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Matsuoka’s CPG with Desired Rhythmic Signals
for Adaptive Walking of Humanoid Robots

Yong Wang, Senior Member, IEEE, Xihui Xue, and Baifan Chen, Member, IEEE

Abstract—The desired rhythmic signals for adaptive walking
of humanoid robots should have proper frequencies, phases, and
shapes. Matsuoka’s central pattern generator (CPG) is able to
generate rhythmic signals with reasonable frequencies and phas-
es, and thus has been widely applied to control the movements
of legged robots, such as walking of humanoid robots. However,
it is difficult for this kind of CPG to generate rhythmic signals
with desired shapes, which limits the adaptability of walking of
humanoid robots in various environments. To address this issue,
a new framework that can generate desired rhythmic signals
for Matsuoka’s CPG is presented. The proposed framework
includes three main parts. First, feature processing is conducted
to transform the Matsuoka’s CPG outputs into a normalized limit
cycle. Secondly, by combining the normalized limit cycle with
robot feedback as the feature inputs and setting the required
learning objective, the neural network (NN) learns to generate
desired rhythmic signals. Finally, in order to ensure the continuity
of the desired rhythmic signals, signal filtering is applied to the
outputs of NN, with the aim of smoothing the discontinuous parts.
Numerical experiments on the proposed framework suggest that
it can not only generate a variety of rhythmic signals with desired
shapes, but also preserve the frequency and phase properties
of Matsuoka’s CPG. In addition, the proposed framework is
embedded into a control system for adaptive omnidirectional
walking of humanoid robot NAO. Extensive simulation and
real experiments on this control system demonstrate that the
proposed framework is able to generate desired rhythmic signals
for adaptive walking of NAO on fixed and changing inclined
surfaces. Furthermore, the comparison studies verify that the
proposed framework can significantly improve the adaptability
of NAO’s walking compared with other methods.

Index Terms—Central pattern generator, neural network, hu-
manoid robots, adaptive walking, evolutionary algorithm.

I. INTRODUCTION

OVER the last few decades, a variety of biologically in-
spired control methods has been proposed for controlling

the movements of legged robots, most of which mimic the
functions of central pattern generator (CPG) [1]–[3]. A CPG
is a biological neural network which exists in invertebrate
and vertebrate animals, and is responsible for the coordinated
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rhythmic movements of animals, such as breathing, chewing,
and locomotion. A CPG generates coordinated multidimen-
sional rhythmic signals through the mutual interconnection
of a group of neurons. Studies conducted by neuroscientist
have facilitated the design of neuron models for artificial CPG
networks which attempt to imitate the behaviors of their bio-
logical counterparts. Matsuoka’s CPG is a representative kind
of CPG based on the neuron model proposed by Matsuoka [4]–
[6], which has several attractive properties. First, it allows
direct modulation of the frequencies and phases of the gener-
ated rhythmic signals by adjusting the values of some internal
parameters and weights among neurons. In addition, it is also
possible to make the generated rhythmic signals couple to the
dynamics of mechanical systems automatically via rhythmic
feedback, which is called the entrainment property [7]. During
the coupling, the frequency of the generated rhythmic signals
is synchronized with that of rhythmic feedback, and the final
phase differences between the generated rhythmic signals
and rhythmic feedback are stable. Moreover, as demonstrated
in [8], when the rhythmic feedback is large enough, it is
possible to suppress the oscillation of the Matsuoka’s CPG
outputs, which shows faster entrainment and is helpful to
maintain the balance of walking of humanoid robots.

Due to the above properties, Matsuoka’s CPG has been
extensively applied to legged robots. In 1991, Taga [9] pi-
oneered the use of Matsuoka’s CPG for walking control
of a simulated bipedal model. Williamson [7] exploited the
entrainment property of a simple Matsuoka’s CPG for arm
joint control of a humanoid robot and achieved a range of
rhythmic behaviors. Endo et al. [8] created the robust step
motion of humanoid robot QRIO by allocating the Matsuoka’s
CPG neurons in the task space coordinate system and utilizing
the entrainment property. Endo et al. [10] also took advantage
of the entrainment property and applied a policy gradient
method to learn a feedback controller for Matsuoka’s CPG,
which enables QRIO to walk stably in both simulation and
reality. The entrainment property is also successfully used for
a quadrupedal robot Tekken to achieve adaptive walking on
several irregular terrains [11]. In addition, Zhang et al. [12]
and Liu et al. [13] made quadrupedal robots walk up and
down hill adaptively by designing proper control strategies
based on Matsuoka’s CPG combined with proper robot feed-
back. Researchers have manually adjusted the parameters of
Matsuoka’s CPG to obtain appropriate frequency and phase
differences among the generated rhythmic signals [12], [13].
In [14] and [15], Liu et al. employed a control strategy to
map the Matsuoka’s CPG outputs to the trajectories of NAO’s
end effectors. Moreover, they introduced the pitch angle of
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NAO’s upper body as robot feedback to make NAO adaptively
ascend and descend a slope. Recently, with the development
of numerical optimization techniques, the internal parameters
and weights of the Matsuoka’s CPG network can be tuned by
making use of several powerful optimization algorithms such
as evolutionary algorithms. As a result, the proper phase dif-
ference of multidimensional rhythmic signals can be obtained
for versatile movements of humanoid robots [16]–[20].

From the above introduction, it can be seen that current
studies focus mainly on the frequency and phase properties of
Matsuoka’s CPG when applying it to control the movements
of legged robots. Note, however, that the precise adjustment
of signal shape has been ignored unreasonably, which limits
the adaptability of robot movement in various environments.
Taking the walking of humanoid robots as an example, the
shapes of the Matsuoka’s CPG outputs should meet the re-
quired center of pressure (COP) trajectory to ensure that the
humanoid robot can walk stably and adaptively on different
inclined surfaces. However, it is impossible to precisely adjust
the shapes of the Matsuoka’s CPG outputs through simply
modulating the internal parameters as well as weights among
neurons, or introducing robot feedback. Therefore, how to
obtain rhythmic signals with desired shapes is worthy of in-
depth investigations.

To address this issue, we propose a new framework in
this paper, which can generate desired rhythmic signals for
Matsuoka’s CPG. Overall, the main contributions of this paper
can be summarized as follows:
• In the proposed framework, we design three main parts:

feature processing, neural network (NN) learning, and
signal filtering. Feature processing aims at transforming
the Matsuoka’s CPG outputs into a normalized limit
cycle, which not only eliminates the shape information
of the Matsuoka’s CPG outputs, but also preserves their
temporal information. Afterward, NN learning generates
desired rhythmic signals by learning from the feature
inputs, which consist of the normalized limit cycle and
robot feedback. Finally, signal filtering seeks to ensure
the smoothness of the desired rhythmic signals.

• The proposed framework is the first attempt to generate
rhythmic signals with desired shapes while preserving
the frequency and phase properties of Matsuoka’s CPG.
Moreover, it has several additional advantages, such as the
ability to generate various desired rhythmic signals with
high precision, and the robustness against noise induced
by rhythmic feedback.

