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Abstract: Differential evolution (DE) is one of the most popular 
paradigms of evolutionary algorithms. In general, DE does not 
exploit distribution information provided by the population and, 
as a result, its search performance is limited. In this paper, 
cumulative population distribution information of DE has been 
utilized to establish an Eigen coordinate system by making use 
of covariance matrix adaptation. The crossover operator of DE 
implemented in the Eigen coordinate system has the capability 
to identify the features of the fitness landscape. Furthermore, we 
propose a cumulative population distribution information based 
DE framework called CPI-DE. In CPI-DE, for each target 
vector, two trial vectors are generated based on both the original 
coordinate system and the Eigen coordinate system. Then, the 
target vector is compared with these two trial vectors and the 
best one will survive into the next generation. CPI-DE has been 
applied to two classic versions of DE and three state-of-the-art 
variants of DE for solving two sets of benchmark test functions, 
namely, 28 test functions with 30 and 50 dimensions at the 2013 
IEEE Congress on Evolutionary Computation, and 30 test 
functions with 30 and 50 dimensions at the 2014 IEEE Congress 
on Evolutionary Computation. The experimental results suggest 
that CPI-DE is an effective framework to enhance the 
performance of DE. 

Keywords: Cumulative population distribution information, 
differential evolution, Eigen coordinate system, evolutionary 
algorithms 

1. Introduction 

Differential Evolution (DE), proposed by Storn and Price 
[1] [2] in 1995, is a very popular evolutionary algorithm (EA) 
paradigm. During the past two decades, DE has attracted a lot 
of attention and has been successfully applied to solve a 
variety of numerical and real-world optimization problems [3] 
[4] [5]. 

The remarkable advantages of DE are its simple structure 
and ease of implementation. In DE, each individual in the 
population is called a target vector. DE contains three basic 
operators: mutation, crossover and selection. During the 
evolution, DE generates a trial vector for each target vector 
through the mutant and crossover operators. Afterward, the 
trial vector competes with its target vector for survival 
according to their fitness. DE also involves three control 
parameters: the population size, the scaling factor, and the 
crossover control parameter. The performance of DE is 
dependent mainly on these three operators and three control 
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parameters. In order to further improve the performance of 
DE, a lot of DE variants have been designed, such as JADE 
[6], jDE [7], SaDE [8], EPSDE [9], CoDE [10], and so on. 

DE is a population-based optimization algorithm; however, 
population distribution information has not yet been widely 
utilized in the DE community, which makes DE inefficient 
especially when solving some optimization problems with 
complex characteristics. Very recently, two attempts have 
been made along this line [11] [12]. However, the methods 
proposed in [11] and [12] only utilize the distribution 
information from a single population of one generation, and 
the cumulative distribution information of the population 
over the course of evolution has been ignored. Moreover, 
these methods introduce some extra parameters. Therefore, 
new insights into the usage of the population distribution 
information in DE are quite necessary. 

In 2001, Hansen and Ostermeier [13] proposed the 
well-known covariance matrix adaptation evolution strategy, 
called CMA-ES. CMA-ES generates offspring by sampling a 
multivariate normal distribution, which includes three main 
elements: mean vector of the search distribution, covariance 
matrix, and step-size. Indeed, covariance matrix reflects the 
population distribution information to a certain degree [12]. 
In CMA-ES, the covariance matrix is self-adaptively updated 
according to the information from the previous and current 
generations. 

In this paper, we make use of the cumulative distribution 
information of the population to establish an Eigen coordinate 
system in DE, by considering CMA as an effective tool. 
Furthermore, we suggest a cumulative population distribution 
information based DE framework called CPI-DE. In CPI-DE, 
for each target vector, the crossover operator of DE is 
implemented in both the original coordinate system and the 
Eigen coordinate system and, as a result, two trial vectors are 
generated. Subsequently, the target vector is compared with 
these two trial vectors and the best one will enter the next 
population. CPI-DE is applied to two classic DE versions as 
well as three state-of-the-art DE variants. Extensive 
experiments across two benchmark test sets from the 2013 
IEEE Congress on Evolutionary Computation (IEEE 
CEC2013) [14] and the 2014 IEEE Congress on Evolutionary 
Computation (IEEE CEC2014) [15] have been implemented 
to verify the effectiveness of CPI-DE. 

The main contributions of this paper can be summarized as 
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follows: 
 Due to the fact that single population fails to contain 

enough information to estimate the covariance matrix 
reliably, this paper updates the covariance matrix in 
DE by an adaptation procedure, which makes use of 
the cumulative distribution information of the 
population. 

 CPI-DE provides a simple yet efficient synergy of two 
kinds of crossover: the crossover in the Eigen 
coordinate system and the crossover in the original 
coordinate system. The former aims at identifying the 
properties of the fitness landscape and improving the 
efficiency and effectiveness of DE by producing the 
offspring toward the promising directions. In addition, 
the purpose of the latter is to maintain the superiority 
of the original DE. Moreover, no extra parameters are 
required in CPI-DE. 

 Our experimental studies have shown that CPI-DE is 
capable of enhancing the performance of several 
classic DE versions and advanced DE variants. 

The rest of this paper is organized as follows. Section 2 
describes the basic procedure of DE. Section 3 briefly 
reviews the recent developments of DE in the last five years. 
The proposed CPI-DE is presented in Section 4. The 
experimental results and the performance comparison are 
given in Section 5. Finally, Section 6 concludes this paper. 

2. Differential evolution (DE) 

Similar to other EA paradigms, DE starts with a population 
of NP individuals, i.e., ( ) ( ) ( ) ( )

,1 ,{ ( ,..., ),  1,..., },g g g g
i i i Dx x x i NP= = =
P  

where g is the generation number, D is the dimension of the 
decision space, and NP is the population size. In ( ) ,gP  each 
individual is also called a target vector. At g=0, the jth 
decision variable of the ith target vector is initialized as 
follows: 

(0)
, (0,1)*( ),  1,..., , 1,...,i j j j jx L rand U L i NP j D= + − = =   (1) 

where rand(0,1) represents a uniformly distributed random 
variable between 0 and 1, and jL  and jU  are the lower 
and upper bounds of the jth decision variable, respectively. 

After the initialization, DE repeatedly implements three 
basic operators, i.e., mutation, crossover, and selection, to 
search for the optimal solution of an optimization problem. 
Note that in DE, a combination of the mutation operator and 
the crossover operator is called a trial vector generation 
strategy. 

2.1. Mutation Operator 

At each generation, a mutant vector is generated for each 
target vector by the mutation operator. The following are four 
commonly used mutation operators in the DE community: 

 DE/rand/1 
( ) ( ) ( ) ( )

1 2 3* ( )g g g g
i r r rv x F x x= + −
               (2) 

 DE/rand/2 
( ) ( ) ( ) ( ) ( ) ( )

1 2 3 4 5* ( ) *( )g g g g g g
i r r r r rv x F x x F x x= + − + −
          (3) 

 DE/current-to-best/1 
( ) ( ) ( ) ( ) ( ) ( )

1 2* ( ) *( )g g g g g g
i i best i r rv x F x x F x x= + − + −
           (4) 

 DE/current-to-rand/1 
( ) ( ) ( ) ( ) ( ) ( )

1 2 3* ( ) *( )g g g g g g
i i r i r rv x F x x F x x= + − + −
           (5) 

In the above equations, the indices 1,r  2 ,r  3,r  4 ,r  and 5r  
are distinct integers randomly selected from [1,..., ]NP  and 
are also different from i, ( )g

bestx  is the best target vector in the 

current population, F is the scaling factor, and ( )g
iv  is the 

mutant vector. 

2.2. Crossover Operator 

After mutation, the crossover operation is applied to each 
pair of ( )g

ix  and ( )g
iv  to generate a trial vector ( ) ( )

,1( ,g g
i iu u=
  

( )
,..., ).g

i Du The binomial crossover can be expressed as follows: 
( )
,( )

, ( )
,

if (0,1),
,  1, ,

otherwise,

g
randi jg

i j g
i j

rand CR or j jv
u j D

x

≤ == =


   (6) 

where randj  is a random integer between 1 and D, rand(0,1) 
is a uniformly distributed random number between 0 and 1, 
and CR is the crossover control parameter. The condition 

randj j= makes the trial vector different from the 
corresponding target vector by at least one dimension. 

2.3. Selection Operator 

The selection operator of DE adopts a one-to-one 
competition between the target vector and its trial vector. For 
a minimization problem, if the objective function value of the 
trial vector is less than or equal to that of the target vector, 
then the trial vector will survive into the next generation; 
otherwise, the target vector will enter the next generation: 

( ) ( ) ( )
( 1)

( )

, if ( ) ( )
otherwise,

g g g
g i i i

i g
i

u f u f x
x

x
+  ≤= 



  





          (7) 

where ( )f   is the objective function. 
It is evident that NP, F, and CR are three main control 

parameters of DE. The setting of NP is related to the 
dimension of the decision space. In general, the higher the 
dimension of the decision space, the larger the value of NP. 
In addition, F is always chosen from the range [0.4, 1.0] and 
CR is usually set to a value close to 0.1 or 1.0 depending on 
the characteristics of an optimization problem [10]. 

3. The related work 

Recent two decades have witnessed significant progress in 
the developments of DE. In 2011, Das and Suganthan [16] 
presented a comprehensive survey on DE, including the basic 
concepts and major variants of DE, as well as the applications 
and theoretical studies of DE. Next, we will briefly introduce 
the recent developments of DE in the last five years. 

