefore, the t-test at a 0.05
significance level was employed. Furthermore, the multiple-
problem Wilcoxon’s signed rank test and the Friedman’s test
with the Bonferroni-Dunn method were carried out via KEEL

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 11

TABLE IX
EXPERIMENTAL RESULTS OF CORCO AND LSHADE44 OVER 25 INDEPENDENT RUNS ON THE 22 TEST FUNCTIONS WITH 50D AND 100D FROM IEEE

CEC2017

50D 100D

IEEE CEC2017 LSHADE44
Mean OFV±Std Dev

CORCO
Mean OFV±Std Dev

LSHADE44
Mean OFV±Std Dev

CORCO
Mean OFV±Std Dev

C01 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C02 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C03 8.95E+05±7.40E+05− 0.00E+00±0.00E+00 2.73E+06±9.66E+05− 0.00E+00±0.00E+00
C04 1.36E+01±5.44E-15≈ 1.36E+01±1.05E+00 1.37E+02±4.62E-01− 6.69E+01±2.07E+01
C05 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 3.28E-05±9.25E-05+ 2.29E+00±4.84E+00
C06 7.51E+03±1.42E+03− 3.38E+02±5.00E+01 1.55E+04±1.59E+03− 6.74E+02±8.31E+01
C07 -1.79E+02±8.97E+01+ -9.45E+01±2.42E+02 -3.02E+02±1.35E+02+ -4.85E+01±2.30E+02
C08 -1.30E-04±2.77E-20− -1.34E-04±1.17E-06 -4.81E-05±1.33E-07+ 1.60E-03±1.65E-04
C09 -2.04E-03±1.33E-18≈ -2.03E-03±5.24E-04 -1.43E-03±2.21E-19+ 0.00E+00±0.00E+00
C10 -4.83E-05±0.00E+00+ -4.81E-05±0.00E+00 -1.72E-05±1.29E-08+ 4.67E-04±5.75E-05
C11 -1.77E+00±3.33E-01+ ∇ ∇≈ ∇
C12 4.98E+01±1.99E+01− 8.81E+00±6.33E-01 3.25E+01±8.19E-01− 9.74E+00±2.89E+00
C13 2.67E+01±1.36E+01− 7.97E-01±1.68E+00 8.07E+01±7.37E+00− 3.72E+01±9.92E+01
C14 1.40E+00±3.74E-02≈ 1.40E+00±2.62E-01 9.72E-01±1.94E-02− 8.78E-01±1.38E-01
C15 1.78E+01±3.00E+00− 2.35E+00±1.82E-03 1.81E+01±1.28E+00− 1.46E+01±1.78E+00
C16 2.53E+02±1.62E+01− 0.00E+00±0.00E+00 5.35E+02±3.08E+01− 0.00E+00±0.00E+00
C20 3.20E+00±1.43E-01≈ 3.20E+00±4.35E-01 9.36E+00±3.78E-01− 7.68E+00±5.86E-01
C21 6.29E+01±1.59E+00+ ∇ 3.16E+01±2.99E-03+ ∇
C22 ∇− 5.88E+00±3.02E+00 ∇− 4.61E+02±5.73E+02
C23 1.33E+00±6.16E-02− 1.23E+00±2.54E-01 9.69E-01±4.26E-02− 8.76E-01±1.32E-01
C24 1.43E+01±1.28E+00− 2.34E+00±3.85E-03 1.71E+01±1.43E+00− 2.35E+00±4.07E-04
C25 2.48E+02±1.58E+01− 4.00E-06±1.26E-05 5.44E+02±2.86E+01− 2.40E+01±2.00E+01
− 11 / 13 /
+ 4 / 6 /
≈ 7 / 3 /

software [51], which can compare the performance of multiple
methods concurrently.

In the case of D = 10, the experimental results are collected
in Tables III, IV, and V. In Table III, “−”, “+”, and “≈”
represent that the performance of the corresponding algorithm
is worse than, better than, and similar to that of CORCO,
respectively, based on the Wilcoxon’s rank sum test/t-test.
In addition, “∇” represents that the corresponding algorithm
cannot consistently find feasible solutions over 25 runs. As
described in Table III, CORCO has an edge over AIS-IRP,
εDEag, DE-AOPS, FROFI, and ECHT-DE on nine, five, three,
seven, and 13 test functions, respectively. However, AIS-
IRP, εDEag, DE-AOPS, FROFI, and ECHT-DE perform better
than CORCO on four, two, zero, one, and one test function,
respectively. According to the multiple-problem Wilcoxon’s
signed rank test, CORCO provides higher R+ values than R−

values in all cases. In terms of the Friedman’s test, CORCO
ranks the first among the six compared methods, followed by
DE-AOPS.

In the case of D = 30, the experimental results are
summarized in Tables VI, VII, and VIII. From Table VI,
CORCO is superior to AIS-IRP, εDEag, DE-APOS, FROFI,
and ECHT-DE on 16, 12, two, eight, and 16 test functions, re-
spectively. In contrast, εDEag, DE-AOPS, FROFI, and ECHT-
DE cannot surpass CORCO on any test function, and AIS-
IRP outperforms CORCO on one test function. As far as the
multiple-problem Wilcoxon’s signed rank test is concerned,
CORCO provides higher R+ values than R− values in all
cases, and performs significantly better than AIS-IRP, εDEag,
FROFI, and ECHT-DE as the p-values are less than 0.05.
Furthermore, CORCO achieves the first rank regarding the
Friedman’s test, followed by DE-AOPS.

The above comparison demonstrates that CORCO exhibits
better performance than the five competitors on the 18 test
functions with 10D and 30D from IEEE CEC2010. Moreover,
it seems that the superiority of CORCO against the five
competitors except DE-AOPS increases with the increase of
the number of decision variables.

E. Experiments on the 28 Benchmark Test Functions from
IEEE CEC2017

To further test the performance of CORCO on high-
dimensional COPs, it was evaluated on the 28 test functions
with 50D and 100D from IEEE CEC2017. The performance
of CORCO was compared with that of LSHADE44 [52],
which is the champion of the competition at IEEE CEC2017.
The experimental results are summarized in Table IX. Note
that the experimental results of those test functions, in which
both CORCO and LSHADE44 cannot find feasible solutions
consistently, were excluded from the comparison. When a
method cannot achieve at least a feasible solution on a test
function at the end of some runs, “∇” was placed in Table IX.
In addition, the t-test at a 0.05 significance level was employed
to compare CORCO and LSHADE44 on each test function
due to the fact that we can only obtain the mean objective
function values and standard deviations of LSHADE44 from
its original literature.

As shown in Table IX, when D = 50, CORCO performs
better than LSHADE44 on 11 test functions while LSHADE44
provides better results on four test functions. In the case
of D = 100, CORCO outperforms LSHADE44 on 13 test
functions while LSHADE44 surpasses CORCO on six test
functions. Therefore, the above comparison verifies that, over-

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 12

TABLE X
EXPERIMENTAL RESULTS OF THE ORIGINAL CORCO, CORCO WITH FIVE FIXED CI VALUES, AND CORCO WITH PCC OVER 25 INDEPENDENT

RUNS ON THE 18 TEST FUNCTIONS WITH 30D FROM IEEE CEC2010

IEEE CEC2010 with 30D
CI = 0.0

Mean OFV±Std Dev
(feasible rate)

CI = 0.25
Mean OFV±Std Dev

(feasible rate)

CI = 0.5
Mean OFV±Std Dev

(feasible rate)

CI = 0.75
Mean OFV±Std Dev

(feasible rate)

CI = 1.0
Mean OFV±Std Dev

(feasible rate)

CI = PCC
Mean OFV±Std Dev

(feasible rate)