• Based on the proposed framework, we develop a control
system for adaptive omnidirectional walking of humanoid
robot NAO on various inclined surfaces. In this control
system, the rhythmic signals generated by the proposed
framework are adopted as the rhythmic compensations
for the Matsuoka’s CPG outputs, two types of robot
feedbacks are incorporated with the aim of enabling
NAO to adapt itself to the changing environments, and a
learning objective is defined for NN learning to generate
desired rhythmic signals. Moreover, a popular evolution-
ary algorithm, called differential evolution (DE) [21], is
applied to train the weights of NN.
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Fig. 1. Neuron model of Matsuoka’s CPG. The lines ending with white and
black dots indicate the excitatory and inhibitory connections, respectively.

• The effectiveness of this control system is demonstrated
by both the simulation and real experiments of NAO’s
walking on a fixed inclined surface and a changing
inclined surface. Moreover, we compare the proposed
framework with other methods to verify its superiority.

The rest of this paper is organized as follows. Section II
introduces the preliminary knowledge regarding Matsuoka’s
CPG and its limit cycle. The details of the proposed framework
are presented in Section III. Section IV reports the experimen-
tal results with the proposed framework. Section V describes
the control system for adaptive omnidirectional walking of
NAO and the corresponding experimental results are given in
Section VI. Finally, Section VII concludes this paper.

II. PRELIMINARY KNOWLEDGE

A. Matsuoka’s CPG

The activity of a biological neuron is usually represented
as a continuous-variable neuron model [22], [23]. Different
from the commonly used neuron model [24], the neuron
model proposed by Matsuoka takes the adaptation effect into
account, which has been proven to play an important role
in the generation of rhythmic signals [4]–[6]. Each neuron
model in Matsuoka’s CPG can be formulated as (1)-(3) and
the corresponding structure is shown in Fig. 1:

τ1u̇i = c− ui − βvi −
N∑

j=1,j 6=i

ωijyj + feedbacki (1)

τ2v̇i = yi − vi (2)

yi = max(0, ui) (3)

where ui is the internal state of the ith neuron, vi represents
the degree of adaptation effect, yi is the positive part of ui,
u̇i and v̇i represent the differential of ui and vi, respectively,
τ1 and τ2 determine the frequency of the Matsuoka’s CPG
outputs, the tonic excitation c modulates the amplitude of the
Matsuoka’s CPG outputs, β is the weight of adaptation effect,
ωij is the connecting weight between the ith and jth neurons,
N is the total number of neurons in Matsuoka’s CPG, and
feedbacki is the rhythmic feedback from robots or external
environments. In these equations, τ1 and τ2 also influence
the shapes of the Matsuoka’s CPG outputs, and feedbacki
is essential for the stable coupling between the Matsuoka’s
CPG system and mechanical systems.
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TABLE I
PARAMETER SETTINGS OF MATSUOKA’S CPG

parameter value
N 2
τ1 1.47543
τ2 1.8442875
c 2.0
β 4.01

ω12, ω21 3.0
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Fig. 2. The Matsuoka’s CPG outputs and the limit cycles in different phase
planes. (a) The Matsuoka’s CPG outputs. (b) The limit cycles.

B. Limit Cycle

In mathematics, the limit cycle is defined as a closed
trajectory in a phase plane that arises in a dynamic system
with stable oscillation outputs [25]. Matsuoka’s CPG is a 2N -
dimensional dynamic system, which includes some tunable
parameters as shown in (1)-(3). It is noteworthy that the Mat-
suoka’s CPG outputs are sensitive to these parameters. With
proper parameter settings, Matsuoka’s CPG can generate stable
rhythmic signals forming limit cycles [4]–[6]. In this paper, the
parameters of Matsuoka’s CPG were set as in Table I based on
the experimental studies in Section IV and Section VI. Here,
we consider a Matsuoka’s CPG with two neurons (i.e., N = 2)
and suppose that feedback1 = feedback2 = 0. There are four
state variables: u1, u1, v2, and v2. Accordingly, four rhythmic
outputs are generated. As shown in Fig. 2(a), the four rhythmic
outputs are stable since they oscillate continuously over time
without attenuation or divergence. As a result, these outputs
can form limit cycles. In Fig. 2(b), we plot four limit cycles,
which are in the u1− v1 plane, the u1−u2 plane, the v1− v2

plane, and the u2 − v1 plane, respectively.

III. PROPOSED FRAMEWORK

A. Overview of the Proposed Framework

Matsuoka’s CPG, as formulated in (1)-(3), is a differential
equation system. As a result, the Matsuoka’s CPG outputs
are coupled in time and space so that output shapes vary
with the adjustment of frequency and phases. Therefore, once
the frequency and phases of the Matsuoka’s CPG outputs are
specified, the shapes of these outputs are also determined. This
relationship may drastically limit the adaptability of walking of
humanoid robots when Matsuoka’s CPG is applied for walking
control. On the one hand, assuming that humanoid robots walk

in a fixed environment, if the frequency and phases need to be
adjusted, the new shapes resulting from such adjustment may
not be suitable for the current environment and thus cause
humanoid robots to fall down. On the other hand, assuming
that humanoid robots walk in a changing environment, within
the adjustable range of frequency and phases, there may not
exist proper shapes for walking of humanoid robots due to the
change of environment. Therefore, it poses a grand challenge
for humanoid robots to adaptively walk in both fixed and
changing environments.

Based on the above consideration, this paper proposes a
new framework to regenerate desired rhythmic signals whose
shapes are not related to the frequency and phases of the Mat-
suoka’s CPG outputs. In principle, each period of the rhythmic
signal generated by Matsuoka’s CPG is usually a continuous
curve. It is well-known that with a sufficient number of hidden
neurons, NN is able to fit any continuous curve in an interval
via learning [26], [27]. Therefore, the proposed framework
aims at applying NN to learn to regenerate desired rhythmic
signals for Matsuoka’s CPG.

To achieve this, three aspects should be considered:
• Can the Matsuoka’s CPG outputs be directly used as the

feature inputs of NN? If the answer is no, then how can
the Matsuoka’s CPG outputs be processed?

• What are the structure and learning objective of NN? How
can the NN’s weights be trained, and how can the desired
rhythmic signals to suit the changing environments be
generated?

• Are the rhythmic signals generated by NN smooth when
the frequency is changing? If the answer is no, then how
can the discontinuous rhythmic signals be smoothed?

In our framework, three parts are designed to deal with the
above three aspects, namely, feature processing, NN learning,
and signal filtering. Fig. 3 depicts the proposed framework.
Next, we will introduce each of these three parts.

B. Feature Processing

In fact, there exist two issues if we directly use the Mat-
suoka’s CPG outputs as the feature inputs of NN. Firstly,
the Matsuoka’s CPG outputs are expressed as points sampled
on equal time intervals on the computer. However, these
sample points are usually not uniformly distributed because
of the irregular shapes of the Matsuoka’s CPG outputs, which
has a negative effect on the performance of NN learning to
regenerate desired rhythmic signals. Secondly, due to the fact
that the shapes of the Matsuoka’s CPG outputs are related
to frequency and phases, the shapes of the rhythmic signals
generated by NN will also be related to the frequency and
phases of the Matsuoka’s CPG outputs.