3.1. Introduction of New Trial Vector Generation Strategies 

Zhou et al. [17] proposed an intersect mutation operator, in 
which the individuals in the population are divided into two 
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parts according to their fitness: the worse part and the better 
part. Zhang and Yuen [18] presented a directional mutation 
operator, in which a differential vector pool is established 
once the best-so-far fitness of the population has been 
improved at one generation. Subsequently, this differential 
vector pool is utilized to create the trial vectors in the next 
generation. Hu et al. [19] introduced a subspace clustering 
mutation operator which selects an elite individual as the base 
vector and employs the difference between two randomly 
generated boundary individuals as the perturbation vector. 
Gong and Cai [20] proposed the ranking-based mutation 
operators. In this kind of mutation operators, the individuals 
are selected based on their rankings, which means the 
individuals with better ranking have more opportunity to be 
selected. Cai and Wang [21] incorporated the neighborhood 
and direction information into the mutation operator. They 
also proposed two strategies. In the first strategy the 
neighborhood information is used to select the base and 
differential vectors, and in the second strategy the direction 
information is incorporated into the mutation operator. Wang 
et al. [22] proposed a multiobjective sorting-based mutation 
operator. In this operator, the fitness and diversity 
information are simultaneously considered as two objective 
functions in DE, with the aim of selecting those individuals 
with both high fitness and better diversity for mutation. Guo 
et al. [23] proposed a successful-parent-selecting framework 
to select individuals for mutation and crossover. In this 
framework, successful solutions are stored into an archive 
and some individuals in the archive are chosen to implement 
mutation and crossover when stagnation is happening. Yu et 
al. [24] designed an adaptive greedy mutation strategy, in 
which one of the vectors in mutation is randomly selected 
from the top k individuals in the current population. 
Moreover, in order to adjust the greediness degree, the 
parameter k is set by an adaptive scheme. Wang et al. [25] 
proposed Gaussian bare-bones DE, the core technique of 
which is a Gaussian mutation operator. Zhao and Suganthan 
[26] empirically investigated the performance of the 
exponential crossover operator of DE, and suggested a 
linearly scalable exponential crossover operator. In classic 
DE, the trial vector generated by the crossover operator is 
usually a vertex of the hyper-rectangle defined by the mutant 
and target vectors. In order to alleviate this drawback, Wang 
et al. [27] exploited orthogonal crossover to probe the 
hyper-rectangle defined by the mutant and target vectors, thus 
enhancing the search ability of DE. 

3.2. Adapting the Control Parameter Settings 

Gong et al. [28] analyzed the behavior of the crossover 
operator and proposed a crossover rate repair technique for 
adaptive DE variants. Tanabe and Fukunaga [29] suggested a 
success-history based parameter adaptation scheme to revise 
the settings of both the scaling factor F and the crossover 
control parameter CR in JADE [6]. Under the framework in 
[29], Tanabe and Fukunaga [30] further incorporated linear 
population size reduction. By using the correlation coefficient, 
Takahama and Sakai [31] improved the settings of F and CR 

in JADE [6]. In [32], F and CR are determined by a 
mechanism based on exponentially weighting moving 
average. Sarker et al. [33] defined three sets for F, CR, and 
the population size NP, respectively. During the evolution, 
dynamic selection is executed for these three control 
parameters of DE. He and Yang [34] controlled F by taking 
advantage of Lévy distribution. Yu and Zhang [35] 
introduced an adaptive parameter control scheme based on 
optimization state estimation. Zhu et al. [36] proposed an 
adaptive population tuning scheme to dynamically adjust NP 
according to a status monitor. Zamuda et al. [37] proposed a 
population reduction DE with multiple mutation operators, in 
which NP is reduced with the increase of the generation 
number. In adaptive or self-adaptive DE variants, it is always 
expected that the crossover control parameter CR which 
induces a larger amount of replacements can generate 
solutions of higher quality. Segura et al. [38] carried out an 
empirical investigation on this issue by analyzing the 
correlation between the quality of the obtained solutions and 
the probability of replacement induced by different CR values. 
In [39], Segura et al. studied on the effectiveness of 
incorporating feedback information from the search process 
to guide the adaptation of F, and pointed out that further 
research is required to successfully adapt F. 

3.3. Integrating Multiple Trial Vector Generation Strategies 
with Multiply Control Parameter Settings in a Single 
Population 

Tang et al. [40] made use of the fitness information to tune 
the control parameters and choose the mutation operators. 
Moreover, they designed an individual-dependent parameter 
setting and an individual-dependent mutation operator which 
are associated with each individual in the population. Yi et al. 
[41] proposed a novel DE, called HSDE. HSDE combines 
two mutation operators to balance the exploration and 
exploitation abilities of DE and integrates them with a 
self-adaptive parameter control strategy introduced in [7]. 
Fan and Yan [42] presented a self-adaptive DE in which each 
individual has its own F, CR, and mutation operator. 
Moreover, five mutation operators have been adopted and F 
and CR are automatically adjusted. Very recently, Fan and 
Yan [43] proposed zoning evolution of control parameters, in 
which suitable combinations of F and CR can be generated by 
zoning evolution. Moreover, adaptive mutation operator is 
also employed. In [44], two mutation operators are combined 
by a linear increment rule. In addition, F is generated 
according to two Gaussian distributions and CR is produced 
by two uniform distributions based on the success ratio. 
Takahama and Sakai [45] proposed a novel method to detect 
the modality of landscape being searched, i.e., unimodality or 
multimodality. Afterward, a mutation operator is selected 
according to the modality of landscape. Moreover, F and CR 
are tuned dynamically in [45]. Zhou et al. [46] dynamically 
divided the population into three groups by considering the 
position and fitness information of each individual. Moreover, 
these three groups are assigned with different roles and 
equipped with different mutation operators and control 
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parameter values. 

3.4. Multi-populated DE 

Bujok and Tvrdik [47] developed a parallel DE, which 
contains a parallel migration model employing various 
adaptive DE variants. Huo et al. [48] proposed a multi-swarm 
DE with swarm sharing management. In this method, each 
swarm explores the search space independently and the 
sharing management is applied to adjust swarm size. Kushida 
et al. [49] designed an island-based DE. This method 
allocates different control parameters to each island, performs 
migration among islands, and dynamically varies 
subpopulation size by individual transfer. Zhou et al. [50] 
proposed a two-layer hierarchical DE, in which the 
population in the top layer consists of the best individuals 
obtained from the several populations in the bottom layer. In 
[51], an island based distributed DE framework has been 
proposed. Cheng et al. [52] presented a distributed DE with 
multicultural migration, which makes use of two migration 
selection approaches to maintain the diversity in the 
subpopulations and an affinity based replacement strategy to 
control the diversity among the individuals. Peng and Wu [53] 
presented a heterozygous DE. In this method, the population 
is firstly divided into four sub-swarms, and then each 
sub-swarm corresponds to a parameter adjustment scheme. 

3.5. Combining DE with Other Techniques 

During the past five years, combining DE with other 
techniques has attracted considerable attention. For example, 
DE has been combined with opposition-based learning [54] 
[55], restart technique [56], adaptive disturbance mechanism 
[57], and Taguchi local search [53]. Recently, Yang et al. [58] 
proposed an auto-enhanced population diversity mechanism, 
which firstly identifies whether the population is converging 
or stagnant, and then rediversifies the population at the 
dimensional level. Li et al. [59] presented a novel idea, i.e., 
the cumulatively learned evolution path. In this method, after 
a trial vector has been created, an additional differential 
vector is added to this trial vector based on the evolution path 
information. In addition, DE has also been combined with 
surrogate models to deal with computationally expensive 
global numerical optimization problems in [60], [61], and 
[62]. 

3.6. Hybridized DE 

At present, DE has been hybridized with a lot of 
meta-heuristic methods, such as artificial bee colony 
algorithm [63], variable neighborhood search [64], simulated 
annealing [65], estimation of distribution algorithm [66], 
genetic programming [67], and Cuckoo search [68]. 
Moreover, several DE variants have been developed under 
the memetic framework [69] [70]. 

Our work in this paper falls in the first category, i.e., 
introducing new crossover operator by utilizing cumulative 
population distribution information in DE. 

4. Proposed approach 

4.1. Motivation 

Based on the above introduction, it is clear that population 
distribution information has seldom been involved in the 
current state-of-the-art DE. 

Very recently, Guo and Yang [11] and Wang et al. [12] 
made the first attempt to exploit the population distribution 
information in DE. The methods proposed in [11] and [12] 
share some similar ideas. More specifically, these two 
methods firstly compute the covariance matrix of the 
population. Subsequently, the Eigenvectors obtained from the 
Eigen decomposition are used to establish an Eigen 
coordinate system. Finally, the crossover operator of DE is 
implemented in the Eigen coordinate system to generate the 
trial vectors. Compared with the crossover operator in the 
original coordinate system, the crossover operator in the 
Eigen coordinate system makes the recombination process of 
DE rotationally invariant [11]. However, these two methods 
only make use of the distribution information of the current 
population and, consequently, the estimation of the 
covariance matrix is unreliable due to insufficient information. 
Besides, some problem-dependent parameters have been 
introduced, such as the number of individuals adopted to 
compute the covariance matrix and the frequency of the 
crossover operator being executed in the Eigen coordinate 
system. 