CORCO
Mean OFV±Std Dev

(feasible rate)
C01 -8.19E-01±2.77E-03− -8.19E-01±2.85E-03− -8.20E-01±2.04E-03≈ -8.21E-01±1.83E-03≈ -1.59E-01±2.35E-02− -8.19E-01±1.77E-03− -8.21E-01±2.98E-03
C02 -1.79E+00±2.95E-01− -1.75E+00±2.21E-01− -2.02E+00±1.10E-01− -1.90E+00±1.35E-01− (0%)− -1.83E+00±2.51E-01− -2.13E+00±1.22E-01
C03 2.75E+01±5.73E+00− 2.67E+01±7.40E+00− 1.26E+01±1.45E+01− 0.00E+00±0.00E+00≈ (60%)− 0.00E+00 ±0.00E+00≈ 0.00E+00±0.00E+00
C04 -3.33E-06±1.41E-11≈ -3.33E-06±6.81E-11≈ 1.19E-05±2.31E-05− 2.66E-03±9.54E-04− (0%)− -3.33E-06 ±5.07E-11≈ -3.33E-06±4.00E-03
C05 -4.57E+02±4.69E+01− -4.52E+02±3.70E+01− -4.84E+02±1.17E-01≈ -4.83E+02±2.22E-01≈ (0%)− -4.60E+02±5.13E+01− -4.84E+02±5.56E-04
C06 -5.22E+02±8.05E+00− -5.23E+02±5.33E+00− -5.29E+02±1.26E+00≈ -5.29E+02±1.32E+00≈ (0%)− -5.26E+02±2.16E+00− -5.30E+02±8.12E-03
C07 0.00E+00±0.00E+00≈ 4.78E-01±1.32E+00− 0.00E+00±0.00E+00≈ 1.59E-01±7.97E-01− 1.59E-01±7.97E-01− 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C08 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 4.25E+00±2.12E+01− 1.57E+01±3.95E+01− 0.00E+00±0.00E+00≈ 0.00E+00 ±0.00E+00≈ 0.00E+00±0.00E+00
C09 1.85E+04±2.09E+04− 3.87E+04±8.01E+04− 2.55E+00±8.23E+00− 3.35E+01±1.36E+02− 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C10 2.72E+04±7.85E+04− 1.88E+04±3.79E+04− 3.42E+01±3.56E+01− 5.80E+00±1.16E+01− 1.07E+00±3.69E+00− 5.88E+02±1.25E+03− 0.00E+00±0.00E+00
C11 -3.92E-04±4.85E-11≈ -3.92E-04±6.87E-11≈ -3.92E-04±8.99E-11≈ -3.92E-04±4.47E-11≈ -3.92E-04±3.77E-11≈ -3.92E-04 ±1.48E-10≈ -3.92E-04±3.36E-07
C12 -1.99E-01±1.07E-08≈ -1.99E-01±2.35E-09≈ -1.99E-01±3.78E-07≈ -1.99E-01±1.94E-09≈ -1.99E-01±2.28E-09≈ -1.99E-01 ±7.65E-07≈ -1.99E-01±2.19E-08
C13 -6.78E+01±1.11E+00≈ -6.80E+01±5.47E-01≈ -6.78E+01±9.50E-01≈ -6.79E+01±1.09E+00≈ -6.82E+01±5.43E-01≈ -6.79E+01±1.26E+00≈ -6.80E+01±6.63E-01
C14 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 3.19E-01±1.10E+00− 1.59E-01±7.97E-01− 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C15 2.07E+01±4.32E+00− 2.16E+01±2.33E-07− 2.98E+00±1.49E+01− 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 1.30E+01±1.18E+01− 0.00E+00±0.00E+00
C16 5.26E-04±2.63E-03− 0.00E+00±0.00E+00≈ 6.78E-04±3.39E-03− 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C17 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ (0%)− 8.37E-02±1.78E-01− 0.00E+00±0.00E+00
C18 2.95E-01±8.06E-01− 1.23E+01±6.13E+01− 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ (0%)− 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
− 10 10 8 7 11 7 /
+ 0 0 0 0 0 0 /
≈ 8 8 10 11 7 11 /

all, CORCO is better than LSHADE44 on high-dimensional
test functions.

F. Effectiveness of CI Obtained from the Learning Stage
In this paper, the correlation between constraints and ob-

jective function is measured by the correlation index CI
and CI is obtained from the learning stage. Subsequently,
CI is incorporated into three important parts of CORCO,
i.e., the weighted sum updating approach, the archiving and
replacement mechanism, and the search algorithm. Therefore,
CI plays a critical role in CORCO. In order to validate
the effectiveness of CI obtained from the learning stage, we
tested five fixed values of CI: 0.0, 0.25, 0.5, 0.75, and 1.0.
Besides, we also implemented a variant of CORCO, where
CI is equal to Pearson’s correlation coefficient (PCC). The
18 test functions with 30D from IEEE CEC2010 were selected
to produce the experimental results and the Wilcoxon’s rank
sum test at a 0.05 significance level was used for statistical
comparison.

The experimental results are summarized in Table X. Note
that the feasible rate, i.e., percentage of runs in which at least
one feasible solution can be found, is recorded if an algorithm
cannot consistently find feasible solutions over 25 runs. As
shown in Table X, CORCO performs better than CI = 0.0,
CI = 0.25, CI = 0.5, CI = 0.75, and CI = 1.0 on 10,
10, eight, seven, and 11 test functions, respectively. However,
CORCO with fixed settings of CI cannot surpass the original
CORCO on any test function. Moreover, CI = 1.0 cannot
provide any feasible runs on six test functions: C02, C04-
C06, and C17-C18. Additionally, CORCO performs better than
CORCO with CI = PCC on seven test functions. In contrast,
CORCO with CI = PCC cannot be better than CORCO on
any test function.

The above comparison suggests that no single fixed value
of CI can suit different types of COPs and the learning stage
of CORCO is able to successfully learn a proper value of
CI . Moreover, standard correlation analyses such as Pearson’s
correlation coefficient may not be able to reveal the correlation
between constraints and objective function.

HeadYaw

HeadPitch

ShoulderPitch

ShoulderRoll

ElbowYaw

ElbowRoll

WristYaw

Hand

HipYawPitch

HipRoll

HipPitch

KneePitch

AnklePitch

AnkleRoll

Fig. 11. DOFs in NAO.

IV. REAL-WORLD APPLICATION

In this section, CORCO is applied to deal with the gait
optimization of humanoid robots, with the aim of investigating
its effectiveness in solving real-world COPs.

A. Problem Formulation

Gait optimization of humanoid robots is one of the most
challenging problems in the control of humanoid robots and
can be formulated as a COP. In a humanoid robot, gait
optimization is based on the control of degree of freedom
(DOF). Taking NAO as an example, there are 25 DOFs, of
which 14 are in the upper body and 11 are in the lower body.
Fig. 11 depicts the DOFs in NAO.

In NAO, 12 DOFs need to be controlled to ensure stable
walking. They are HipRoll, HipPitch, KneePitch, AnklePitch,
AnkleRoll, and ShoulderPitch, each of which is in the left body
and the right body, respectively. Since some of the DOFs have
a similar movement (e.g., HipRoll in the left leg and the right
leg), they can be controlled by one base signal with some
adjustments. In this case, we utilize four base signals to make
NAO walk. In our method, Central Pattern Generator (CPG)

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 13

𝑆1 𝑆2

𝑆4𝑆3

(a) CPG network

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

(b) Four base signals

Fig. 12. CPG network and four base signals generated by it.

TABLE XI
SIGNAL ASSIGNMENT OF EACH DOF

Name of DOF Signal
RHipRoll k1 · s1
LHipRoll k1 · s1
RHipPitch k2 · s4 − k3
LHipPitch k2 · s2 − k3

RKneePitch k4 ·max(0, s1) + k5
LKneePitch k4 ·max(0, s1) + k5
RAnklePitch k6 · s2 − k7
LAnklePitch k6 · s4 − k7
RAnkleRoll k8 · s3
LAnkleRoll k8 · s3

RShouderPitch −k9 · s2 − k10
LShouderPitch k9 · s2 + k10

is used to generate the four base signals. The CPG network is
shown in Fig. 12(a). There are four neurons in this network,
and they are connected with each other to generate coupling
signals. Each of the connections is attached with a weight,
the value of which is set to 2. Then we can get the four base
signals (i.e., s1, s2, s3, and s4) as shown in Fig. 12(b).