To address these two issues, the Matsuoka’s CPG outputs
must be processed before they become the inputs of NN,
which is called feature processing in this paper. We denote
the processed Matsuoka’s CPG outputs as a feature vector
X(t) = (x1(t), x2(t), ..., xk(t)), where k is the dimension of
feature vector. The elements of this feature vector are the NN’s
inputs. To enable NN to generate desired rhythmic signals at a
specified frequency via learning, we consider that this feature
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Fig. 3. Overview of the proposed framework.
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vector should satisfy the following four conditions, where t
denotes the time variable:

(a) Each element of X(t) should be a rhythmic signal.
(b) The value of X(t) should be different at different times

in each period. That is, ∀ti, tj ∈ [nT, (n+ 1)T ) and ti 6= tj ,
X(ti) 6= X(tj), where T denotes a period, and n is a natural
number.

(c) In each period, the sample points of X(t) with respect to
the equal time intervals should be uniformly distributed in the
feature space. This means that the distances between any two
adjacent sample points in time are equal; thus, the variance of
these distances tends to be zero, which can be expressed as:

1

m

m∑
i=1

[(X(ti)−X(ti+1))2− 1

m

m∑
j=1

(X(tj)−X(tj+1))2]2 → 0

(4)
where m is the number of sample points in a period, and ti
and ti+1 are the ith time and the (i+ 1)th time, respectively.

(d) The shape of the feature space formed by X(t) should
be fixed.

Next, we analyze the rationality of these four conditions.
If we expect that the outputs of NN are rhythmic signals,
the inputs must be rhythmic signals. Therefore, condition
(a) can ensure that NN’s outputs are rhythmic signals. If
there exists a one-to-one mapping between inputs and outputs,
then all NN’s outputs can be different in a period when
all NN’ inputs are different. In this way, any curve can be
approximated by NN in a period. Accordingly, NN is able to
approximate any desired rhythmic signal. Hence, condition (b)
is necessary. In principle, the curve fitting performance of NN
in an interval benefits from the uniformly distributed sample
points. Thus, condition (c) is very useful for NN to generate
desired rhythmic signals. As pointed out, X(t) is the processed
Matsuoka’s CPG outputs. If we make the shape of the feature
space formed by X(t) fixed, the shapes of the rhythmic signals
generated by NN will not be influenced by the frequency and

Phase variable
transformation

Normalization

Time
restoration

(a)

(d)

(b)

(c)

1 2( , )c cx x

Fig. 5. Limit cycle normalization. In this figure, a blue point represents a
sample point.

phases of the Matsuoka’s CPG outputs. Therefore, condition
(d) is also indispensable.

It is clear that if these four conditions could be satisfied, then
the aforementioned two issues of the Matsuoka’s CPG outputs
would be addressed. To satisfy these four conditions, the
feature processing proposed in this paper includes two steps:
feature selection and limit cycle normalization. Specifically,
the aim of the former is to satisfy conditions (a) and (b), and
the aim of the latter is to satisfy conditions (c) and (d).

1) Feature Selection: First, we intend to select a feature
vector from the Matsuoka’s CPG outputs to satisfy conditions
(a) and (b). As introduced in Section II-B, if Matsuoka’s CPG
is associated with proper parameter settings, all the outputs
will satisfy condition (a) since they are rhythmic signals.
Thus, the feature vector selected from the outputs also satisfies
condition (a). Subsequently, we discuss how to select a feature
vector satisfying condition (b). If only one output is selected,
for example u1, it is impossible for the feature vector to satisfy
condition (b). As illustrated in Fig. 4, due to the fact that u1

is rhythmic, there must exist two moments in one period, for
example tA and tB , to make u1(tA) = u1(tB). As a result,
the following issue will occur: if we expect that the outputs at
tA and tB are different, NN cannot achieve this. In addition,
if two outputs forming a limit cycle that crosses over itself are
selected, such as u1 and u2 in Fig. 2(b), it still suffers from
the above issue since the NN’s outputs are the same at two
moments of the intersection point. Therefore, it is necessary
to select two outputs of Matsuoka’s CPG which can form a
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Fig. 6. A further explanation of φ in the limit cycle of Fig. 5(a).
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Fig. 7. Sampling process of φ in one period.

limit cycle without crossing over itself, such as u1 and v1

in Fig. 2(b).
In this paper, the feature vector selected from the Matsuo-

ka’s CPG outputs is expressed as X ′(t) = (x′1(t), x′2(t)),
where x′1(t) and x′2(t) form a limit cycle without crossing
over itself.

2) Limit Cycle Normalization: As shown in Fig. 2(b), the
shapes of limit cycles formed by the Matsuoka’s CPG outputs
are usually irregular, and thus the sample points on these limit
cycles are not uniformly distributed (Fig. 5(a)). In addition, the
shapes of the limit cycles are affected by the frequency and
phases of the Matsuoka’s CPG outputs. The above phenomena
result in X ′(t) not meeting both conditions (c) and (d).
Therefore, we need to eliminate the shape information in X ′(t)
while preserving the temporal information. To achieve this,
we propose a technique, called limit cycle normalization, to
produce a normalized limit cycle. The advantages are twofold:
the sample points on the normalized limit cycle are uniformly
distributed, and the shape of the normalized limit cycle is fixed.
As shown in Fig. 5, limit cycle normalization is separated into
three stages: phase variable transformation, time restoration,
and normalization.

In the first stage, X ′(t) is transformed into a one-
dimensional phase variable φ. Fig. 5(a) and Fig. 5(b) show
this transformation, which can be formulated as

φ = atan2(x′1(t)− x′1c, x′2(t)− x′2c) (5)

where X ′c = (x′1c, x
′
2c) is an arbitrary point in the interior

of the limit cycle (x′1(t), x′2(t)). Fig. 6 further explains φ in
the limit cycle of Fig. 5(a). From Fig. 6, we can observe
that the shape of a limit cycle is dependent on two factors.
The first is the distances between X ′c and all sample points
in a period, and the second is the distances between any two
adjacent sample points in a period. In contrast, the change of
φ from one time to another time only depends on the distance
between two adjacent sample points. As a consequence, by
transforming X ′(t) into φ, partial shape information of the

limit cycle has been excluded. Moreover, φ still contains the
temporal information of a limit cycle.