The above discussion motivates us to carry out an in-depth 
investigation on the utilization of population distribution 
information in DE. Actually, the methods in [11] and [12], 
and this paper are all inspired by CMA-ES [13]. However, 
unlike [11] and [12], this paper adapts the covariance matrix 
according to the information of the previous and current 
generations to increase the probability of producing 
successful search distribution for the subsequent evolution, 
which results in a more reasonable search behavior. Besides, 
this paper proposes a DE framework called CPI-DE, which 
eliminates the problem-dependent parameters in [11] and 
[12]. 

In CMA-ES, the individuals in the population are 
generated by the following equation [13]: 

 ( 1) ( ) ( ) ( )( , ),  1, ,g g g g
ix m iσ λ+ = + Ν =0 

C         (8) 

where ( )gm  is the mean vector of the search distribution, 
( )gσ  is the step-size, ( )gC  is the covariance matrix, and 

( )( , )gΝ 0 C  is a multivariate normal distribution with zero 

mean and covariance matrix ( ).gC  The main aim of CMA-ES 
is to calculate ( 1) ,gm + ( 1) ,gσ +  and ( 1)g +C  for the next 
generation (g+1). Moreover, the step-size and the covariance 
matrix in CMA-ES are self-adaptively updated as the search 
goes on. It is noteworthy that ES and DE have different 
search patterns. In ES, the offspring is produced according to 
a predefined probabilistic distribution. However, in DE the 
offspring is generated by the arithmetic operation of the base 
and differential vectors and by the information exchange 
between the target vector and the mutant vector. Therefore, it 
is unnecessary to update the step-size for DE and we only 
focus on the adaptation of the covariance matrix (i.e., CMA). 
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4.2. Rank-NP-Update of the Covariance Matrix in DE 

In CMA-ES, two updating strategies have been introduced 
to adapt the covariance matrix: rank-μ-update and rank- 
one-update. This paper only employs rank-μ-update based on 
the following considerations: 1) rank-μ-update plays a 
primary role when the population is large. Compared with ES, 
DE usually adopts a relatively larger population size; and 2) 
rank-one-update exploits correlations between consecutive 
generations and constructs an evolution path to update the 
covariance matrix, which inevitably adds computational 
complexity. By eliminating the rank-one-update, CMA in DE 
becomes simpler. In rank-μ-update, μ represents the 
population size. Since the population size is equal to NP in 
DE, rank-μ-update in CMA-ES is called rank-NP-update in 
this paper. 

The covariance matrix ( )gC is initialized as (0) ,=C I  
where D D×∈ℜI  is a unity matrix. In addition, the mean 
vector of the search distribution ( )gm  is initialized as a 
randomly generated point in the search space. At generation 
(g+1), ( 1)gm +  is updated as follows: 

   ( 1) ( 1)
:2*

1

NP
g g

i i NP
i

m w x+ +

=

= ∑                  (9) 

where ( 1)
:2*
g

i NPx +  is the ith best individual in the offspring 
population (note that in CPI-DE, the offspring population 
consists of 2* NP  individuals), i.e., ( 1) ( 1)

1:2* 2:2*( ) ( )g g
NP NPf x f x+ +≤ ≤

   
( 1)

:2*( ),g
NP NPf x +≤


 iw  is the ith positive weight coefficient, and 

1
1.

NP

i
i

w
=

=∑  It is evident that ( 1)gm +  is the weighted average of 

the NP best individuals in the offspring population. In order 
to introduce a search bias toward the promising area, the 
value of the weight coefficient depends on the quality of the 
individual, i.e., 1 2 0.NPw w w≥ ≥ > According to the 
suggestion in [13], iw  is set as follows: 

'

'
1

,  1, . . . ,i
i NP

jj

w i NP
w

w
=

∈=
∑

            (10) 

and 
' ( 0.5) ( ),  1, . . . ,iw ln NP ln i i NP= + − ∈         (11) 

In order to update the covariance matrix, firstly an 
estimator of ( )gC  is computed: 

( 1) ( 1) ( ) ( 1) ( )
:2* :2*

1
( )( )

NP
g g g g g T

NP i i NP i NP
i

w x m x m+ + +

=

= − −∑    C       (12) 

Afterward, ( 1)g +C  at generation (g+1) is updated as follows: 
2( 1) ( ) ( ) 1 ( 1)(1 ) ( )g g g g

NP NP NPc c σ+ − += − +C C C        (13) 
where 2min(1, / )NP effc NP D≈  is the learning rate and 

2 1

1
( )

NP

eff i
i

NP w −

=

= ∑  is the variance effective selection mass. 

It is clear from (13) that the information from both the 
previous and current generations are used to update the 
covariance matrix, which means that the cumulative 
distribution information of the population has been utilized to 

adapt the search distribution. It is necessary to note that (13) 
includes the step-size ( )gσ  at generation g. As pointed out 
previously, it does not make sense to adjust the step-size for 
DE. Therefore, for the sake of simplicity, ( )gσ  is set to 1 in 
this paper. Indeed, ( ) 1gσ =  resembles the covariance matrix 
from the estimation of multivariate normal algorithm [71]. 
Moreover, ( ) 1gσ =  implies that the covariance matrix at 
each generation is of equal importance [72]. 

4.3. Crossover in the Eigen Coordinate System 

The main idea of the crossover in the Eigen coordinate 
system is the following [12]. Firstly, by implementing the 
Eigen decomposition on the covariance matrix, an 
orthonormal basis of Eigenvectors can be obtained, which 
forms an Eigen coordinate system. Then the target vector and 
its mutant vector are transformed into the Eigen coordinate 
system. Afterward, the crossover of DE is executed on the 
transformed target and mutant vectors, and thus, a trial vector 
is produced in the Eigen coordinate system. Finally, this trial 
vector is transformed back into the original coordinate system. 
Next, we will give the details of the above procedure. 

The Eigen decomposition of the covariance matrix ( )gC  
at generation g can be described as: 

2 T( ) ( ) ( ) ( )g g g g=C B D B               (14) 
where each column of the orthogonal matrix ( )gB  is the 
corresponding Eigenvector of ( ) ,gC  and each diagonal 
element of the diagonal matrix ( )gD  is the corresponding 
Eigenvalue of ( ).gC  By doing this, ( )gB includes an 
orthonormal basis of Eigenvectors and forms an Eigen 
coordinate system. 

Note that 
T( )gB has the capability to rotate a vector into the 

Eigen coordinate system. After the rotation, the elements of 
the resulting vector are related to the projections onto the 
Eigenvectors [72]. Based on the above property, the target 
vector ( )g

ix  and its mutant vector ( )g
iv  are transformed into 

the Eigen coordinate system: 
T'( ) ( ) ( )g g g

i ix x=
 B                 (15) 

   
T'( ) ( ) ( )g g g

i iv v=
 B                 (16) 

Afterward, the crossover operator is implemented in the 
Eigen coordinate system and a trial vector '( ) ' ( )

,1( ,g g
i iu u=
  

' ( )
,, )g

i Du  is produced: 
' ( )
,' ( )

, ' ( )
,

, if (0,1)
, 1, ,

, otherwise

g
i j randg

i j g
i j

v rand CR or j j
u j D

x

 ≤ == =






 (17) 

Since ( )gB  is able to rotate the result back into the 
original coordinate system [72], the final trial vector ( )g

iu  in 
the original coordinate system can be obtained by the 
following transformation: 

( ) ( ) '( )g g g
i iu u=
 B                  (18) 

4.4. CPI-DE 

The Pseudocode of CPI-DE is shown in Fig. 1. As 
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introduced previously, in CPI-DE the cumulative distribution 
information of the population is used to update the covariance 
matrix by rank-NP-update, and then the Eigen coordinate 
system is established by the Eigen decomposition of the 

covariance matrix. At each generation, for each target vector, 
two trial vectors are generated by implementing the mutation 
and crossover operators in both the original coordinate 
system and the Eigen coordinate system. Thereafter, the best 

1:  0;g =     // g  is the generation number 

2:  Initialize (0)m  and (0) ;C  

3:  Generate an initial population (0) (0) (0)
1{ , , }NPx x=
 

P  by uniformly and randomly sampling NP  individuals in the decision space; 

4:  Evaluate the objective function values of the initial population (0) (0)
1( ), , ( );NPf x f x 

  

5:  ;FEs NP=     // FEs records the number of fitness evaluations 
6:  While FEs MaxFEs<  do      // MaxFEs represents the maximum number of fitness evaluations 

7:     ( )g =O Ø, ( )g =E Ø, and ( 1)g+ =P Ø; 
8:     For 1:i NP=  do 

9:        Implement the mutation and crossover operators of DE in the original coordinate system to generate a trial vector ( )
_1
g

iu  for the 

target vector ( ) ,g
ix and ( ) ( ) ( )

_1 ;g g g
iu=


O O  

10:       Implement the mutation and crossover operators of DE in the Eigen coordinate system to generate another trial vector ( )
_ 2
g

iu  for the 

target vector ( )g
ix  according to (14)-(18), and ( ) ( ) ( )

_ 2 ;g g g
iu=


E E  

11:       Evaluate the objective function values of ( )
_1
g

iu  and ( )
_ 2;g

iu  

12:       Implement the selection operator of DE to select the best one from ( ) ,g
ix ( )

_1 ,g
iu  and ( )

_ 2 ,g
iu  denoted as ( 1) ;g

ix +  

13:       ( 1) ( 1) ( 1) ;g g g
ix+ + +=


P P  

14:    End For 
15:    2* ;FEs FEs NP= +  

16:    Select the best NP individuals from ( ) ( ) ,g g
O E denoted as ( 1) ( 1)

1:2* :2*, , ,g g
NP NP NPx x+ + 

 and use these NP individuals and ( )gm  to compute 
( 1)g+C  according to (12) and (13). Subsequently, use these NP individuals to compute ( 1)gm +  according to (9); 

17:    1;g g= +  
18: End While 

Fig. 1. Pseudocode of CPI-DE. 