These four base signals need to be adjusted by some
parameters to control the 12 DOFs in NAO. Thus, each DOF
is assigned an adjusted signal, which is listed in Table XI.
Since kneePicths cannot rotate reversely, when s1 is used to
control RkneePicth and LkneePitch, its value is restricted to be
positive. In this paper, 10 parameters (i.e., k1, . . . , k10) in Ta-
ble XI, a parameter (k11) for controlling the amplitude of the
adjusted signals, and a periodic parameter (k12) are encoded
as a 12-dimensional decision vector ~x = (x1, . . . , x12).

TABLE XII
EXPERIMENTAL RESULTS OF FROFI, DEFR, AND CORCO OVER 25

INDEPENDENT RUNS ON THE GAIT OPTIMIZATION PROBLEM OF NAO

Statistic Value FROFI (m) DEFR (m) CORCO (m)
Best 2.544173 1.657536 2.949078
Mean 1.183916 0.809671 2.296031
Worst 0.484514 0.084154 1.809316

Std 0.823426 0.604805 0.386405

0 50 100 150 200
t

0

0.5

1

1.5

2

2.5

D
is
ta
nc
e(
m
)

CORCO
FROFI
DEFR

Fig. 13. Convergence curves of the best solution provided by the three
compared algorithms in a typical run.

The objective function is formulated as:

maximize : f(~x) = d (~x)− p (~x)

p (~x) =

{
50, if NAO falls down
0, otherwise

(16)

where d(~x) is the distance (m) NAO can walk within 10
seconds, and p(~x) is a penalty if NAO falls down. In order to
make NAO walk fast and stably, the objective function needs
to be maximized. Since the rotation angle of each DOF is
restricted to a certain range, the constraints in (17) should be
satisfied.

x11 ∗ x1 − 0.44 ≤ 0

x11 ∗ x2 − x3 − 0.52 ≤ 0

−x11 ∗ x2 + x3 − 1.57 ≤ 0

x11 ∗ x2 + x3 − 1.57 ≤ 0

x11 ∗ x4 + x5 − 2.27 ≤ 0

−x11 ∗ x4 − x5 ≤ 0

−x11 ∗ x6 − x7 − 0.79 ≤ 0

−x11 ∗ x6 + x7 − 1.22 ≤ 0

x11 ∗ x6 + x7 − 1.22 ≤ 0

x11 ∗ x8 − 0.79 ≤ 0

x11 ∗ x9 + x10 − 2.09 ≤ 0

(17)

As a result, the gait optimization problem of NAO is
formulated as a COP, and then CORCO is used to solve this
COP.

B. Experimental Results

In the experiment, the evaluation of each solution was
conducted by a 3D simulating software named webots6.2.4.
Two other COEAs were adopted as the compared algorithms.
The first one is FROFI [39], and the other is DE/rand1/bin
combined with the feasibility rule [7] (named DEFR). 25
independent runs were implemented for each algorithm. The
best, mean, and worst distances, and the standard deviation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 14

provided by the three compared algorithms are listed in
Table XII.

From Table XII, NAO can walk 2.296031m on average
when CORCO is applied, while the mean distances NAO can
walk are 1.183916m and 0.809671m, when FROFI and DEFR
are applied, respectively. Moreover, the standard deviations in
Table XII indicate that the solutions generated by CORCO
are more stable. Fig. 13 plots the convergence curves of the
best solution provided by the three compared algorithms in a
typical run, where t is the generation number. It shows that
FROFI and DEFR converge to a local optimum quickly. In
contrast, the convergence speed of CORCO is slower, because
the learning stage of CORCO may delay the optimization at
the beginning. However, once the evolving stage begins (after
t=10 in this case), CORCO can quickly and continuously im-
prove the quality of solutions. In the end, CORCO converges
to a better value than both FROFI and DEFR.

The above experiment shows the effectiveness and stability
of CORCO when it is used to solve a real-world COP.

V. CONCLUSION

In this paper, we found the important significance of
the correlation between constraints and objective function in
constrained evolutionary optimization. Based on this finding,
we proposed an alternative COEA, named CORCO, which
includes two stages, namely, the learning stage and the evol-
ving stage. The learning stage was to mine the correlation
between constraints and objective function of a COP. At the
evolving stage, a weighted sum updating approach and an
archiving and replacement mechanism were proposed to utilize
the correlation to balance constraints and objective function.
Extensive and systematic experiments on three benchmark test
suites and a practical case verified that:

1) CORCO shows better or at least competitive perfor-
mance against other state-of-the-art COEAs.

2) The learning stage can mine the correlation between
constraints and objective function of different types of
COPs successfully.

3) The weighted sum updating approach and the archiving
and replacement mechanism can utilize the information
obtained from the learning stage to balance constraints
and objective function effectively.

The Matlab source codes of CORCO can be downloaded
from: http://www.escience.cn/people/yongwang1/index.html

REFERENCES

[1] Z. Michalewicz, “A survey of constraint handling techniques in evolu-
tionary computation methods.” Evolutionary Programming, vol. 4, pp.
135–155, 1995.

[2] E. Mezura-Montes and C. A. Coello Coello, “Constraint-handling in
nature-inspired numerical optimization: past, present and future,” Swarm
and Evolutionary Computation, vol. 1, no. 4, pp. 173–194, 2011.

[3] C. A. Coello Coello, “Constraint-handling techniques used with evo-
lutionary algorithms,” in Proceedings of the 2016 on Genetic and
Evolutionary Computation Conference Companion. ACM, 2016, pp.
563–587.

[4] Ö. Yeniay, “Penalty function methods for constrained optimization with
genetic algorithms,” Mathematical and Computational Applications,
vol. 10, no. 1, pp. 45–56, 2005.

[5] B. Tessema and G. G. Yen, “An adaptive penalty formulation for
constrained evolutionary optimization,” IEEE Transactions on Systems,
Man, and Cybernetics-Part A: Systems and Humans, vol. 39, no. 3, pp.
565–578, 2009.

[6] J. Liu, K. L. Teo, X. Wang, and C. Wu, “An exact penalty function-
based differential search algorithm for constrained global optimization,”
Soft Computing, vol. 20, no. 4, pp. 1305–1313, 2016.

[7] K. Deb, “An efficient constraint handling method for genetic algorithms,”
Computer Methods in Applied Mechanics and Engineering, vol. 186,
no. 2, pp. 311–338, 2000.

[8] T. P. Runarsson and X. Yao, “Stochastic ranking for constrained evolu-
tionary optimization,” IEEE Transactions on Evolutionary Computation,
vol. 4, no. 3, pp. 284–294, 2000.

[9] T. Takahama and S. Sakai, “Efficient constrained optimization by the ε
constrained adaptive differential evolution,” in 2010 IEEE Congress on
Evolutionary Computation. IEEE, 2010, pp. 1–8.

[10] Z. Cai and Y. Wang, “A multiobjective optimization-based evolutionary
algorithm for constrained optimization,” IEEE Transactions on Evolu-
tionary Computation, vol. 10, no. 6, pp. 658–675, 2006.

[11] Y. Wang, Z. Cai, G. Guo, and Y. Zhou, “Multiobjective optimization
and hybrid evolutionary algorithm to solve constrained optimization
problems,” IEEE Transactions on Systems, Man, and Cybernetics, Part
B (Cybernetics), vol. 37, no. 3, pp. 560–575, 2007.

[12] L. Jiao, L. Li, R. Shang, F. Liu, and R. Stolkin, “A novel selection evo-
lutionary strategy for constrained optimization,” Information Sciences,
vol. 239, pp. 122–141, 2013.