Next, we explain the second stage—the time restoration.
For the sake of clarity, we put the sample points of one period
in Fig. 5(b) into Fig. 7, where tp is the time variable in one
period T . It is necessary to point out that the value of T is
unknown, and thus tp cannot be determined. However, φ is
known. Therefore, our aim is to restore tp by making use
of φ. It is obvious from Fig. 7 that the distribution of tp
is uniform, while the distribution of φ is not uniform. The
mapping between φ and tp in Fig. 7 can be regarded as a
sampling process [28]. Based on the sampling process in [28],
we can obtain the following continuous expression from the
probability distributions of φ and tp:

p(φ) = p(tp)

∣∣∣∣dtpdφ
∣∣∣∣⇒ tp =

1

p(tp)

∫ φ

−∞
p(φ̂)

∣∣∣dφ̂∣∣∣ (6)

Then, (6) is discretized as follows:

tpi =
1

p(tpi)

i∑
j=1

p(φj) |∆φj | (7)

where ∆φj = φj − φj−1 and φj is the phase at tpj .
p(φj) is defined as:

p(φj) =
1/|∆φj |∑m−1
l=1 1/|∆φl|

(8)

where m indicates the number of sample points in the limit
cycle of one period and is recalculated if ∆φk∆φk−1 < 0 at
the kth time.

Afterward, tpi is expressed as follows:

tpi =

∑i
j=11/|∆φj | × |∆φj |

p(tpi)
∑m−1
l=1 1/|∆φl|

=
i

p(tpi)
∑m−1
l=1 1/|∆φl|

(9)

where 0 ≤ i < m, p(tpi) is a constant due to the uniform
distribution of tpi, and

∑m−1
l=1 1/|∆φl| is also a constant since

φ is known.
Thus, based on (9), tpi can be easily restored by utilizing

φi, and tpi is uniformly distributed over the interval [0, T ]
where T = m

p(tpi)
∑m−1
l=1

1/|∆φl|
.

Overall, compared with the first step, all the shape in-
formation of the limit cycle has been excluded in the time
restoration.

The last stage is to obtain the final feature vector that
satisfies conditions (c) and (d), as shown in Fig. 5(d). Let

x1(tk) = sin(
2πtpi
T

) (10)

x2(tk) = cos(
2πtpi
T

) (11)

where tk is the kth time, tk = (n−1)T + tpi, and n indicates
the nth period. Due to the fact that x2

1(tk) + x2
2(tk) = 1,

tpi is projected onto the unit circle. The final feature vector
is formulated as X(tk) = (x1(tk), x2(tk)). Consequently, the
irregular limit cycle formed by X ′(t) is transformed into a
normalized one formed by X(tk). Furthermore, the sample
points on this normalized limit cycle are uniformly distributed.
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Fig. 8. Structure of NN.

Fig. 9. A modified first-order low-pass filter for smoothing NN’s output.

Remark 1: After feature selection and limit cycle normal-
ization, the final feature vector X(tk) satisfies all the four
conditions. Since the normalized limit cycle is the unit circle,
its shape is always fixed regardless of the shape of the limit
cycle formed by X ′(t). Additionally, it can be seen that the
sample points on the normalized limit cycle and those on the
limit cycle formed by X ′(t) has a one-to-one correspondence.
Therefore, one can conclude that the normalized limit cycle
discards all information about the shape of the Matsuoka’s
CPG outputs while preserving the temporal information. As a
result, the shapes of the rhythmic signals generated by NN will
not be affected by the frequency and phases of the Matsuoka’s
CPG outputs when X(tk) is used as the feature input of NN.

C. Neural Network and Learning

The structure of NN consists of three layers: the input layer,
the hidden layer, and the output layer. The adjacent layers
are fully connected by weights, as shown in Fig. 8. For the
input layer, in addition to the normalized limit cycle, robot
feedback is added. The reason is because robot feedback is
a reflection of the state of an environment; thus, it enables
NN to learn to generate desired rhythmic signals for different
environments. The output layer is responsible for generating
rhythmic signals. The nodes of both the input and output
layers can be added flexibly. Therefore, it is easy to add
robot feedback from various sensors to the input layer, and
more than one desired rhythmic signal can be generated
simultaneously in one network.

The shape of the rhythmic signal generated by NN is
determined by NN’s weights. Many weight training methods
have been proposed for NN learning to fit a curve in an
interval [29], [30], which are also applicable to our frame-
work to generate desired rhythmic signals. However, different
weight training methods suit different situations. When the
desired rhythmic signals are known in advance, such as the
imitation learning of walking control of humanoid robots,
the required learning objective can be explicitly expressed
as the difference between the desired rhythmic signals and

NN’s outputs. Under this condition, the stochastic gradient
decent method (SGD) [29] is a good choice for NN weight
training. When the desired rhythmic signals are unknown,
such as adaptive walking of humanoid robots on different
surfaces, the required learning objective can only be implicitly
expressed as some stability criteria. Under this condition, an
evolutionary algorithm is a preferred method. Therefore, it is
necessary to choose an appropriate weight training method for
NN learning to generate desired rhythmic signals according to
the characteristics of the situations.

D. Signal Filtering

Feature processing ensures that NN’s outputs are continuous
if the frequency of the Matsuoka’s CPG outputs is fixed, which
is beneficial for smooth control of the robot’s trajectory. How-
ever, if we need to change the frequency of the Matsuoka’s
CPG outputs to suit the dynamics of the robot’s mechanical
system (entrainment property) after learning, the NN’s outputs
will be discontinuous due to the change in the number of
sample points (i.e., m) in each period. For example, as shown
in Fig. 9, the desired rhythmic signal is a sine-like signal.
After NN learning, NN generates rhythmic signal Y (shown
in the green line). When the frequency of the Matsuoka’s CPG
output (shown in the blue line) increases at 226s, Y becomes
discontinuous during the transition between two periods.

In order to tackle this issue, a modified first-order low-pass
filter for NN’s outputs is proposed as follows:

Yf = Yf +
Y − Yf

|m(n)−m(n− 1)| × fc+ 1
(12)

where Y denotes NN’s outputs, Yf denotes the final desired
rhythmic signals, m(n) is the number of sample points in the
nth period, and fc is a constant to control the smoothness
of Yf . By making use of (12), as shown in Fig. 9, when the
frequency of the Matsuoka’s CPG output is fixed, Yf is consis-
tent with Y because of m(n) = m(n−1). However, when the
frequency of the Matsuoka’s CPG output changes at 226s, Y
becomes discontinuous. At this time, m(n) 6= m(n−1) and the
filtering function in (12) starts working. Under this condition,
the change of Yf is slower than that of Y during the transition
due to the characteristic of the first-order low-pass filter. As
a result, by transforming Y into Yf , the discontinuous part of
Y is smoothed.