 

( )g
ix

 

mutation 

selection 

mutation 
crossover in the Eigen 

coordinate system 

( )
_1
g

iu

 

( )
_ 2
g

iu

 

( 1)g
ix +

 

crossover in the original 
coordinate system 

 

Fig. 2. The mutation, crossover, and selection of CPI-DE. 

 

( )gP  

( )gO  

( )gE  

select the best NP individuals: 
( 1) ( 1)

1:2* :2*, ,g g
NP NP NPx x+ + 

  update ( 1)g+C  

 

(a) rank-NP-update in CPI-DE 

 
λ individuals select the best μ individuals update ( 1)g+C  

 

(b) rank-μ-update in CMA-ES 

Fig. 3. The relationship between rank-NP-update in CPI-DE and rank-μ-update in CMA-ES. 
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one among the target vector and two corresponding trial 
vectors will enter the next generation. The above mutation, 
crossover, and selection are shown in Fig. 2. Meanwhile, the 
covariance matrix and the mean vector of the search distri- 
bution are updated at the end of each generation accordingly. 

In this paper, the advantages of implementing the cross- 
over operator in the Eigen coordinate system are twofold: 

 At the early stage of evolution, the population 
maintains high diversity. Under this condition, by 
utilizing the cumulative distribution information of the 
population, the covariance matrix has the capabilities 
to quickly provide reasonable search distribution and 
to continuously guide the population toward the 
promising areas. 

 At the middle and later stages of evolution, the 
diversity of population may gradually decrease and the 
search may concentrate on a relatively small area. In 
this case, by utilizing the covariance matrix, the 
modality of the fitness landscape can be identified and 
the crossover in the Eigen coordinate system is able to 

strengthen the exploitation ability of DE in the area 
surrounded by the population. 

On the other hand, in order to keep the superiority and the 
search behavior of the original DE, the crossover operator is 
also executed in the original coordinate system. 

Based on the above discussion, CPI-DE not only achieves 
a tradeoff between the exploration and exploitation in DE, but 
also provides a simple yet efficient framework to incorporate 
the cumulative distribution information of the population into 
DE. Moreover, CPI-DE does not introduce its own parameter. 

Remark 1: In rank-μ-update of CMA-ES, μ parents in the 
population are used to generate λ offspring by a multivariate 
normal distribution. Subsequently, the best μ individuals are 
selected from these λ offspring and used to update the cova- 
riance matrix. In rank-NP-update of CPI-DE, NP individuals 
in the population are used to create 2* NP  offspring by 
implementing the mutation and crossover operators in both 
the original coordinate system and the Eigen coordinate 
system. Afterward, the best NP individuals are chosen from 
these 2* NP  offspring and used to update the covariance 

Table 1 
Experimental results of DE/rand/1/bin, CPI-DE/rand/1/bin, DE/current-to-best/1/bin, and CPI-DE/current-to-best/1/bin over 51 independent runs on 28 test 
functions with 30D from IEEE CEC2013 using 300,000 FEs. 

 

Test Functions with 30D from 
IEEE CEC2013 

DE/rand/1/bin 
Mean Error±Std Dev 

CPI-DE/rand/1/bin 
Mean Error±Std Dev 

DE/current-to-best/1/bin 
Mean Error±Std Dev 

CPI-DE/current-to- 
best/1/bin 

Mean Error±Std Dev 

Unimodal 
Functions 

CEC20131 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 
CEC20132 1.28E+08±2.54E+07− 3.70E-03±1.21E-02 3.50E+07±1.78E+07− 0.00E+00±0.00E+00 
CEC20133 1.49E+09±5.11E+08− 8.69E+04±6.87E+04 1.49E+06±4.08E+06− 1.28E+02±5.91E+02 
CEC20134 3.24E+04±5.65E+03− 0.00E+00±0.00E+00 1.60E+04±3.50E+03− 0.00E+00±0.00E+00 
CEC20135 1.98E-06±8.94E-07− 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 

Basic 
Multimodal 
Functions 

CEC20136 2.62E+01±1.28E+01− 1.56E+00±6.27E+00 1.63E+01±4.69E+00− 3.10E+00±8.59E+00 
CEC20137 6.67E+01±7.09E+00− 1.07E+01±4.90E+00 5.93E+00±4.61E+00− 3.74E+00±4.34E+00 
CEC20138 2.09E+01±4.77E-02≈ 2.09E+01±4.31E-02 2.09E+01±5.56E-02≈ 2.09E+01±4.17E-02 
CEC20139 3.95E+01±1.13E+00− 3.89E+01±1.25E+00 3.71E+01±3.04E+00− 2.06E+01±1.36E+01 
CEC201310 2.11E+02±5.34E+01− 3.86E-04±1.93E-03 1.59E-02±1.00E-02− 1.54E-03±3.84E-03 
CEC201311 9.08E+01±9.45E+00+ 1.18E+02±8.88E+00 7.33E+00±2.97E+00− 6.75E+00±2.82E+00 
CEC201312 2.32E+02±1.22E+01− 1.91E+02±1.05E+01 1.96E+02±1.16E+01− 1.78E+02±9.83E+00 
CEC201313 2.29E+02±1.49E+01− 1.90E+02±1.27E+01 1.93E+02±1.31E+01− 1.80E+02±1.19E+01 
CEC201314 4.26E+03±1.77E+02+ 4.67E+03±2.18E+02 3.36E+03±4.99E+02+ 4.15E+03±3.89E+02 
CEC201315 7.25E+03±2.97E+02≈ 7.29E+03±2.17E+02 7.21E+03±2.62E+02≈ 7.19E+03±2.92E+02 
CEC201316 2.49E+00±2.91E-01≈ 2.50E+00±2.52E-01 2.46E+00±2.97E-01≈ 2.47E+00±2.94E-01 
CEC201317 1.72E+02±1.04E+01≈ 1.78E+02±1.16E+01 1.35E+02±8.73E+00≈ 1.39E+02±1.30E+01 
CEC201318 2.69E+02±1.20E+01− 2.23E+02±1.21E+01 2.23E+02±1.15E+01− 2.13E+02±9.46E+00 
CEC201319 1.69E+01±1.22E+00− 1.59E+01±1.03E+00 1.13E+01±1.21E+00+ 1.25E+01±1.17E+00 
CEC201320 1.28E+01±2.13E-01≈ 1.25E+01±2.67E-01 1.25E+01±3.11E-01≈ 1.22E+01±3.09E-01 

Composition 
Functions 

CEC201321 2.63E+02±5.01E+01+ 3.09E+02±8.98E+01 2.70E+02±7.02E+01+ 3.01E+02±8.67E+01 
CEC201322 4.71E+03±3.91E+02+ 5.09E+03±3.53E+02 2.76E+03±1.06E+03+ 3.87E+03±6.29E+02 
CEC201323 7.60E+03±2.53E+02− 7.29E+03±2.76E+02 7.31E+03±2.89E+02− 7.15E+03±3.42E+02 
CEC201324 2.84E+02±6.56E+00− 2.10E+02±3.67E+00 2.17E+02±2.01E+01≈ 2.16E+02±1.29E+01 
CEC201325 3.09E+02±4.13E+00− 2.87E+02±2.51E+01 2.46E+02±8.78E+00− 2.39E+02±3.99E+00 
CEC201326 2.09E+02±1.94E+00− 2.03E+02±2.59E+01 2.51E+02±7.12E+01− 2.41E+02±5.63E+01 
CEC201327 1.28E+03±2.89E+01− 9.41E+02±2.91E+02 7.82E+02±2.96E+02− 4.48E+02±1.02E+02 
CEC201328 3.00E+02±8.82E-05≈ 3.00E+02±1.49E-06 3.20E+02±1.44E+02≈ 3.19E+02±1.36E+02 

+ 4 4 
− 17 15 
≈ 7 9 
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matrix. Hence, rank-NP-update in CPI-DE is a natural 
extension of rank-μ-update in CMA-ES. The relationship 
between rank-NP-update in CPI-DE and rank-μ-update in 
CMA-ES is shown in Fig. 3. 

5. Experimental Study 

In this paper, two sets of benchmark test functions are 
employed to demonstrate the effectiveness of CPI-DE, i.e., 28 
test functions with 30 dimensions (30D) and 50 dimensions 
(50D) at IEEE CEC2013 [14], and 30 test functions with 30 
dimensions (30D) and 50 dimensions (50D) at IEEE 
CEC2014 [15]. The 28 test functions in the first set are 
denoted as CEC20131-CEC201328, and the 30 test functions 
in the second set are denoted as CEC20141-CEC201430. 