[13] C. Peng, H.-L. Liu, and F. Gu, “A novel constraint-handling technique
based on dynamic weights for constrained optimization problems,” Soft
Computing, vol. 22, no. 12, pp. 3919–3935, 2018.

[14] A. Mani and C. Patvardhan, “A novel hybrid constraint handling
technique for evolutionary optimization,” in 2009 IEEE Congress on
Evolutionary Computation (CEC’09). IEEE, 2009, pp. 2577–2583.

[15] Y. Wang, Z. Cai, Y. Zhou, and W. Zeng, “An adaptive tradeoff model
for constrained evolutionary optimization,” IEEE Transactions on Evo-
lutionary Computation, vol. 12, no. 1, pp. 80–92, 2008.

[16] Q. Fan and X. Yan, “Differential evolution algorithm with co-evolution
of control parameters and penalty factors for constrained optimization
problems,” Asia-Pacific Journal of Chemical Engineering, vol. 7, no. 2,
pp. 227–235, 2012.

[17] M. Ali and W. Zhu, “A penalty function-based differential evolution
algorithm for constrained global optimization,” Computational Opti-
mization and Applications, vol. 54, no. 3, pp. 707–739, 2013.

[18] H. J. Barbosa, A. C. Lemonge, and H. S. Bernardino, “A critical
review of adaptive penalty techniques in evolutionary computation,” in
Evolutionary Constrained Optimization. Springer, 2015, pp. 1–27.

[19] V. V. De Melo and G. Iacca, “A modified covariance matrix adapta-
tion evolution strategy with adaptive penalty function and restart for
constrained optimization,” Expert Systems with Applications, vol. 41,
no. 16, pp. 7077–7094, 2014.

[20] C. Saha, S. Das, K. Pal, and S. Mukherjee, “A fuzzy rule-based penalty
function approach for constrained evolutionary optimization,” IEEE
Transactions on Cybernetics, vol. 46, no. 12, pp. 2953–2965, 2016.

[21] T. Takahama and S. Sakai, “Efficient constrained optimization by the ε
constrained rank-based differential evolution,” in 2012 IEEE Congress
on Evolutionary Computation. IEEE, 2012, pp. 1–8.

[22] ——, “Constrained optimization by the ε constrained differential evo-
lution with an archive and gradient-based mutation,” in 2010 IEEE
Congress on Evolutionary Computation (CEC). IEEE, 2010, pp. 1–
9.

[23] S. Domı́nguez-Isidro and E. Mezura-Montes, “A cost-benefit local search
coordination in multimeme differential evolution for constrained nu-
merical optimization problems,” Swarm and Evolutionary Computation,
vol. 39, pp. 249–266, 2018.

[24] W. Gao, G. G. Yen, and S. Liu, “A dual-population differential evolution
with coevolution for constrained optimization.” IEEE Trans. Cybernet-
ics, vol. 45, no. 5, pp. 1094–1107, 2015.

[25] C. A. Coello Coello, “Treating constraints as objectives for single-
objective evolutionary optimization,” Engineering Optimization, vol. 32,
no. 3, pp. 275–308, 2000.

[26] E. Mezura-Montes and C. A. Coello Coello, “A numerical comparison
of some multiobjective-based techniques to handle constraints in genetic
algorithms,” Departamento de Ingeniera Elctrica, CINVESTAV-IPN,
México, Tech. Rep. Technical Report EVOCINV-03-2002, 2002.

[27] C. M. Fonseca and P. J. Fleming, “Multiobjective optimization and
multiple constraint handling with evolutionary algorithms. i. a unified
formulation,” IEEE Transactions on Systems, Man, and Cybernetics-Part
A: Systems and Humans, vol. 28, no. 1, pp. 26–37, 1998.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 15

[28] Y. Wang and Z. Cai, “Combining multiobjective optimization with
differential evolution to solve constrained optimization problems,” IEEE
Transactions on Evolutionary Computation, vol. 16, no. 1, pp. 117–134,
2012.

[29] ——, “A dynamic hybrid framework for constrained evolutionary opti-
mization,” IEEE Transactions on Systems, Man, and Cybernetics, Part
B (Cybernetics), vol. 42, no. 1, pp. 203–217, 2012.

[30] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” IEEE Transactions on Evolutionary Computation, vol. 1,
no. 1, pp. 67–82, 1997.

[31] R. Datta, K. Deb, and A. Segev, “A bi-objective hybrid constrained op-
timization (hycon) method using a multi-objective and penalty function
approach,” in 2017 IEEE Congress on Evolutionary Computation (CEC).
IEEE, 2017, pp. 317–324.

[32] R. Datta and K. Deb, “An adaptive normalization based constrained
handling methodology with hybrid bi-objective and penalty function
approach,” in 2012 IEEE Congress on Evolutionary Computation (CEC).
IEEE, 2012, pp. 1–8.

[33] ——, “Individual penalty based constraint handling using a hybrid bi-
objective and penalty function approach,” in 2013 IEEE Congress on
Evolutionary Computation (CEC). IEEE, 2013, pp. 2720–2727.

[34] Y. Wang and Z. Cai, “Constrained evolutionary optimization by means
of (µ+ λ)-differential evolution and improved adaptive trade-off model,”
Evolutionary Computation, vol. 19, no. 2, pp. 249–285, 2011.

[35] W. Gong, Z. Cai, and D. Liang, “Adaptive ranking mutation operator
based differential evolution for constrained optimization,” IEEE Trans-
actions on Cybernetics, vol. 45, no. 4, pp. 716–727, 2015.

[36] R. Mallipeddi, S. Das, and P. N. Suganthan, “Ensemble of constraint
handling techniques for single objective constrained optimization,” in
Evolutionary Constrained Optimization. Springer, 2015, pp. 231–248.

[37] M. M. Mukaka, “A guide to appropriate use of correlation coefficient in
medical research,” Malawi Medical Journal, vol. 24, no. 3, pp. 69–71,
2012.

[38] Z. Wang, Q. Zhang, A. Zhou, M. Gong, and L. Jiao, “Adaptive
replacement strategies for moea/d,” IEEE Transactions on Cybernetics,
vol. 46, no. 2, pp. 474–486, 2016.

[39] Y. Wang, B.-C. Wang, H.-X. Li, and G. G. Yen, “Incorporating objective
function information into the feasibility rule for constrained evolutionary
optimization,” IEEE Transactions on Cybernetics, vol. 46, no. 12, pp.
2938–2952, 2016.

[40] R. Storn and K. Price, “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
Global Optimization, vol. 11, no. 4, pp. 341–359, 1997.

[41] B.-C. Wang, H.-X. Li, J.-P. Li, and Y. Wang, “Composite differential
evolution for constrained evolutionary optimization,” IEEE Transactions
on Systems, Man, and Cybernetics: Systems, in press, doi: 10.1109/TSM-
C.2018.2807785.

[42] S. Das and P. N. Suganthan, “Differential evolution: A survey of
the state-of-the-art,” IEEE Transactions on Evolutionary Computation,
vol. 15, no. 1, pp. 4–31, 2011.

[43] S. Das, S. S. Mullick, and P. N. Suganthan, “Recent advances in
differential evolution–an updated survey,” Swarm and Evolutionary
Computation, vol. 27, pp. 1–30, 2016.

[44] A. Ghosh, S. Das, S. S. Mullick, R. Mallipeddi, and A. K. Das,
“A switched parameter differential evolution with optional blending
crossover for scalable numerical optimization,” Applied Soft Computing,
vol. 57, pp. 329–352, 2017.

[45] J. Liang, T. P. Runarsson, E. Mezura-Montes, M. Clerc, P. Suganthan,
C. A. Coello Coello, and K. Deb, “Problem definitions and evaluation
criteria for the cec 2006 special session on constrained real-parameter
optimization,” Journal of Applied Mechanics, vol. 41, no. 8, 2006.

[46] R. Mallipeddi and P. N. Suganthan, “Problem definitions and evaluation
criteria for the cec 2010 competition on constrained real-parameter
optimization,” Nanyang Technological University, Singapore, vol. 24,
2010.