Remark 2: It is noteworthy that the nonlinear dynamic
system proposed in [31] also learns to generate rhythmic
signals with desired shapes. Furthermore, [32] and [33] show
that the system in [31] is able to learn the frequency, which
is similar to the entrainment property of Matsuoka’s CPG.
However, to achieve adaptive walking of humanoid robots,
there are two limitations in [31], [32], and [33]. First, it takes
several periods to learn the frequency, which may not meet the
real-time requirement for adaptive walking of humanoid robots
because the desired frequency in this case commonly changes
in a short time due to perturbation. Secondly, the systems are
on open-loop state, without considering feedback pathways.
Thus, their capability to generate the desired rhythmic signals
to suit the changing environments is limited. In contrast, in
our framework, due to feature processing, the advantages of
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Fig. 10. The framework outputs, the Matsuoka’s CPG outputs, and the desired
rhythmic signals at a specified frequency. The desired rhythmic signals are
similar to (a) y = 0.25sin(t), (b) y = 0.25(sin(t) + sin(2t)), and (c) y =
0.25(sin(t) + sin(3t)), respectively.

temporal properties of Matsuoka’s CPG can be maintained.
As pointed out in [8], the frequency adaptation of Matsuoka’s
CPG is fast. Thus, our framework is suitable for adaptive
walking of humanoid robots. Moreover, by integrating robot
feedback as a part of NN’s feature inputs, our framework
allows NN learning to generate desired rhythmic signals for
the changing environments. In addition, since the output nodes
of NN can be added flexibly, it is easy to learn multiple
desired rhythmic signals simultaneously in one network, which
is beneficial for the trajectory control of high-dimensional
systems like humanoid robots.

IV. EXPERIMENTS ON THE PROPOSED FRAMEWORK

The aim of this section is to empirically investigate whether
the proposed framework can generate various desired rhythmic
signals. In addition, we reveal several additional advantages of
the proposed framework, including the effectiveness of limit
cycle normalization, the ability to generate desired rhythmic
signals while preserving the entrainment property of Mat-
suoka’s CPG, and the robustness against noise induced by
rhythmic feedback. Note that we do not incorporate robot
feedback into the proposed framework in this section, but this
is discussed in Section V.

A. Generating Desired Rhythmic Signals

In this experiment, the proposed framework learns to
generate three desired rhythmic signals simultaneously. The
desired rhythmic signals were similar to y = 0.25sin(t),
y = 0.25(sin(t) + sin(2t)), and y = 0.25(sin(t) + sin(3t)),
respectively. The parameter settings of Matsuoka’s CPG were
the same as in Table I and feedbacki was set to zero. Then, a
frequency of the Matsuoka’s CPG outputs was specified. Since
the shapes of these desired rhythmic signals were known in

TABLE II
MEAN SSE AND STANDARD DEVIATION PROVIDED BY OUR FRAMEWORK

WITH AND WITHOUT LIMIT CYCLE NORMALIZATION

τ2

Our framework with
limit cycle normalization

Mean SSE±Std Dev

Our framework without
limit cycle normalization

Mean SSE±Std Dev
3.688575 0.9789±0.9397 45.5537±14.9778

2.76643125 0.6941±0.5959 34.9482±12.0246
1.8442875 0.4500±0.2410 21.6416±6.4499
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Fig. 11. Training results when τ2=1.8442875 in a typical run. (a) Our
framework with limit cycle normalization. (b) Our framework without limit
cycle normalization.

advance, the NN learning belongs to supervised learning, and
thus SGD [29] was applied for NN weight training. The input
layer of NN consisted of two linear neurons; the hidden layer
consisted of 25 tanh neurons; and the output layer consisted of
three linear neurons. The whole number of sample points for
NN learning was 49,500 (1980s). Fig. 10 shows the framework
outputs (the red lines) after learning, which indicates that our
framework can generate rhythmic signals approximating the
desired rhythmic signals (the green dash lines) well. However,
in these scenarios, Matsuoka’s CPG could only generate the
rhythmic signals as shown in the blue lines.

B. Effectiveness of Limit Cycle Normalization

We compared the precision of the rhythmic signals generat-
ed by our framework with and without limit cycle normaliza-
tion after NN learning. The parameter settings of Matsuoka’s
CPG were also the same as in Table I except for τ2, which was
tuned for different signal frequencies and different limit cycles
(Fig. S-1 in the supplementary file). The desired rhythmic
signal was similar to y = 0.25(sin(t) + 0.25sin(3t)). Like
the experiment in Section IV-A, SGD was used as the training
method for NN’s weights. The input layer of NN consisted
of two linear neurons; the hidden layer consisted of 25 tanh
neurons; and the output layer consisted of one linear neuron.
The whole number of sample points for NN training was
49,500 (1980s), and 500 points (20s) were used to compute the
sum of squared errors (SSE) for precision comparison. SSE
is formulated as (13), where ŷi and yi represent the desired
signal value and the framework output of the ith sample point,
respectively:

SSE =

500∑
i=1

(ŷi − yi)2 (13)

The average SSE and standard deviation over 50 runs are
shown in Table II. It is clear from Table II that our frame-
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TABLE III
RHYTHMIC FEEDBACK WITH DIFFERENT FREQUENCIES

Time(s) feedback1 feedback2
t < 55 0 0

55 ≤ t < 110 0.3sin(1.25t) -0.3sin(1.25t)
110 ≤ t < 165 0.3sin(0.83t) -0.3sin(0.83t)
165 ≤ t < 250 0.3sin(1.00t) -0.3sin(1.00t)

 

Fig. 12. Entrainment property of the framework output.

work with limit cycle normalization achieves higher precision
than our framework without limit cycle normalization, which
indicates that the uniform distribution of sample points on
the limit cycle is definitely beneficial for the performance of
NN learning. In addition, the experimental results in Table II
also show that our framework with limit cycle normalization
can generate desired rhythmic signals with similar precision at
different frequencies, regardless of the shapes of limit cycles
generated by Matsuoka’s CPG (Fig. S-1 in the supplementary
file). In Fig. 11, we also presented the experimental results of
NN learning when τ2 = 1.8442875 for our framework with
and without limit cycle normalization.

C. The Entrainment Property

One may be interested in whether our framework can
also preserve the entrainment property of Matsuoka’s CPG.
As pointed out previously, by introducing rhythmic feedback
into feedbacki in (1), the outputs of Matsuoka’s CPG will
entrain with rhythmic feedback. In the proposed framework,
we have added three parts into the original Matsuoka’s CPG:
feature processing, NN learning, and signal filtering. If we can
verify that the outputs of our framework can still entrain with
rhythmic feedback, then we can argue that our framework has
the capability to preserve the entrainment property of Mat-
suoka’s CPG. To this end, we introduced rhythmic feedback
with different frequencies into feedbacki after NN learning.
In our experiment, the desired rhythmic signal was similar
to y = 0.25sin(t) + 0.25sin(3t) just as in the experiment
in Section IV-B. The parameter settings were the same as
in Table I. The settings of rhythmic feedback signals are
shown in Table III, and the experimental results are presented
in Fig. 12.