In our experiments, the function error value ( ( )bestf x −
  

*( ))f x of each run is recorded, where *x  is the optimal 
solution and bestx  is the best solution found at the end of a 
run. The average and standard deviation of the function error 

values in all runs (denoted as “Mean Error” and “Std Dev”) 
are considered as two performance metrics to assess the 
performance of the algorithms. Moreover, Wilcoxon’s rank 
sum test at a 0.05 significance level is used to test the 
statistical significance between pairwise algorithms. 
According to the suggestions in [14] and [15], the maximum 
number of fitness evaluations (FEs) MaxFEs  was set to 
10000* D  and the average function error value smaller than 
10-8 was taken as zero. 

Note that when our framework is applied to a specified DE 
algorithm, the name of this DE algorithm will be changed by 
adding four letters “CPI-”. For example, DE/rand/1/bin under 
our framework is called CPI-DE/rand/1/bin. 

5.1. CPI-DE for Two Classic DE Versions 

The proposed DE framework, i.e., CPI-DE, is firstly 
applied to two classic versions of DE introduced in Section 2, 
i.e., DE/rand/1/bin and DE/current-to-best/1/bin. DE/rand/1/ 
bin selects individuals for mutation in a random manner and 
does not add any search bias; therefore it is an unbiased DE. 

Table 2 
Experimental results of DE/rand/1/bin, CPI-DE/rand/1/bin, DE/current-to-best/1/bin, and CPI-DE/current-to-best/1/bin over 51 independent runs on 28 test 
functions with 50D from IEEE CEC2013 using 500,000 FEs. 

 

Test Functions with 50D from 
IEEE CEC2013 

DE/rand/1/bin 
Mean Error±Std Dev 

CPI-DE/rand/1/bin 
Mean Error±Std Dev 

DE/current-to-best/1/bin 
Mean Error±Std Dev 

CPI-DE/current-to- 
best/1/bin 

Mean Error±Std Dev 

Unimodal 
Functions 

CEC20131 8.68E+01±1.71E+01− 7.85E-01±1.60E-01 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 
CEC20132 5.54E+08±7.93E+07− 3.11E+05±1.48E+05 2.75E+08±6.31E+07− 3.14E+02±1.29E+03 
CEC20133 5.19E+10±4.67E+09− 8.64E+09±2.01E+09 3.51E+08±6.14E+08− 4.27E+06±8.78E+06 
CEC20134 8.01E+04±7.21E+03− 5.13E+01±1.66E+01 4.82E+04±6.36E+03− 0.00E+00±0.00E+00 
CEC20135 2.94E+01±3.08E+00− 1.21E+00±2.12E-01 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 

Basic 
Multimodal 
Functions 

CEC20136 1.19E+02±2.15E+01− 4.40E+01±2.85E-01 4.40E+01±7.63E-01− 4.34E+01±4.43E-12 
CEC20137 1.55E+02±8.54E+00− 9.28E+01±9.54E+00 6.73E+01±1.85E+01− 2.07E+01±8.69E+00 
CEC20138 2.11E+01±3.50E-02≈ 2.11E+01±3.01E-02 2.11E+01±3.39E-02≈ 2.11E+01±3.41E-02 
CEC20139 7.26E+01±1.64E+00≈ 7.29E+01±9.43E-01 7.24E+01±1.32E+00− 7.16E+01±1.88E+00 
CEC201310 2.57E+03±2.50E+02− 1.16E+00±3.09E-02 1.28E+00±1.92E-01− 9.18E-04±2.87E-03 
CEC201311 3.47E+02±1.79E+01+ 3.74E+02±1.81E+01 1.20E+01±2.66E+00+ 9.34E+01±2.15E+01 
CEC201312 5.43E+02±1.92E+01− 3.97E+02±1.48E+01 4.06E+02±1.65E+01− 3.72E+02±1.61E+01 
CEC201313 5.50E+02±2.25E+01− 3.96E+02±1.62E+01 4.08E+02±1.51E+01− 3.74E+02±1.45E+01 
CEC201314 1.00E+04±2.29E+02≈ 1.04E+04±3.70E+02 9.76E+03±3.39E+02+ 1.02E+04±3.41E+02 
CEC201315 1.40E+04±3.79E+02≈ 1.40E+04±3.79E+02 1.40E+04±3.59E+02≈ 1.39E+04±4.03E+02 
CEC201316 3.29E+00±3.12E-01≈ 3.33E+00±3.64E-01 3.39E+00±2.67E-01≈ 3.37E+00±2.66E-01 
CEC201317 5.15E+02±1.86E+01− 4.84E+02±1.85E+01 3.28E+02±1.45E+01≈ 3.32E+02±1.42E+01 
CEC201318 6.57E+02±1.98E+01− 4.73E+02±1.55E+01 4.56E+02±1.19E+01− 4.25E+02±1.60E+01 
CEC201319 1.22E+02±2.35E+01− 3.65E+01±1.66E+00 2.74E+01±1.48E+00+ 2.95E+01±1.12E+00 
CEC201320 2.28E+01±2.09E-01≈ 2.26E+01±2.17E-01 2.25E+01±2.56E-01≈ 2.23E+01±2.22E-01 

Composition 
Functions 

CEC201321 1.09E+03±5.45E+02− 2.80E+02±2.29E+02 7.08E+02±4.38E+02− 6.68E+02±4.24E+02 
CEC201322 1.06E+04±2.80E+02≈ 1.09E+04±4.16E+02 9.28E+03±6.39E+02+ 9.95E+03±3.97E+02 
CEC201323 1.44E+04±3.28E+02≈ 1.41E+04±3.43E+02 1.41E+04±3.83E+02≈ 1.39E+04±4.36E+02 
CEC201324 3.78E+02±4.40E+00− 3.39E+02±1.24E+01 3.15E+02±3.74E+01− 2.35E+02±1.58E+01 
CEC201325 4.13E+02±4.42E+00≈ 4.13E+02±7.06E+00 3.41E+02±3.61E+01− 2.84E+02±2.03E+01 
CEC201326 3.64E+02±8.47E+01≈ 3.47E+02±1.35E+02 4.19E+02±1.04E+02− 3.79E+02±9.32E+01 
CEC201327 2.15E+03±3.59E+01≈ 2.11E+03±6.56E+01 1.99E+03±2.16E+02− 9.83E+02±3.95E+02 
CEC201328 4.84E+02±8.86E+00− 4.05E+02±7.82E-01 5.86E+02±7.54E+02− 5.16E+02±5.84E+02 

+ 1 4 
− 16 16 
≈ 11 8 
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In contrast, DE/current-to-best/1/bin is a relatively greedy DE, 
since the information of the best individual in the population 
is exploited to produce the trial vectors. The aim here is to 
investigate how CPI-DE influences the performance of 
unbiased and greedy DE. 

The parameter settings of these two classic versions of DE 
were: NP=D, F=0.9, and CR=0.5. For each test function, 51 
independent runs were implemented. The experimental 
results of CEC20131-CEC201328 with 30D and 50D have 
been reported in Tables 1 and 2, and the experimental results 
of CEC20141-CEC201430 with 30D and 50D have been 
reported in Tables 3 and 4, where “＋”, “－”, and “≈” denote 
that the performance of a classic DE version is better than, 
worse than, and similar to that of its augmented algorithm, 
respectively. One of the first observations from Tables 1-4 is 
that our framework is able to enhance the performance of 
these two classic DE versions on the majority of test 
functions. 

The detailed performance comparisons from Tables 1-4 are 
summarized as follows: 

 In the case of CEC20131-CEC201328 with D=30, 
CPI-DE/rand/1/bin and CPI-DE/current-to-best/1/bin 
exhibit better performance than their original 
algorithms on 17 and 15 test functions, respectively. 
When D=50, they surpass their original algorithms on 
16 test functions. In terms of CEC20141-CEC201430 
with D=30, CPI-DE/rand/1/bin and CPI-DE/current-to 
-best/1/bin perform better than their original 
algorithms on 21 and 15 test functions, respectively. 
With respect to D=50, they have an edge over their 
original algorithms on 20 and 19 test functions, 
respectively. However, it can be seen from Tables 1-4 
that the number of test functions that DE/rand/1/bin 
and DE/current-to-best/1/bin beat their augmented 
algorithms is less than five. 

 For CEC20131-CEC201328, our framework fails to 

Table 3 
Experimental results of DE/rand/1/bin, CPI-DE/rand/1/bin, DE/current-to-best/1/bin, and CPI-DE/current-to-best/1/bin over 51 independent runs on 30 test 
functions with 30D from IEEE CEC2014 using 300,000 FEs. 
 