[47] G. Wu, R. Mallipeddi, and P. Suganthan, “Problem definitions and
evaluation criteria for the CEC 2017 competition on constrained real-
parameter optimization,” National University of Defense Technology,
Changsha, Hunan, PR China and Kyungpook National University,
Daegu, South Korea and Nanyang Technological University, Singapore,
Technical Report, 2016.

[48] W. Zhang, G. G. Yen, and Z. He, “Constrained optimization via artificial
immune system,” IEEE Transactions on Cybernetics, vol. 44, no. 2, pp.
185–198, 2014.

[49] S. Elsayed, R. Sarker, C. A. Coello Coello, and T. Ray, “Adaptation of
operators and continuous control parameters in differential evolution for

constrained optimization,” Soft Computing, vol. 22, no. 19, pp. 6595–
6616, 2018.

[50] R. Mallipeddi and P. N. Suganthan, “Differential evolution with ensem-
ble of constraint handling techniques for solving cec 2010 benchmark
problems,” in 2010 IEEE Congress on Evolutionary Computation (CEC).
IEEE, 2010, pp. 1–8.

[51] J. Alcalá-Fdez, L. Sanchez, S. Garcia, M. J. del Jesus, S. Ventura,
J. M. Garrell, J. Otero, C. Romero, J. Bacardit, V. M. Rivas et al.,
“Keel: a software tool to assess evolutionary algorithms for data mining
problems,” Soft Computing-A Fusion of Foundations, Methodologies and
Applications, vol. 13, no. 3, pp. 307–318, 2009.

[52] R. Poláková, “L-SHADE with competing strategies applied to con-
strained optimization,” in 2017 IEEE Congress on Evolutionary Com-
putation (CEC). IEEE, 2017, pp. 1683–1689.

Yong Wang (M’08–SM’17) received the Ph.D. de-
gree in control science and engineering from the
Central South University, Changsha, China, in 2011.

He is a Professor with the School of Automa-
tion, Central South University, Changsha, China.
His current research interests include the theory,
algorithm design, and interdisciplinary applications
of computational intelligence.

Dr. Wang is an Associate Editor for the Swarm
and Evolutionary Computation. He was a Web of
Science highly cited researcher in Computer Science

in 2017 and 2018.

Jia-Peng Li received the B.S. degree in intelligent
science and technology and the M.S. degree in con-
trol science and engineering both from the Central
South University, Changsha, China, in 2015 and
2018, respectively.

He is working as a data analysist in Merchants
Unicom Financial Corporation, Shenzhen, China.
His current research interests include evolutionary
constrained single- and multi-objective optimization,
data mining, and machine learning.

Xihui Xue received the B.S. degree in automation
and the M.S. degree in control science and en-
gineering both from the Central South University,
Changsha, China, in 2015 and 2018, respectively.

He is researching on LIDAR-based perception
algorithm in SF Technology, Shenzhen, China. His
current research interests include humanoid robots,
reinforcement learning, and 3D data processing.

Bing-Chuan Wang received the B.S. degree in au-
tomation and the M.S. degree in control science and
engineering both from the Central South University,
Changsha, China, in 2013 and 2016, respectively.

He is currently pursuing the Ph.D. degree at the
City University of Hong Kong, Hong Kong. His
current research interests include evolutionary com-
putation, modeling of distributed parameter systems,
and battery management system.

1

Supplementary File for “Utilizing the Correlation
between Constraints and Objective Function for

Constrained Evolutionary Optimization”

S-1. EFFECTIVENESS OF LEARNING CI AT THE EARLY STAGE

To investigate the effectiveness of learning CI at the early stage, we implemented some variants by cycling the learning stage
and the evolving stage. To be specific, these two stages were repeated every 100 generations. Additionally, the first cycLenGen
generations were utilized for learning while the remaining (100 − cycLenGen) generations were utilized for evolving. By
setting cycLenGen to different values, i.e., cycLenGen = 10, cycLenGen = 20, cycLenGen = 30, cycLenGen = 40, and
cycLenGen = 50, five variants, which were called CORCO-cycle1, CORCO-cycle2, CORCO-cycle3, CORCO-cycle4, and
CORCO-cycle5, were taken into consideration. These variants were evaluated on the 18 test functions with 30D from IEEE
CEC2010.

The experimental results are recorded in Table S-1. The feasible rate was reported when an algorithm cannot consistently
obtain at least one feasible solution over 25 runs and the Wilcoxon’s rank sum test at a 0.05 significance level was used to
compare CORCO with each competitor. As shown in Table S-1, CORCO performs better than the other five variants on 12,
14, 13, 12, and 14 test functions, respectively. However, these variants cannot provide better results than CORCO on any test
function. The experimental results reflect that learning CI at the early stage is better than the manner of cycling the learning
stage and the evolving stage.

S-2. EFFECTIVENESS OF THE ARCHIVING AND REPLACEMENT MECHANISM

The archiving and replacement mechanism proposed in Section II-D2 can compensate the weighted sum updating approach
to a certain extent. To study its effectiveness, we removed it from CORCO and the resultant algorithm was called CORCO-
WoA. Afterward, the performance of CORCO-WoA was compared with that of CORCO on the 18 test functions with 30D
from IEEE CEC2010.

As shown in Table S-2, CORCO outperforms CORCO-WoA on seven test functions. However, CORCO-WoA is unable to
perform better than CORCO on any test function. More importantly, CORCO-WoA fails to find any feasible solution over
13 and nine runs on C05 and C06, respectively. Obviously, the above experimental results confirm that the performance of
CORCO benefits from the archiving and replacement mechanism.

S-3. EFFECTIVENESS OF THE SEARCH ALGORITHM

To validate the effectiveness of the search algorithm, we implemented two variants of CORCO, i.e., CORCO-BaR and
CORCO-Ada. In CORCO-BaR, DE/best/1/bin was utilized to enhance the convergence while DE/rand/1/bin was used to
promote the diversity. As the same with CORCO, these two operators were selected in a random manner. In CORCO-Ada,
DE/rand-to-best/1/bin and DE/current-to-rand/1 were selected in an adaptive manner as the same with [44]. CORCO, CORCO-
BaR, and CORCO-Ada were evaluated on the 18 test functions with 30D from IEEE CEC2010.

As shown in Table S-3, CORCO provides better results than CORCO-BaR and CORCO-Ada on 15 and 10 test functions,
respectively. However, both CORCO-BaR and CORCO-Ada cannot perform better than CORCO on any test function. By
comparing CORCO with CORCO-BaR, it can be seen that DE/rand-to-best/1/bin and DE/current-to-rand/1 are effective for
constrained optimization. By comparing CORCO with CORCO-Ada, we can find that selecting two operators randomly would
be a good choice.

S-4. PARAMETER SENSITIVITY ANALYSIS

CORCO includes a parameter, i.e., the maximum generation number of the learning stage LearnGen. A too small value
of LearnGen may not be enough for learning the correlation. However, a too big value of LearnGen may consume
great computational resource at the learning stage, thus remarkably reducing the computational resource for the evolving
stage. Hence, a reasonable value should be set for this parameter. To this end, we tested five different LearnGen, i.e.,
LearnGen = MaxGen/30, LearnGen = MaxGen/25, LearnGen = MaxGen/20, LearnGen = MaxGen/10, and
LearnGen = MaxGen/5 on the 18 test functions with 30D from IEEE CEC2010. Note that in the original CORCO,
LearnGen = MaxGen/20. As shown in Table S-4, LearnGen = MaxGen/20 performs better than LearnGen =
MaxGen/30, LearnGen =MaxGen/25, and LearnGen =MaxGen/5 on five, six, and seven test functions, respectively.
However, LearnGen = MaxGen/30, LearnGen = MaxGen/25, and LearnGen = MaxGen/5 cannot provide better