It can be observed from Fig. 12 that after introducing
rhythmic feedback (the yellow line), the entrainment between
the Matsuoka’s CPG output (the blue line) and the rhythmic
feedback appears. Meanwhile, the frequency and phase of the
framework output (the red line) track those of the Matsuo-
ka’s CPG output well, which indicates that the framework

TABLE IV
RHYTHMIC FEEDBACK WITH NOISE

Time(s) feedback1 feedback2
t < 130 0.3sin(0.822t) -0.3sin(0.822t)
t > 130 0.3sin(0.822t)+0.3rand(-1,1) -0.3sin(0.822t)-0.3rand(-1,1)

Fig. 13. Robustness of the framework output against the noise from rhythmic
feedback.

output entrains with the rhythmic feedback. Moreover, unlike
the Matsuoka’s CPG output, the framework output can still
maintain the desired shape when the frequency (the black line)
changes. The shape of the framework output slightly changes
only in the frequency changing phase because of the signal
filtering. For comparison, the framework output without the
signal filtering is shown in the green line, which is always
consistent with the red line with the exception in the frequency
changing phase. Obviously, the red line is smoother than
the green line in the frequency changing phase, which also
validates the effectiveness of the signal filtering.

D. Robustness against Noise

When the outputs of Matsuoka’s CPG entrain with rhythmic
feedback, the shapes of the outputs might be affected by
rhythmic feedback noise, which is harmful to robot control.
To test the robustness of our framework against this kind of
noise, after NN learned to generate the same desired rhythmic
signal as the experiment in Section IV-B, we introduced
rhythmic feedback with noise into Matsuoka’s CPG. As shown
in Table IV, rand(−1, 1) is the noise, which is a uniformly
distributed random number between -1 and 1. The parameter
settings of Matsuoka’s CPG were the same as in Table I. The
experimental results are shown in Fig. 13. From Fig. 13, our
framework is robust to the noise since it can maintain the
desired shape, while the shape of the Matsuoka’s CPG output
is affected by the noise.

V. CONTROL SYSTEM

Adaptive walking of humanoid robots is a challenging task
in the robotics field. The control trajectories for humanoid
robot walking must be adjustable and precise enough to ensure
adaptability and stability in various environments. However,
the control system for humanoid robot walking based on
Matsuoka’s CPG is difficult to generate various desired control
trajectories with high precision. Hence, in this section, we
embedded the proposed framework into a control system
based on Matsuoka’s CPG, with the aim of overcoming this
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Fig. 15. NAO and the outputs of Matsuoka’s CPG. (a) NAO’s end effectors
and the world frame. (b) Outputs of Matsuoka’s CPG.

challenge and generating various desired control trajectories
for humanoid robot NAO, which was walking on different
inclined surfaces.

A. Overview of the Control System

Fig. 14 shows the control system. The control strategy in
this system is similar to the one used in [14], which considers
the Matsuoka’s CPG outputs as the trajectories of NAO’s
end effectors. Matsuoka’s CPG in this system consisted of
two neurons. We only used three Matsuoka’s CPG outputs
to control the trajectories of NAO’s end effectors, i.e., right
foot, left foot, and torso. These trajectories are based on the
world frame, as shown in Fig. 15(a). The three Matsuoka’s
outputs (i.e., q1, q2, and q3) are given in (14)-(16), where tpi
is calculated according to (9):

q1 = y1 − y2 (14)

q2 = −0.5sin(
4πtpi
T

) + 0.5 (15)

q3 = −cos(
4πtpi
T

) (16)

Fig. 15(b) depicts the values of q1, q2, and q3.
Instead of only walking straight as in [14], our control

system allowed NAO to walk omnidirectionally. To achieve
this, a coordinate transformation from the Matsuoka’s CPG
outputs to NAO’s foot and torso trajectories was designed,
which is given in Appendix 1 of the supplementary file.

The framework presented in Section III was embedded
into this control system, enabling it to generate the desired
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Fig. 16. (a) Real slope in the sagittal plane. (b) Real slope in the lateral
plane.

trajectories for adaptive walking of NAO. The framework
outputs acted as rhythmic compensations for the Matsuoka’s
CPG outputs. For simplicity, we only considered the rhythmic
compensations for torso trajectories, which are essential for the
stability and adaptability of NAO when walking on different
surfaces. Thus, the framework output three-dimensional rhyth-
mic compensations corresponding to the three-dimensional
torso trajectories.

Additionally, two kinds of robot feedback were introduced
to further module the Matsuoka’s CPG outputs and the rhyth-
mic compensations. These were the shape adaptation feedback
for NN and the frequency adaptation feedback for Matsuoka’s
CPG. For the shape adaptation feedback, two types of fusion
sensory information were used. The first type was the slope in
the sagittal plane (slopex), which indicates the real tilt angle
of the ground in the sagittal plane with respect to the flat
ground, as shown in Fig. 16(a) and formulated as

slopex = α1 + α3 − α2 − θx (17)

where α1, α2, and α3 are three joint angles and θx is the tilt
angle of NAO’s upper body in the sagittal plane. In addition,
the second type is the slope in the lateral plane (slopey), which
indicates the real tilt angle of the ground in the lateral plane
with respect to the flat ground, as shown in Fig. 16(b) and
formulated as

slopey = β1 − β2 + θy (18)

where β1 and β2 are two joint angles and θy is the tilt angle
of NAO’s upper body in the lateral plane. These two types of
fusion sensory information were able to make the framework
generate rhythmic compensations for NAO to suit the inclined
surfaces. On the other hand, as far as the frequency adaptation
feedback is concerned, the rhythmic feedback (feedback1 and
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Fig. 17. A fixed inclined surface for NAO’s walking.

feedback2) from NAO’s mechanical system were introduced:

feedback1 = FsrR− FsrL (19)

feedback2 = −feedback1 (20)

where FsrR and FsrL indicate the pressure signals from
NAO’s right and left feet, respectively. By integrating this
kind of feedback, the outputs of the control system could
entrain with the dynamics of NAO’s mechanical system, thus
enhancing the robustness of NAO’s walking.

B. Desired Rhythmic Compensations

In this control system, the desired trajectory of NAO’s
center of pressure (COP), which ensures that NAO walks
stably on different surfaces, is considered as the learning
objective to evaluate the rhythmic compensations generated
by our framework. The difference between the desired and
actual COP trajectories is formulated as

DCOP =

Tls∑
t=0

|xd(t)− COPx(t)|+|yd(t)− COPy(t)| (21)

where (xd(t), yd(t)) is the desired COP trajectory, and
(COPx(t), COPy(t)) is the actual COP trajectory in NAO’s
life span Tls. In (22), Penalty indicates the punishment for
NAO’s falling down.

Penalty = (1− tf
Tls

) (22)

where tf is the moment when NAO falls down.
The final objective function (i.e., fitness) for evaluating

the rhythmic compensations generated by our framework can
be expressed as

maximize fitness =
ω1

DCOP
− ω2Penalty (23)

where ω1 and ω2 are two coefficients. In (23), the more
accurate the actual COP trajectory tracking the desired one
and the longer NAO walking stably without falling down, the
higher the value of fitness. By maximizing fitness, we can
obtain the desired rhythmic compensations.

Due to the fact that the desired rhythmic compensations
cannot be known a priori, an evolutionary algorithm is a
preferred method for NN weight training. During the past
two decades, DE has become one of the most popular
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Fig. 18. (a) Rhythmic compensations generated by our framework. (b) The
torso trajectories after DE optimization, in which the green dash lines indicate
the torso trajectories with rhythmic compensations, and the blue lines indicate
the torso trajectories without rhythmic compensations.

evolutionary algorithm paradigms and has been successfully
applied to solve numerous optimization problems in different
fields [21], [34], [35]. DE has strong global search ability. In
this paper, we applied DE to train NN’s weights to find the
desired rhythmic compensations.