Test Functions with 30D from 
IEEE CEC2014 

DE/rand/1/bin 
Mean Error±Std Dev 

CPI-DE/rand/1/bin 
Mean Error±Std Dev 

DE/current-to-best/1/bin 
Mean Error±Std Dev 

CPI-DE/current-to- 
best/1/bin 

Mean Error±Std Dev 

Unimodal 
Functions 

CEC20141 9.73E+07±1.74E+07− 1.97E-05±1.73E-05 1.87E+07±9.06E+06− 0.00E+00±0.00E+00 
CEC20142 5.89E+02±2.62E+02− 4.90E-06±3.12E-06 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 
CEC20143 1.16E+01±5.01E+00− 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 

Simple 
Multimodal 
Functions 

CEC20144 1.30E+02±1.32E+01− 1.24E+00±8.87E+00 2.45E+01±3.42E+01− 2.48E+00±1.24E+01 
CEC20145 2.08E+01±5.39E-02≈ 2.09E+01±5.71E-02 2.09E+01±6.28E-02≈ 2.09E+01±5.15E-02 
CEC20146 3.13E+01±1.16E+00− 2.53E+01±7.11E+00 1.03E+00±1.08E+00− 7.86E-01±9.08E-01 
CEC20147 2.84E-01±1.82E-01− 1.56E-06±1.11E-05 5.80E-04±2.00E-03≈ 5.77E-04±2.10E-03 
CEC20148 7.33E+01±8.22E+00+ 9.99E+01±8.87E+00 6.82E+00±2.69E+00− 6.51E+00±2.73E+00 
CEC20149 2.07E+02±1.28E+01− 1.94E+02±1.06E+01 1.73E+02±1.47E+01≈ 1.70E+02±1.26E+01 
CEC201410 3.27E+03±2.65E+02+ 3.76E+03±3.12E+02 2.45E+02±3.50E+02+ 1.34E+03±8.31E+02 
CEC201411 6.50E+03±2.94E+02≈ 6.55E+03±2.35E+02 6.36E+03±4.13E+02≈ 6.52E+03±2.88E+02 
CEC201412 2.01E+00±2.75E-01+ 2.13E+00±2.71E-01 1.93E+00±2.30E-01+ 2.15E+00±2.84E-01 
CEC201413 5.48E-01±6.60E-02− 4.60E-01±5.60E-02 3.91E-01±5.33E-02− 3.41E-01±5.06E-02 
CEC201414 3.49E-01±6.13E-02− 2.61E-01±3.40E-02 3.40E-01±1.63E-01− 2.68E-01±6.72E-02 
CEC201415 2.03E+01±1.33E+00− 1.65E+01±8.33E-01 1.63E+01±1.03E+00− 1.51E+01±8.25E-01 
CEC201416 1.24E+01±2.21E-01≈ 1.25E+01±1.91E-01 1.22E+01±2.44E-01≈ 1.22E+01±2.86E-01 

Hybrid 
Functions 

CEC201417 2.17E+06±5.36E+05− 1.31E+03±1.81E+02 4.53E+05±2.99E+05− 5.79E+02±3.23E+02 
CEC201418 1.23E+04±6.31E+03− 4.74E+01±6.65E+00 4.22E+02±2.75E+02− 3.73E+01±2.03E+01 
CEC201419 1.04E+01±1.14E+00− 6.12E+00±1.36E+00 6.15E+00±9.95E-01− 4.89E+00±8.02E-01 
CEC201420 2.02E+02±3.37E+01− 3.62E+01±4.23E+00 7.95E+01±8.81E+00− 2.99E+01±1.17E+01 
CEC201421 1.31E+05±4.06E+04− 7.80E+02±1.35E+02 9.68E+03±7.01E+03− 5.16E+02±2.40E+02 
CEC201422 1.76E+02±5.76E+01− 1.70E+02±6.86E+01 1.27E+02±1.00E+02+ 1.45E+02±1.19E+02 

Composition 
Functions 

CEC201423 3.15E+02±4.28E-05≈ 3.15E+02±4.36E-13 3.15E+02±4.02E-13≈ 3.15E+02±4.01E-13 
CEC201424 2.08E+02±3.60E+00− 2.00E+02±1.59E-02 2.24E+02±4.64E+00≈ 2.21E+02±5.87E+00 
CEC201425 2.24E+02±2.95E+00− 2.02E+02±2.73E-02 2.08E+02±2.73E+00− 2.02E+02±2.67E-01 
CEC201426 1.00E+02±5.97E-02≈ 1.00E+02±4.79E-02 1.00E+02±5.09E-02≈ 1.00E+02±5.31E-02 
CEC201427 6.04E+02±1.29E+02− 3.25E+02±4.17E+01 3.57E+02±4.42E+01≈ 3.55E+02±4.44E+01 
CEC201428 1.00E+03±2.41E+01≈ 9.97E+02±2.90E+01 7.88E+02±5.24E+01≈ 7.82E+02±5.06E+01 
CEC201429 1.03E+04±3.42E+03− 7.12E+02±1.19E+02 2.25E+03±8.89E+02− 6.80E+02±1.16E+02 
CEC201430 4.94E+03±9.06E+02− 1.01E+03±1.70E+02 1.48E+03±4.17E+02− 9.23E+02±4.25E+02 

＋ 3 3 
− 21 15 
≈ 6 12 
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consistently provide the results of higher quality on 
three basic multimodal functions (i.e., CEC201311, 
CEC201314, and CEC201319) and two composition 
functions (i.e., CEC201321 and CEC201322). As far as 
CEC20141-CEC201430 are considered, the similar 

phenomenon can also be observed on three simple 
multimodal functions (i.e., CEC20148, CEC201410, 
and CEC201412) and one hybrid function (i.e., 
CEC201422). The failure could be because our 
framework generates two trial vectors for each target 

Table 4 
Experimental results of DE/rand/1/bin, CPI-DE/rand/1/bin, DE/current-to-best/1/bin, and CPI-DE/current-to-best/1/bin over 51 independent runs on 30 test 
functions with 50D from IEEE CEC2014 using 500,000 FEs.  

 

Test Functions with 50D from 
IEEE CEC2014 

DE/rand/1/bin 
Mean Error±Std Dev 

CPI-DE/rand/1/bin 
Mean Error±Std Dev 

DE/current-to-best/1/bin 
Mean Error±Std Dev 

CPI-DE/current-to- 
best/1/bin 

Mean Error±Std Dev 

Unimodal 
Functions 

CEC20141 4.74E+08±6.65E+07− 3.87E+05±1.43E+05 1.75E+08±4.54E+07− 1.01E+03±6.10E+03 
CEC20142 1.47E+09±2.91E+08− 1.36E+06±2.65E+05 8.54E+02±1.10E+03− 7.76E-06±7.24E-06 
CEC20143 8.54E+04±7.65E+03− 5.52E+00±1.53E+00 3.93E+04±4.72E+03− 0.00E+00±0.00E+00 

Simple 
Multimodal 
Functions 

CEC20144 3.89E+02±4.35E+01− 9.35E+01±2.42E+00 9.60E+01±3.65E+00− 3.91E+01±4.48E+01 
CEC20145 2.11E+01±3.43E-02≈ 2.11E+01±4.52E-02 2.11E+01±3.95E-02≈ 2.11E+01±3.43E-02 
CEC20146 6.40E+01±1.50E+00− 6.18E+01±2.27E+00 4.94E+00±9.12E+00− 1.49E+00±1.27E+00 
CEC20147 3.60E+00±4.17E-01− 8.43E-01±6.84E-02 1.93E-04±1.38E-03− 0.00E+00±0.00E+00 
CEC20148 2.80E+02±1.25E+01+ 3.09E+02±1.21E+01 1.30E+01±3.01E+00+ 9.93E+01±2.66E+01 
CEC20149 4.61E+02±1.67E+01− 4.10E+02±1.53E+01 3.91E+02±1.38E+01− 3.71E+02±1.61E+01 
CEC201410 9.14E+03±3.25E+02+ 9.75E+03±3.19E+02 5.24E+03±1.61E+03+ 7.83E+03±6.91E+02 
CEC201411 1.30E+04±3.98E+02≈ 1.30E+04±3.31E+02 1.30E+04±3.34E+02≈ 1.29E+04±3.83E+02 
CEC201412 3.09E+00±2.94E-01+ 3.21E+00±2.60E-01 3.10E+00±2.63E-01≈ 3.14E+00±2.48E-01 
CEC201413 7.97E-01±7.75E-02− 6.57E-01±6.78E-02 5.66E-01±6.55E-02− 4.93E-01±5.65E-02 
CEC201414 5.59E-01±2.24E-01− 3.00E-01±4.85E-02 4.47E-01±2.53E-01− 3.45E-01±1.61E-01 
CEC201415 4.79E+02±1.69E+02− 3.60E+01±1.55E+00 3.45E+01±1.38E+00− 3.16E+01±1.78E+00 
CEC201416 2.24E+01±1.93E-01≈ 2.23E+01±1.96E-01 2.22E+01±2.71E-01≈ 2.21E+01±2.58E-01 

Hybrid 
Functions 

CEC201417 2.16E+07±5.69E+06− 3.90E+03±2.90E+02 1.00E+07±3.17E+06− 3.21E+03±3.05E+02 
CEC201418 1.06E+05±4.23E+04− 1.45E+02±9.90E+00 1.71E+03±1.26E+03− 1.58E+02±2.66E+01 
CEC201419 3.04E+01±1.60E+00− 1.81E+01±1.91E+00 1.35E+01±9.16E-01− 1.21E+01±8.88E-01 
CEC201420 2.89E+04±6.63E+03− 1.10E+02±9.87E+00 1.07E+04±3.09E+03− 1.47E+02±3.94E+01 
CEC201421 8.66E+06±2.18E+06− 2.54E+03±1.89E+02 3.62E+06±1.27E+06− 2.13E+03±2.91E+02 
CEC201422 1.29E+03±1.25E+02≈ 1.27E+03±1.49E+02 1.11E+03±2.13E+02+ 1.21E+03±1.74E+02 