2

TABLE S-1
EXPERIMENTAL RESULTS OF CORCO AND FIVE VARIANTS (I.E., CORCO-CYCLE1, CORCO-CYCLE2, CORCO-CYCLE3, CORCO-CYCLE4, AND

CORCO-CYCLE5) OVER 25 INDEPENDENT RUNS ON THE 18 TEST FUNCTIONS WITH 30D FROM IEEE CEC2010

IEEE CEC2010 with 30D
CORCO-cycle1

Mean OFV±Std Dev
(feasible rate)

CORCO-cycle2
Mean OFV±Std Dev

(feasible rate)

CORCO-cycle3
Mean OFV±Std Dev

(feasible rate)

CORCO-cycle4
Mean OFV±Std Dev

(feasible rate)

CORCO-cycle5
Mean OFV±Std Dev

(feasible rate)

CORCO
Mean OFV±Std Dev

(feasible rate)
C01 -8.19E-01±2.74E-03− -8.21E-01±1.98E-03≈ -8.20E-01±1.85E-03≈ -8.21E-01 ±2.19E-03≈ -8.20E-01 ±1.95E-03≈ -8.21E-01±2.98E-03
C02 2.62E+00 ±1.13E+00− 2.05E+00 ±1.20E+00− 1.20E+00±1.20E+00− 1.88E-01±1.22E+00− 3.20E-01±7.69E-01− -2.13E+00±1.22E-01
C03 9.01E+11±2.46E+12− 4.35E+10±2.13E+11− 2.52E+01±9.51E+00− 2.87E+01±5.71E-08− 2.87E+01±2.97E-07− 0.00E+00±0.00E+00
C04 -3.33E-06 ±7.33E-13≈ 5.19E-02±1.80E-01− -3.33E-06±2.49E-13≈ -3.33E-06±2.05E-11≈ -3.33E-06±8.72E-10≈ -3.33E-06±4.00E-03
C05 5.25E+02 ±4.16E+01− 4.72E+02 ±1.14E+02− 4.80E+02±1.01E+02− 4.37E+02±1.90E+02− 3.57E+02 ±1.84E+02− -4.84E+02±5.56E-04
C06 5.15E+02 ±1.06E+02− 5.12E+02±9.89E+01− 4.21E+02±2.12E+02− 2.94E+02±2.90E+02− 1.18E+02±4.28E+02− -5.30E+02±8.12E-03
C07 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 1.59E-01±7.97E-01− 0.00E+00±0.00E+00
C08 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 7.86E+00±2.72E+01− 0.00E+00±0.00E+00
C09 3.90E+13±2.59E+13− 3.37E+13±1.36E+13− 1.96E+13±1.34E+13− 4.00E+12±6.31E+12− 92%− 0.00E+00±0.00E+00
C10 3.82E+13±1.72E+13− 2.61E+13±1.57E+13− 2.17E+13±1.66E+13− 3.38E+12±6.02E+12− 6.09E+11±2.33E+12− 0.00E+00±0.00E+00
C11 -3.92E-04±6.74E-11≈ -3.61E-04 ±4.17E-05− 8%− 0%− 0%− -3.92E-04±3.36E-07
C12 92%− 88%− 84%− 80%− 44%− -1.99E-01±2.19E-08
C13 -6.80E+01±1.08E+00≈ -6.81E+01±5.70E-01≈ -6.66E+01±1.20E+00− -6.18E+01±1.89E+00− -5.59E+01±.46E+00− -6.80E+01±6.63E-01
C14 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00− 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C15 9.09E+12 ±1.84E+13− 2.64E+11±7.98E+11− 4.70E+09±1.88E+10− 2.18E+01±1.14E+00− 2.16E+01±9.85E-07− 0.00E+00±0.00E+00
C16 7.90E-01±3.69E-01− 92%− 5.65E-02±9.74E-02− 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C17 6.62E+02 ±7.40E+02− 92%− 96%− 1.51E+01±1.88E+01− 1.19E+00 ±2.25E+00− 0.00E+00±0.00E+00
C18 1.52E+04 ±8.21E+03− 1.15E+04±6.27E+03− 1.07E+04±7.69E+03− 7.72E+03±7.70E+03− 2.50E+03±5.34E+03− 0.00E+00±0.00E+00
− 12 14 13 12 14 /
+ 0 0 0 0 0 /
≈ 6 4 5 6 4 /

TABLE S-2
EXPERIMENTAL RESULTS OF CORCO AND CORCO-WOA OVER 25 INDEPENDENT RUNS ON THE 18 TEST FUNCTIONS WITH 30D FROM IEEE

CEC2010

IEEE CEC2010 with 30D
CORCO-WoA

Mean OFV±Std Dev
(feasible rate)

CORCO
Mean OFV±Std Dev

(feasible rate)
C01 -1.59E-01±1.46E-02− -8.21E-01±2.98E-03
C02 -2.14E+00±5.04E-02≈ -2.13E+00±1.22E-01
C03 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C04 2.53E-04±1.02E-03− -3.33E-06±4.00E-03
C05 (48%)− -4.84E+02±5.56E-04
C06 (64%)− -5.30E+02±8.12E-03
C07 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C08 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C09 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C10 1.31E+00±2.32E+00− 0.00E+00±0.00E+00
C11 -3.92E-04±3.06E-07≈ -3.92E-04±3.36E-07
C12 -1.99E-01±1.97E-07≈ -1.99E-01±2.19E-08
C13 -6.83E+01±4.28E-01≈ -6.80E+01±6.63E-01
C14 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C15 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C16 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C17 4.11E+01±1.83E+00− 0.00E+00±0.00E+00
C18 3.85E+02±1.65E+03− 0.00E+00±0.00E+00
− 7 /
+ 0 /
≈ 11 /

results than LearnGen = MaxGen/20 on any test function. Overall, LearnGen = MaxGen/20 performs similarly to
LearnGen =MaxGen/10. Therefore, a value between MaxGen/20 and MaxGen/10 was recommended for CORCO.

Besides, the sensitivity of α in (11) and (12) was investigated. As described in (11) and (12), t is a variable between 0
and maxGen. Consequently, t

MaxGen is a scale-free variable between 0 and 1, no matter what MaxGen is. Thus, α is not
dependent on MaxGen. In addition, the other two parameters, i.e., CI and DV , which are related to lb(t) and ub(t), can be
learnt at the learning stage. Hence, only α should be set manually. Its sensitivity was studied experimentally. To be specific,
five variants with different α, i.e., α = 5, α = 15, α = 25, α = 35, and α = 45, were implemented. All these five variants were
evaluated on the 18 test functions with 30D from IEEE CEC2010, and the experimental results are summarized in Table S-5.
From Table S-5, CORCO with α = 25 performs better than CORCO with α = 5, α = 15, α = 35, and α = 45 on four, one,
three, and six test functions, respectively. However, CORCO with α = 5, α = 15, α = 35, and α = 45 cannot produce better
results than CORCO with α = 25 on more than one test function. Thus, α = 25 was recommended in this paper. Additionally,
CORCO with α = 15, α = 25, and α = 35 perform similarly on most of test functions. Therefore, α is not sensitive and we
suggest that an α value between 15 and 35 is a good choice.