VI. EXPERIMENTS ON CONTROL SYSTEM

This section aims at verifying the effectiveness of the
control system for adaptive walking of humanoid robots.
Specifically, we investigated whether the proposed framework
can generate the desired rhythmic compensations to make
NAO adaptively walk not only on a fixed inclined surface,
but also on a changing inclined surface.

A. Adaptive Walking of NAO on A Fixed Inclined Surface

1) Experiment in simulation: Firstly, we considered a fixed
inclined surface. A slope environment in Webots [36] was set
for NAO to walk on, in which the inclined angle was set
to 8.592◦; thus, the inclined angles in both the sagittal and
lateral planes were 6.077◦ (i.e., slopex = slopey = 6.077◦),
as shown in Fig. 17. The desired COP trajectory (xd(t), yd(t))
is presented in Appendix 2 of the supplementary file. Through
the experimental studies, the parameter settings of (21)-(23)
were the following: Tls = 70s, ω1 = 1.4, and ω2 = 2. The
population size of DE was set to 30, and the total generation
number was set to 45. The parameter settings of Matsuoka’s
CPG were the same as in Table I; thus, the period of the
control trajectories generated by the control system was about
6s. The parameter settings of the coordinate transformation
in Appendix 1 of the supplementary file were the following:
stridex = 0.02, stridey = 0.1, and ∆θ = 0. Therefore, the
walking speed of NAO was about 0.0133m/s. By adjusting
stridex to a bigger stride, a greater speed can be obtained.
The outputs of the coordinate transformation for foot and torso
trajectories under these parameter settings are shown in Fig.
S-2 of the supplementary file.

After DE optimization, Fig. 18 shows the rhythmic compen-
sations generated by our framework (the red lines in Fig. 18(a))
and torso trajectories generated by the control system (the
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Fig. 19. (a) Actual COP trajectory, in which the black points are the positions
of NAO’s feet. (b) COP trajectory when the control system excludes the
rhythmic compensation generated by our framework.
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Fig. 20. Frequency synchronization between the robot rhythmic feedback (the
yellow line) and the torso trajectory in y direction (the green dash line).

Fig. 21. Snapshots of NAO’s walking on a fixed inclined surface in the real
world.

green dash lines in Fig. 18(b)) with respect to the best value
of fitness. Under this condition, slopex and slopey, which
are the slopes calculated by NAO in x and y directions (i.e.,
the sagittal and lateral planes), are shown in Fig. S-3 of the
supplementary file. They are used as the shape adaptation
feedback in Fig. 14.

It can be seen that the rhythmic compensations generated
by our framework coincide with the characteristics of the
slope environment shown in Fig. 17. That is, the rhythmic
compensation generated by our framework in x direction is
positive and in y direction is negative. Thus, the corresponding
torso trajectory in x direction is higher than the torso trajectory
without rhythmic compensation (shown in the top subgraph
of Fig. 18(b)), and the corresponding torso trajectory in y
direction is lower than the torso trajectory without rhythmic
compensation (shown in the middle subgraph of Fig. 18(b)).
In addition, due to the small value of rhythmic compensation
in z direction, the torso trajectories with and without rhythmic
compensation in z direction are similar (shown in the bottom
subgraph of Fig. 18(b)). The above phenomenon is consistent
with the general way of compensation for adaptive slope

TABLE V
THE MAXIMAL fitness OBTAINED BY THREE METHODS ON DIFFERENT

FIXED INCLINED SURFACES

Slope angle(degree) Our method The method in [14]
improved in this paper The original method in [14]

0 0.400884 0.362114 0.34556
2 0.346707 0.295156 0.281
4 0.291233 0.255359 0.252342
6 0.271645 0.227979 –

8.592 0.232803 0.208493 –
10 0.200076 – –
12 0.193161 – –

walking of humanoid robots [14], [15], [37]–[39]. From the
above discussion, we can conclude that, on the fixed inclined
surface, the stability of NAO’s walking depends mainly on the
rhythmic compensations in x and y directions, but relies less
on the rhythmic compensation in z direction.

The COP trajectory corresponding to the control trajectories
in Fig. 18 is shown in Fig. 19(a), which indicates that NAO
can stably walk on the fixed inclined surface. As a comparative
observation, Fig. 19(b) shows the COP trajectory when the
control system excludes the rhythmic compensations generated
by our framework, which suggests that NAO cannot walk
adaptively on this fixed inclined surface and instead falls down.

In Section IV-C, we have verified that our framework
exhibits the entrainment property. A question which arises
naturally is whether the control system still has this property
after integrating with our framework. To this end, we tested
the frequency synchronization between the control system
output and NAO’s rhythmic feedback. The experimental results
are shown in Fig. 20, in which the yellow line denotes the
robot rhythmic feedback in (19) and (20) and the green
dash line is the torso trajectory in y direction (torsoy) after
introducing the robot rhythmic feedback. It can be seen that
after about 15s, the robot rhythmic feedback is activated,
and the frequency of the torso trajectory in y direction is
automatically adjusted to be synchronized with the frequency
of the robot rhythmic feedback. Therefore, the control system
maintains the entrainment property.

2) Experiment in the real world: Based on the simulation
results, we made use of the control system to control the real
NAO. The angle of the real inclined surface was the same
as in the simulation. Snapshots of the experiment are shown
in Fig. 21, which indicate that NAO could also realize a stable
and adaptive walk on a fixed inclined surface in the real world.

3) Further comparison with other methods: To further
demonstrate the advantage of our control system, comparison
studies were conducted. Among CPG-based control methods,
the method in [14] has been a competitive method for adaptive
walking of humanoid robots in recent years. Due to its
similar control strategy, the method in [14] was chosen as
the compared method. Note, however, that it only adds the
compensation derived from the tilt angle of NAO’s upper
body θx for torso trajectory in x direction, thus achieving
adaptive walking of NAO on the sagittal plane. To ensure a
fair comparison, we made some improvements to the method
in [14] to enable NAO to walk on both the sagittal and lateral
planes. To achieve this, the compensations for torso trajectories
in x and y directions were given in (24) and (25), and the
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Fig. 22. A changing inclined surface for NAO’s circle walking.
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Fig. 23. (a) Rhythmic compensations generated by our framework. (b) The
torso trajectories after DE optimization, in which the green dash lines indicate
the torso trajectories with rhythmic compensations, and the blue lines indicate
the torso trajectories without rhythmic compensations.

compensation for torso trajectory in z direction was still set
to zero.

compx = k1slopex (24)

compy = k2slopey (25)

where compx and compy represent the compensations for
torsox and torsoy , respectively, and k1 and k2 are two ad-
justable parameters. Note that k1 and k2 have an influence on
the adaptability of humanoid robots and were also optimized
by DE in this experiment to maximize fitness in (23). For
comparison, we also reported the performance of the original
method in [14].