Composition 
Functions 

CEC201423 3.44E+02±6.23E-02≈ 3.44E+02±3.03E-04 3.44E+02±4.50E-13≈ 3.44E+02±4.59E-13 
CEC201424 3.07E+02±2.49E+00− 2.86E+02±2.62E+00 2.67E+02±2.70E+00≈ 2.68E+02±2.84E+00 
CEC201425 2.91E+02±9.85E+00− 2.06E+02±4.36E-01 2.37E+02±8.99E+00− 2.05E+02±3.26E-01 
CEC201426 1.00E+02±6.79E-02≈ 1.00E+02±5.80E-02 1.24E+02±6.12E+01− 1.00E+02±5.49E-02 
CEC201427 1.77E+03±3.77E+01− 1.19E+03±1.47E+02 3.86E+02±5.46E+01≈ 3.83E+02±5.07E+01 
CEC201428 1.63E+03±1.00E+02≈ 1.60E+03±4.28E+01 1.06E+03±4.00E+01≈ 1.03E+03±5.15E+01 
CEC201429 3.58E+05±1.36E+05− 3.29E+03±1.47E+03 3.24E+04±2.06E+04− 8.05E+02±9.30E+01 
CEC201430 7.06E+04±1.88E+04− 8.99E+03±4.07E+02 1.00E+04±1.87E+03− 8.70E+03±6.36E+02 

+ 3 3 
− 20 19 
≈ 7 8 
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(a) CEC20132 with 30D                                                                (b) CEC201310 with 30D 

Fig. 4. Evolution of the average function error values derived from two classic DE versions (DE/rand/1/bin and DE/current-to-best/1/bin) and their augmented 
algorithms versus the number of FES on CEC20132 with 30D and CEC201310 with 30D. 
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vector, which results in a smaller number of iterations. 
 The performance of CPI-DE/rand/1/bin and CPI-DE/ 

current-to-best/1/bin is better than or similar to that of 
their original algorithms on all the unimodal function, 
regardless of the test sets and the number of decision 
variables. 

 Overall, the performance improvement provide by our 
framework is quite significant on four IEEE CEC2013 
test functions (i.e., CEC20132, CEC20133, CEC20134, 
and CEC201310) and five IEEE CEC2014 test 
functions (CEC20141, CEC201417, CEC201418, 
CEC201421, and CEC201429).  

 Compared with the original algorithms, CPI-DE/rand/ 
1/bin and CPI-DE/current-to-best/1/bin have the 
capability to achieve 100% successful runs for nine 
cases, which have been highlighted in boldface in 
Tables 1-4. 

 It seems that under our framework, the increase of the 
dimension (from 30 to 50) does not have a remarkable 
influence on the performance improvement. It is also 
interesting to note that the advantage of CPI-DE/ 

current-to-best/1/bin over DE/current-to-best/1/bin 
increases as the number of dimension increases. 

In summary, CPI-DE is an effective framework to improve 
the performance of two classic DE versions (DE/rand/1/bin 
and DE/current-to-best/1/bin) in the case of two sets of 
benchmark test functions with 30D and 50D from IEEE 
CEC2013 and IEEE CEC2014, which indicates that the 
cumulative population distribution information does play an 
important role in DE. The convergence graphs of the average 
function error values derived from two classic DE versions 
and their augmented algorithms have been given in Fig. 4 for 
two test functions, i.e., CEC20132 with 30D and CEC201310 
with 30D. 

5.2 CPI-DE for Three State-of-the-Art DE Variants 
In order to further assess the effectiveness of the proposed 

framework, CPI-DE is applied to three state-of-the-art DE 
variants, i.e., JADE [6], jDE [7], and SaDE [8]. In our 
experiments, the parameter settings of JADE, jDE, and SaDE 
were the same as in the original papers. Moreover, when 
applying our framework to these three DE variants, the 

Table 5 
Experimental results of JADE, CPI-JADE, jDE, CPI-jDE, SaDE, and CPI-SaDE over 51 independent runs on 28 test functions with 30D from IEEE CEC2013 
using 300,000 FEs.  

 
Test Functions with 30D 

from IEEE CEC2013 
JADE 

Mean Error±Std Dev 
CPI-JADE 

Mean Error±Std Dev 
jDE 

Mean Error±Std Dev 
CPI-jDE 

Mean Error±Std Dev 
SaDE 

Mean Error±Std Dev 
CPI-SaDE 

Mean Error±Std Dev 

Unimodal 
Functions 

CEC20131 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 

CEC20132 7.02E+03±4.59E+03− 0.00E+00±0.00E+00 1.34E+05±7.99E+04− 2.12E-01±1.49E+00 3.73E+05±1.83E+05− 1.00E+04±8.32E+03 

CEC20133 4.19E+05±1.29E+06− 2.33E+02±1.21E+03 1.55E+06±2.19E+06− 2.96E-01±1.36E+00 1.85E+07±2.57E+07− 1.71E+02±1.06+03 

CEC20134 4.90E+03±1.26E+04− 0.00E+00±0.00E+00 2.39E+01±2.83E+01− 0.00E+00±0.00E+00 3.17E+03±1.37E+03− 0.00E+00±0.00E+00 

CEC20135 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 

Basic 
Multimodal 
Functions 

CEC20136 1.63E+00±6.28E+00≈ 1.03E+00±5.17E+00 1.37E+01±4.75E+00− 1.01E+01±5.05E+00 3.47E+01±2.99E+01− 5.37E+00±6.70E+00 

CEC20137 3.60E+00±4.40E+00− 2.34E+00±2.22E+00 2.80E+00±2.42E+00− 1.52E+00±2.23E+00 2.56E+01±1.32E+01≈ 2.60E+01±1.46E+01 

CEC20138 2.09E+01±9.20E-02≈ 2.09E+01±4.92E-02 2.09E+01±4.74E-02≈ 2.09E+01±5.25E-02 2.09E+01±4.25E-02≈ 2.09E+01±5.66E-02 

CEC20139 2.69E+01±1.54E+00− 2.60E+01±1.44E+00 2.58E+01±3.83E+00− 2.00E+01±6.29E+00 1.85E+01±2.82E+00+ 2.28E+01±4.94E+00 

CEC201310 3.50E-02±2.08E-02− 3.02E-02±1.65E-02 3.54E-02±2.14E-02− 6.08E-03±7.17E-03 2.61E-01±1.44E-01− 6.40E-02±4.11E-02 

CEC201311 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 2.34E-01±6.77E-01− 0.00E+00±0.00E+00 

CEC201312 2.40E+01±5.10E+00− 2.36E+01±3.16E+00 6.06E+01±9.13E+00− 5.04E+01±7.82E+00 4.62E+01±1.11E+01− 4.44E+01±1.01E+01 

CEC201313 4.55E+01±1.35E+01− 4.28E+01±1.18E+01 9.19E+01±1.61E+01− 7.86E+01±1.36E+01 9.89E+01±1.88E+01− 7.96E+01±1.82E+01 

CEC201314 3.38E-02±2.35E-02+ 2.95E+00±8.42E-01 2.44E-03±6.77E-03+ 4.32E+01±1.17E+01 1.12E+00±1.40E+00+ 3.48E+00±1.90E+00 

CEC201315 3.30E+03±3.13E+02− 3.20E+03±3.27E+02 5.25E+03±3.92E+02− 5.02E+03±4.51E+02 4.67E+03±1.03E+03− 4.57E+03±3.99E+02 

CEC201316 1.90E+00±6.49E-01+ 2.21E+00±4.99E-01 2.40E+00±3.03E-01≈ 2.38E+00±2.02E-01 2.19E+00±3.10E-01≈ 2.15E+00±3.29E-01 

CEC201317 3.04E+01±2.65E-14≈ 3.04E+01±1.44E-03 3.04E+01±9.42E-07+ 3.24E+01±5.22E-01 3.04E+01±4.25E-02≈ 3.04E+01±5.58E-03 

CEC201318 7.66E+01±7.25E+00≈ 7.62E+01±6.25E+00 1.56E+02±1.53E+01− 1.44E+02±1.34E+01 1.28E+02±4.44E+01≈ 1.30E+02±1.08E+01 

CEC201319 1.45E+00±1.01E-01+ 1.65E+00±1.30E-01 1.66E+00±1.30E-01+ 2.20E+00±2.06E-01 4.10E+00±7.04E-01− 2.63E+00±2.85E-01 

CEC201320 1.05E+01±5.07E-01≈ 1.03E+01±4.77E-01 1.17E+01±3.41E-01≈ 1.15E+01±3.34E-01 1.07E+01±6.75E-01≈ 1.12E+01±5.22E-01 

Composition 
Functions 

CEC201321 3.09E+02±7.22E+01≈ 3.08E+02±8.64E+01 2.76E+02±7.28E+01+ 3.08E+02±9.43E+01 3.20E+02±7.70E+01− 3.06E+02±8.87E+01 

CEC201322 9.80E+01±2.50E+01+ 1.19E+02±2.09E+01 1.14E+02±1.92E+01+ 2.30E+02±6.64E+01 1.21E+02±2.88E+01+ 2.09E+02±8.14E+01 

CEC201323 3.46E+03±4.74E+02− 3.20E+03±4.23E+02 5.26E+03±4.45E+02− 4.91E+03±3.62E+02 4.91E+03±1.11E+03− 4.81E+03±4.69E+02 

CEC201324 2.16E+02±1.68E+01− 2.09E+02±1.18E+01 2.10E+02±8.38E+00− 2.04E+02±4.35E+00 2.28E+02±6.08E+00− 2.16E+02±5.58E+00 

CEC201325 2.75E+02±9.97E+00− 2.60E+02±1.37E+01 2.53E+02±9.63E+00− 2.48E+02±9.52E+00 2.65E+02±1.06E+01− 2.57E+02±1.25E+01 

CEC201326 2.27E+02±5.48E+01− 2.15E+02±3.99E-01 2.00E+00±4.73E-03≈ 2.00E+00±1.44E-05 2.07E+02±2.97E+01≈ 2.06E+02±2.76E+01 

CEC201327 6.98E+02±2.30E+02− 4.85E+02±2.16E+02 6.80E+02±2.25E+02− 4.10E+02±1.19E+02 5.88E+02±6.93E+01− 5.20E+02±1.14E+02 

CEC201328 3.00E+02±0.00E+00≈ 3.00E+02±0.00E+00 3.00E+02±0.00E+00≈ 3.00E+02±0.00E+00 3.00E+02±0.00E+00≈ 3.00E+02±0.00E+00 

+ 4 5 3 

− 14 15 15 

≈ 10 8 10 
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parameter settings were kept unchanged. 
The comparisons were carried out on CEC20131- 