As shown in the archiving and replacement mechanism, µ is the probability of replacing P t with At. Thus, the sensitivity
of µ should be investigated. To this end, we implemented five variants of CORCO with five different values: µ = 10−4,
µ = 10−3, µ = 10−2, µ = 10−1, and µ = 100. All these variants were evaluated on the 18 test functions with 30D from IEEE

3

TABLE S-3
EXPERIMENTAL RESULTS OF CORCO AND TWO VARIANTS WITH DIFFERENT SEARCH ALGORITHMS OVER 25 INDEPENDENT RUNS ON THE 18 TEST

FUNCTIONS WITH 30D FROM IEEE CEC2010

IEEE CEC2010
with 30D

CORCO-BaR
Mean OFV±Std Dev

CORCO-Ada
Mean OFV±Std Dev

CORCO
Mean OFV±Std Dev

C01 -8.19E-01±2.36E-03− -8.20E-01±2.47E-03≈ -8.21E-01±2.98E-03
C02 -2.13E+00±8.39E-02≈ -2.11E+00±1.02E-01≈ -2.13E+00±1.22E-01
C03 (96%)− 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C04 5.62E-05±1.32E-04− -3.31E-06 ±3.17E-08− -3.33E-06±4.00E-03
C05 -4.84E+02±8.29E-02≈ -4.84E+02±7.21E-02≈ -4.84E+02±5.56E-04
C06 (68%)− (88%)− -5.30E+02±8.12E-03
C07 1.59E-01±7.97E-01− 1.59E-01±7.97E-01− 0.00E+00±0.00E+00
C08 8.55E+00 ±2.75E+01− 5.46E+00±2.01E+01− 0.00E+00±0.00E+00
C09 (92%)− (92%) − 0.00E+00±0.00E+00
C10 1.07E+00 ±3.72E+00− 5.24E-01±2.62E+00− 0.00E+00±0.00E+00
C11 (88%)− (96%)− -3.92E-04±3.36E-07
C12 (92%)− -1.99E-01±2.79E-09 ≈ -1.99E-01±2.19E-08
C13 -6.73E+01±1.50E+00≈ -6.81E+01±7.23E-01≈ -6.80E+01±6.63E-01
C14 4.61E+00 ±2.06E+01− 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C15 3.44E-01±1.19E+00− 3.43E-01±1.19E+00− 0.00E+00±0.00E+00
C16 1.71E-03±6.03E-03− 0.00E+00 ±0.00E+00≈ 0.00E+00±0.00E+00
C17 1.70E+01 ±8.37E+01− (76%)− 0.00E+00±0.00E+00
C18 2.07E+02±1.02E+03− 3.44E-02±1.21E-01− 0.00E+00±0.00E+00
− 15 10 /
+ 0 0 /
≈ 3 8 /

TABLE S-4
EXPERIMENTAL RESULTS OF CORCO WITH FIVE DIFFERENT LearnGen VALUES OVER 25 INDEPENDENT RUNS ON THE 18 TEST FUNCTIONS WITH

30D FROM IEEE CEC2010

IEEE CEC2010 with 30D
LearnGen =MaxGen/30

Mean OFV±Std Dev
(feasible rate)

LearnGen =MaxGen/25
Mean OFV±Std Dev

(feasible rate)

LearnGen =MaxGen/10
Mean OFV±Std Dev

(feasible rate)

LearnGen =MaxGen/5
Mean OFV±Std Dev

(feasible rate)

LearnGen =MaxGen/20
Mean OFV±Std Dev

(feasible rate)
C01 -8.20E-01±1.80E-03≈ -8.18E-01±4.74E-03− -8.20E-01±3.14E-03≈ -8.20E-01±1.91E-03≈ -8.21E-01±2.98E-03
C02 -1.88E+00±2.40E-01− -2.01E+00±1.17E-01− -2.11E+00±1.01E-01≈ -1.97E+00±1.92E-01− -2.13E+00±1.22E-01
C03 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C04 -1.01E-06±4.47E-06− 1.60E-06±4.81E-05− -3.33E-06±3.19E-09≈ -3.32E-06±5.43E-09≈ -3.33E-06±4.00E-03
C05 -4.84E+02±6.86E-01≈ -4.84E+02±6.80E-02≈ -4.84E+02±8.17E-02≈ -4.78E+02±1.88E+01− -4.84E+02±5.56E-04
C06 (8%)− (40%)− -5.28E+02±1.62E+00− -5.26E+02±2.55E+00− -5.30E+02±8.12E-03
C07 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C08 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C09 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C10 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 1.89E+01±3.39E+01− 0.00E+00±0.00E+00
C11 -3.92E-04±1.56E-07≈ -3.92E-04±3.98E-08≈ -3.92E-04±9.21E-11≈ -3.72E-04±5.83E-05− -3.92E-04±3.36E-07
C12 -1.99E-01±2.04E-08≈ -1.99E-01±7.99E-08≈ -1.99E-01±4.44E-08≈ -1.99E-01±8.07E-10≈ -1.99E-01±2.19E-08
C13 -6.79E+01±1.10E+00≈ -6.80E+01±4.66E-01≈ -6.76E+01±1.01E+00≈ -6.65E+01±1.61E+00− -6.80E+01±6.63E-01
C14 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C15 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C16 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C17 (60%)− (54%)− 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C18 6.46E+01±1.35E+02− 2.27E-02±8.82E-02− 0.00E+00±0.00E+00≈ 1.13E-02±4.39E-02− 0.00E+00±0.00E+00
− 5 6 1 7 /
+ 0 0 0 0 /
≈ 13 12 17 11 /

CEC2010. The experimental results are summarized in Table S-6. As shown in Table S-6, CORCO with µ = 10−2 is better
than CORCO with µ = 10−4, µ = 10−3, µ = 10−1, and µ = 100 on four, four, four, and five test functions, respectively. In
contrast, CORCO with µ = 10−4, µ = 10−3, µ = 10−1, and µ = 100 cannot perform better than CORCO with µ = 10−2 on
any test function. As a result, µ = 10−2 was adopted in this paper.

In the search algorithm, DE/rand-to-best/1/bin is selected with the probability ps while DE/current-to-rand/1 is selected with
the probability (1 − ps). In this manner, a bigger ps would prefer convergence while a smaller one would prefer diversity.
To choose a proper ps, we implemented five variants of CORCO with five different values: ps = 0.1, ps = 0.3, ps = 0.5,
ps = 0.7, and ps = 0.9. All these variants were evaluated on the 18 test functions with 30D from IEEE CEC2010. The
experimental results are collected in Table S-7. As shown in Table S-7, CORCO with ps = 0.5 performs better than CORCO
with ps = 0.1, ps = 0.3, ps = 0.7, and ps = 0.9 on six, four, two, and eight test functions, respectively. However, CORCO
with ps = 0.1, ps = 0.3, ps = 0.7, and ps = 0.9 cannot perform better than CORCO with ps = 0.5 on more than one test
function. Consequently, ps = 0.5 was utilized in this paper.

4

TABLE S-5
EXPERIMENTAL RESULTS OF CORCO WITH FIVE VARYING α OVER 25 INDEPENDENT RUNS ON THE 18 TEST FUNCTIONS WITH 30D FROM IEEE

CEC2010

IEEE CEC2010 with 30D
α = 5

Mean OFV±Std Dev
(feasible rate)

α = 15
Mean OFV±Std Dev

(feasible rate)

α = 35
Mean OFV±Std Dev

(feasible rate)

α = 45
Mean OFV±Std Dev

(feasible rate)

α = 25
Mean OFV±Std Dev

(feasible rate)
C01 -8.20E-01 ±1.84E-03≈ -8.20E-01±2.34E-03≈ -8.20E-01±2.98E-03≈ -8.20E-01±1.86E-03≈ -8.21E-01±2.98E-03
C02 -2.23E+00±4.62E-02+ -2.17E+00±5.67E-02≈ -2.01E+00±1.73E-01− -2.02E+00±1.29E-01− -2.13E+00±1.22E-01
C03 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C04 -3.33E-06 ±3.87E-09≈ -3.33E-06±1.25E-07≈ -3.21E-06±5.01E-07− -3.23E-06±2.28E-07− -3.33E-06±4.00E-03
C05 -4.84E+02±1.76E-02≈ -4.84E+02±1.92E-02≈ -4.83E+02±1.78E-01≈ (96%)− -4.84E+02±5.56E-04
C06 -5.30E+02±2.89E-01≈ -5.30E+02±3.47E-01≈ (88%)− (60%)− -5.30E+02±8.12E-03
C07 0.00E+00 ±0.00E+00≈ 0.00E+00 ±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C08 1.79E+00 ±8.95E+00≈ 1.18E+01±3.28E+01≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C09 2.89E+01 ±9.93E+01− 1.77E-01±8.84E-01≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C10 8.60E+00 ±2.80E+01− 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C11 -3.92E-04±3.26E-11≈ -3.92E-04±1.31E-11≈ -3.92E-04±3.24E-11≈ (96%)− -3.92E-04±3.36E-07
C12 -1.99E-01±2.38E-09≈ -1.99E-01±2.83E-03≈ -1.99E-01±3.33E-03≈ (92%)− -1.99E-01±2.19E-08
C13 -6.79E+01±9.05E-01≈ -6.77E+01±7.79E-01≈ -6.80E+01±7.91E-01≈ -6.82E+01±4.95E-01≈ -6.80E+01±6.63E-01
C14 0.00E+00 ±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C15 8.60E+01±3.32E+02− 0.00E+00±0.00E+00 ≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C16 0.00E+00±0.00E+00≈ 0.00E+00 ±0.00E+00≈ 0.00E+00 ±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C17 (64%)− (76%)− 0.00E+00±0.00E+00≈ 0.00E+00 ±0.00E+00≈ 0.00E+00±0.00E+00
C18 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
− 4 1 3 6 /
+ 1 0 0 0 /
≈ 13 17 15 12 /