In our experiment, different angles of the fixed slope were
tested. The experimental results are presented in Table V,
which shows the maximal fitness obtained by different
methods over 20 independent runs. In Table V, “–” means
that NAO falls down. As shown in Table V, our method con-
sistently outperforms the two competitors. By implementing
our method, NAO could stably and adaptively walk on various
fixed inclined surfaces. Moreover, the experimental results in
Table V suggest that the performance of the method in [14]
could be improved by introducing the compensations for torso
trajectories in x and y directions.

B. Adaptive Walking of NAO on A Changing Inclined Surface

1) Experiment in simulation: To verify that the proposed
framework can generate desired rhythmic compensations for
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Fig. 24. (a) Actual COP trajectory when NAO walks the circle on a
changing inclined surface. The COP trajectory is always located in the support
region (between the black points), and the black points are the positions of
NAO’s feet. (b) When the control system excludes the rhythmic compensation
generated by our framework, the COP trajectory deviates from the support
region, and finally NAO falls down.

NAO’s adaptive walking on a changing inclined surface, we
set a slope environment with a fixed inclined angle of 4.58◦

as shown in Fig. 22. In the mean time, we made NAO
walk the circle on this inclined surface, and thus the slope
was always changing for NAO. By doing this, the slope
environment was a changing inclined surface for NAO. The
desired COP trajectory (xd(t), yd(t)) is presented in Appendix
2 of the supplementary file. Through the experimental studies,
the parameters in (21)-(23) were set as Tls = 250s, ω1 = 1.4,
and ω2 = 2. The population size for DE was equal to 30,
and the total generation number was set to 60. The parameter
settings of Matsuoka’s CPG were the same as in Table I;
thus, the period of the control trajectories generated by the
control system was about 6s. The parameters settings of the
coordinate transformation in Appendix 1 of the supplementary
file were the following: stridex = 0.02, stridey = 0.1, and
∆θ = π/36. Therefore, the walking speed of NAO was about
0.0133m/s, and the radius of the circle of NAO’s walking was
about 0.2m. Again, by adjusting stridex to a bigger stride,
a greater speed can be reached. Moreover, by adjusting ∆θ,
different radii of the circle of NAO’s walking can be achieved.
The outputs of the coordinate transformation for foot and torso
trajectories under these parameter settings are shown in Fig.
S-4 of the supplementary file.

After DE optimization, the rhythmic compensations generat-
ed by our framework and the torso trajectories generated by the
control system corresponding to the best value of fitness are
shown in the red and green dash lines in Fig. 23, respectively.
Under this condition, slopex and slopey are shown in Fig. S-
5 of the supplementary file. It is noteworthy that slopex and
slopey are used as the shape adaptation feedback in Fig. 14.

Unlike the experimental results in Fig. 18(a) and Fig. S-3 of
the supplementary file, in which rhythmic compensations in x
and y directions depend on slopex and slopey, respectively,
the experimental results of Fig. 23(a) and Fig. S-5 in the
supplementary file show that rhythmic compensations in x and
y directions are dependent on both slopex and slopey. Actu-
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Fig. 25. Snapshots of NAO’s walking on a changing inclined surface in the
real world.

TABLE VI
THE MAXIMAL fitness OBTAINED BY THREE METHODS ON DIFFERENT

CHANGING INCLINED SURFACES

Slope angle(degree) Our method The method in [14]
improved in this paper The original method in [14]

0 0.158031 0.153600 0.149815
2 0.154490 0.146005 0.143387
4 0.1497225 – –
6 0.1293387 – –
8 0.058277 – –

ally, when NAO adaptively walks the circle on the changing
inclined surface, both slopex and slopey have an influence on
the rhythmic compensations in x, y, and z directions.

In addition, according to the general way of compensation
for adaptive slope walking of humanoid robots [14], [15], [39],
when humanoid robots adaptively walk on a fixed inclined
surface, the rhythmic compensations for torso trajectories in
x and y directions are large, and the rhythmic compensa-
tion for torso trajectory in z direction is small. The above
phenomenon has already been demonstrated in Section VI-A.
However, interestingly, from Fig. 23 we observe the opposite
phenomenon on this changing inclined surface, that is, the
rhythmic compensations for torso trajectories in x and y
directions are small, and the rhythmic compensation for torso
trajectory in z direction is large.

The actual COP trajectory (COPx(t), COPy(t)) cor-
responding to the optimized torso trajectories is shown
in Fig. 24(a), which confirms that NAO is able to walk
stably on the changing inclined surface. As a comparative
observation, Fig. 24(b) shows the COP trajectory when the
control system excludes the rhythmic compensation generated
by our framework, which indicates that NAO cannot walk the
circle on the changing inclined surface and finally falls down.

2) Experiment in the real world: We also used the control
system based on the simulation experiments to control the real
NAO. The angle of the real inclined surface was the same as in
the simulation. Fig. 25 shows the snapshots of the experiment,
which suggest that NAO can also walk on a changing inclined
surface in the real world stably and adaptively.

3) Further comparison with other methods: We also con-
ducted comparison experiments on several changing inclined
surfaces with different slope angles. Similar to Section VI-A,
the original method in [14] and its improved version in
this paper were chosen as the compared methods. Table VI
summarizes the maximal fitness provided by different meth-
ods over 20 independent runs. In Table VI, “–” means that
NAO falls down. From Table VI, our method exhibits the
best performance in all the cases and makes NAO stably

and adaptively walk on more changing inclined surfaces.
Again, the experimental results in Table VI verify that the
compensations for torso trajectories in x and y directions can
further improve the performance of the method in [14].

VII. CONCLUSION

In this paper, a framework that can learn to generate desired
rhythmic signals for Matsuoka’s CPG has been presented.
The framework can not only generate rhythmic signals with
desired shapes, but also preserve the frequency and phase
properties of Matsuoka’s CPG. By introducing robot feedback,
the framework is capable of generating desired rhythmic
signals corresponding to different environments. Furthermore,
by embedding this framework into a control system, adaptive
walking was successfully achieved by humanoid robot NAO
in terms of both fixed and changing inclined surfaces.

Although the main aim of this paper has been to overcome
the drawback that Matsuoka’s CPG cannot generate rhythmic
signals with desired shapes, this issue also exists in other kinds
of CPG. Actually, the proposed framework is also feasible
for other kinds of CPG (e.g., Hopf [40] and VDP [41]).
It is because the irregular limit cycles of Hopf and VDP
can also be transformed into the normalized limit cycle via
feature processing, which can be subsequently used as the
feature input of NN for learning to generate desired rhythmic
signals. We believe that this work will enhance the reliability
of CPG’s application in robot movement control. As our future
work, more powerful control systems based on the proposed
framework will be designed for adaptive walking of humanoid
robots on various challenging environments.

The videos of the experiments in the real world can be
downloaded from: http://www.escience.cn/people/yongwang1
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