TABLE S-6
EXPERIMENTAL RESULTS OF CORCO WITH FIVE VARYING µ OVER 25 INDEPENDENT RUNS ON THE 18 TEST FUNCTIONS WITH 30D FROM IEEE

CEC2010

IEEE CEC2010 with 30D
µ = 10−4

Mean OFV±Std Dev
(feasible rate)

µ = 10−3

Mean OFV±Std Dev
(feasible rate)

µ = 10−1

Mean OFV±Std Dev
(feasible rate)

µ = 100

Mean OFV±Std Dev
(feasible rate)

µ = 10−2

Mean OFV±Std Dev
(feasible rate)

C01 -8.20E-01±4.56E-03≈ -8.20E-01 ±2.18E-03≈ -8.20E-01 ±2.27E-03≈ -8.20E-01 ±2.63E-03≈ -8.21E-01±2.98E-03
C02 -2.15E+00±6.68E-02≈ -2.13E+00±7.68E-02≈ -1.41E+00±3.45E-01− -8.26E-01 ±6.65E-01− -2.13E+00±1.22E-01
C03 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C04 -2.70E-06±2.00E-06− -3.19E-06 ±2.98E-07− -3.33E-06 ±1.20E-09≈ -3.33E-06 ±4.19E-11≈ -3.33E-06±4.00E-03
C05 (76%)− (84%)− -9.33E+01±2.32E+02− 3.42E+02±2.32E+02− -4.84E+02±5.56E-04
C06 (88%)− -5.27E+02±3.43E-02− (36%)− -4.51E+02±1.13E+02− -5.30E+02±8.12E-03
C07 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C08 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C09 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C10 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C11 -3.92E-04 ±4.38E-11≈ -3.92E-04±6.74E-11≈ -3.92E-04±3.47E-11≈ -3.92E-04±1.73E-11≈ -3.92E-04±3.36E-07
C12 -1.99E-01±6.70E-07≈ -1.99E-01 ±7.20E-07≈ -1.99E-01 ±9.32E-08≈ -1.99E-01 ±1.17E-08≈ -1.99E-01±2.19E-08
C13 -6.81E+01±6.45E-01≈ -6.77E+01±1.26E+00≈ -6.79E+01±9.32E-01≈ -6.79E+01±1.16E+00≈ -6.80E+01±6.63E-01
C14 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00 ±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C15 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00 ±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C16 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00 ±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C17 (72%)− (84%)− (88%)− (96%)− 0.00E+00±0.00E+00
C18 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00 ±0.00E+00≈ 1.07E+02±4.40E+02− 0.00E+00±0.00E+00
− 4 4 4 5 /
+ 0 0 0 0 /
≈ 14 14 14 13 /

TABLE S-7
EXPERIMENTAL RESULTS OF CORCO WITH FIVE VARYING ps OVER 25 INDEPENDENT RUNS ON THE 18 TEST FUNCTIONS WITH 30D FROM IEEE

CEC2010

IEEE CEC2010 with 30D
ps = 0.1

Mean OFV±Std Dev
(feasible rate)

ps = 0.3
Mean OFV±Std Dev

(feasible rate)

ps = 0.7
Mean OFV±Std Dev

(feasible rate)

ps = 0.9
Mean OFV±Std Dev

(feasible rate)

ps = 0.5
Mean OFV±Std Dev

(feasible rate)
C01 -8.21E-01±2.43E-03≈ -8.20E-01±2.97E-03≈ -8.20E-01±2.05E-03≈ -8.20E-01±3.36E-03≈ -8.21E-01±2.98E-03
C02 -2.98E-01±6.35E-01− -1.76E+00±2.98E-01− -2.18E+00±7.18E-02≈ -2.20E+00±6.66E-02+ -2.13E+00±1.22E-01
C03 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C04 6.31E-04±7.59E-04− -3.11E-07 ±5.02E-06− -3.33E-06 ±7.78E-09≈ -3.33E-06 ±3.61E-09≈ -3.33E-06±4.00E-03
C05 (56%)− -4.83E+02±5.25E-01≈ -4.84E+02±5.92E-02≈ -4.84E+02±1.82E-01≈ -4.84E+02±5.56E-04
C06 (0%)− (60%)− -5.26E+02±4.56E+00 − -5.26E+02±3.32E+00− -5.30E+02±8.12E-03
C07 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C08 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 4.07E+01±8.34E+01− 0.00E+00±0.00E+00
C09 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C10 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C11 -3.92E-04±2.51E-09≈ -3.92E-04 ±7.15E-11≈ -3.92E-04 ±2.32E-11≈ (88%)− -3.92E-04±3.36E-07
C12 -1.99E-01±1.33E-07≈ -1.99E-01±3.58E-07≈ -1.99E-01±2.58E-08≈ (92%)− -1.99E-01±2.19E-08
C13 -5.40E+01±1.30E+00− -6.72E+01±1.25E+00≈ -6.81E+01±7.56E-01≈ -6.81E+01±9.48E-01≈ -6.80E+01±6.63E-01
C14 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 1.60E+01±6.11E+01− 0.00E+00±0.00E+00
C15 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 9.06E-01±2.34E+00− 0.00E+00±0.00E+00
C16 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 5.84E-03±2.66E-02− 0.00E+00±0.00E+00
C17 (64%)− (64%)− (84%)− (84%)− 0.00E+00±0.00E+00
C18 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
− 6 4 2 8 /
+ 0 0 0 1 /
≈ 12 14 16 9 /

	Introduction
	Proposed Approach
	Motivation
	CORCO
	Learning Stage
	Evolving Stage
	Weighted Sum Updating Approach
	Archiving and Replacement Mechanism

	Search Algorithm
	Computational Time Complexity

	Experimental Study
	Proof-of-Principle Results
	Significance of the Correlation Index
	Capability to Solve Challenging COPs

	Benchmark Test Functions and Parameter Settings
	Experiments on the 24 Benchmark Test Functions from IEEE CEC2006
	Experiments on the 18 Benchmark Test Functions from IEEE CEC2010
	Experiments on the 28 Benchmark Test Functions from IEEE CEC2017
	Effectiveness of CI Obtained from the Learning Stage

	Real-world Application
	Problem Formulation
	Experimental Results

	Conclusion
	References
	Biographies
	Yong Wang
	Jia-Peng Li
	Xihui Xue
	Bing-Chuan Wang

	Supplementary_file.pdf
	Effectiveness of Learning CI at the Early Stage
	Effectiveness of the Archiving and Replacement Mechanism
	Effectiveness of the Search Algorithm
	Parameter Sensitivity Analysis

	Supplementary_file.pdf
	Effectiveness of Learning CI at the Early Stage
	Effectiveness of the Archiving and Replacement Mechanism
	Effectiveness of the Search Algorithm
	Parameter Sensitivity Analysis