CEC201328 with 30D and 50D and CEC20141-CEC201430 
with 30D and 50D. Tables 5 and 6 present the experimental 
results of CEC20131-CEC201328, and Tables 7 and 8 
summarize the experimental results of CEC20141-CEC201430, 
where “＋”, “－”, and “≈” denote that the performance of a 
DE variant is better than, worse than, and similar to that of its 
augmented algorithm, respectively. 

From Tables 5-8, we can give the following comments: 
 It is clear that the proposed framework offers 

substantial improvement on the performance of JADE, 
jDE, and SaDE on a lot of test functions. More 
specifically, for CEC20131-CEC201328 with 30D, 
CPI-JADE, CPI-jDE, and CPI-SaDE performs better 
than their original algorithms on 14, 15, and 15 test 
functions, respectively. In the case of D=50, 
CPI-JADE, CPI-jDE, and CPI-SaDE beat their 
original algorithms on 13, 18, and 16 test functions, 
respectively. In addition, regarding to CEC20141- 
CEC201430, CPI-JADE, CPI-jDE, and CPI-SaDE 

outperform their original algorithms on 14, 14, and 22 
test functions, respectively when D=30. In the case of 
D=50, the performance of CPI-JADE, CPI-jDE, and 
CPI-SaDE is better than that of their original 
algorithms on 13, 13, and 23 test functions, 
respectively. However, JADE, jDE, and SaDE surpass 
their augmented algorithms on at most seven test 
functions. 

 CPI-JADE, CPI-jDE, and CPI-SaDE can produce 
better or similar results compared with their original 
algorithms on all the unimodal functions except that 
the performance of CPI-jDE is worse than that of jDE 
on CEC20142 with 50D as shown in Table 8. 
Moreover, CPI-JADE, CPI-jDE, and CPI-SaDE can 
achieve significant improvements on three unimodal 
functions from IEEE CEC2013 (i.e., CEC20132- 
CEC20134) and one unimodal function from IEEE 
CEC2014 (i.e., CEC20141). 

 Compared with the original DE variants, the 
augmented algorithms can consistently provide the 
optimal solutions for 17 cases, which have been 

Table 6 
Experimental results of JADE, CPI-JADE, jDE, CPI-jDE, SaDE, and CPI-SaDE over 51 independent runs on 28 test functions with 50D from IEEE CEC2013 
using 500,000 FEs.  

 
Test Functions with 50D from 

IEEE CEC2013 
JADE 

Mean Error±Std Dev 
CPI-JADE 

Mean Error±Std Dev 
jDE 

Mean Error±Std Dev 
CPI-jDE 

Mean Error±Std Dev 
SaDE 

Mean Error±Std Dev 
CPI-SaDE 

Mean Error±Std Dev 

Unimodal 
Functions 

CEC20131 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 

CEC20132 2.65E+04±1.54E+04− 4.28E+03±8.26E+03 5.10E+05±1.65E+05− 2.77E+04±3.04E+04 7.33E+05±2.24E+05− 6.90E+04±3.56E+04 

CEC20133 2.76E+06±5.23E+06− 8.47E+05±2.68E+06 3.98E+06±4.52E+06− 2.74E+04±9.27E+04 6.47E+07±6.36E+07− 2.22E+05±5.01E+05 

CEC20134 8.00E+03±1.90E+04− 0.00E+00±0.00E+00 1.77E+02±1.82E+02− 0.00E+00±0.00E+00 4.66E+03±1.66E+03− 0.00E+00±0.00E+00 

CEC20135 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 

Basic 
Multimodal 
Functions 

CEC20136 4.36E+01±1.11E+00− 4.34E+01±2.83E-14 4.39E+01±8.65E-01− 4.34E+01±1.10E-02 5.18E+01±2.08E+01− 4.33E+01±8.35E+00 

CEC20137 2.31E+01±9.99E+00− 1.80E+01±9.51E+00 1.62E+01±6.23E+00− 1.01E+01±4.48E+00 4.86E+01±1.01E+01+ 6.14E+01±1.25E+01 

CEC20138 2.11E+01±7.14E-02≈ 2.11E+01±3.48E-02 2.11E+01±4.56E-02≈ 2.11E+01±2.67E-02 2.11E+01±4.54E-02≈ 2.11E+01±4.41E-02 

CEC20139 5.43E+01±2.78E+00− 5.38E+01±2.55E+00 5.35E+01±4.75E+00− 4.32E+01±1.20E+01 3.90E+01±4.21E+00≈ 3.97E+01±8.69E+00 

CEC201310 3.55E-02±1.75E-02≈ 3.60E-02±2.38E-02 4.66E-02±4.20E-02≈ 4.73E-02±2.80E-02 2.70E-01±1.29E-01− 1.02E-01±6.09E-02 

CEC201311 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 1.91E+00±1.46E+00− 0.00E+00±0.00E+00 

CEC201312 5.65E+01±1.11E+01+ 5.77E+01±9.17E+00 1.08E+02±1.70E+01− 9.42E+01±1.29E+01 1.22E+02±2.19E+01− 1.14E+02±2.07E+01 

CEC201313 1.33E+02±2.44E+01≈ 1.35E+02±2.57E+01 1.82E+02±2.79E+01− 1.56E+02±2.28E+01 2.50E+02±3.90E+01− 2.31E+02±3.44E+01 

CEC201314 4.38E-02±2.60E-02+ 1.44E+01±3.04E+00 5.94E-03±1.34E-02+ 9.29E+01±1.68E+01 6.03E+00±3.76E+00+ 5.92E+01±1.36E+01 

CEC201315 7.00E+03±3.77E+02− 6.89E+03±4.04E+02 9.92E+03±5.30E+02− 9.36E+03±5.36E+02 8.53E+03±2.25E+03+ 8.98E+03±6.85E+02 

CEC201316 2.15E+00±8.14E-01+ 2.48E+00±6.91E-01 3.18E+00±3.64E-01− 3.07E+00±3.00E-01 3.00E+00±2.77E-01− 2.58E+00±5.03E-01 

CEC201317 5.07E+01±4.58E-14≈ 5.08E+01±1.31E-02 5.07E+01±7.48E-14+ 5.45E+01±8.76E-01 5.14E+01±5.18E-01≈ 5.21E+01±3.52E-01 

CEC201318 1.40E+02±1.09E+01≈ 1.43E+02±9.54E+00 2.84E+02±2.36E+01− 2.36E+02±1.97E+01 1.57E+02±5.80E+01+ 2.56E+02±2.21E+01 

CEC201319 2.75E+00±1.69E-01+ 3.18E+00±2.24E-01 2.89E+00±2.32E-01+ 3.90E+00±2.96E-01 1.13E+01±2.25E+00− 5.82E+00±7.45E-01 

CEC201320 1.96E+01±5.53E-01≈ 1.94E+01±6.54E-01 2.14E+01±4.60E-01− 2.10E+01±4.87E-01 1.97E+01±1.13E+00≈ 2.03E+01±5.63E-01 

Composition 
Functions 

CEC201321 8.19E+02±3.84E+02− 7.40E+02±5.13E+02 5.74E+02±4.53E+02− 4.98E+02±4.01E+02 8.58E+02±3.34E+02− 7.47E+02±4.06E+02 

CEC201322 1.30E+01±7.12E+00+ 5.67E+01±5.13E+01 2.79E+01±2.23E+01+ 1.77E+02±9.41E+01 2.68E+01±3.42E+01+ 2.69E+02±1.93E+02 

CEC201323 7.31E+03±8.24E+02− 6.87E+03±4.82E+02 9.69E+03±8.21E+02− 9.27E+03±6.82E+02 8.24E+03±1.90E+03+ 9.05E+03±8.21E+02 

CEC201324 2.49E+02±2.10E+01≈ 2.49E+02±1.67E+01 2.57E+02±1.39E+01− 2.35E+02±1.20E+01 2.77E+02±1.01E+01− 2.58E+02±9.37E+00 

CEC201325 3.55E+02±1.71E+01− 3.31E+02±3.19E+01 3.05E+02±2.02E+01− 2.98E+02±8.91E+00 3.45E+02±1.17E+01− 3.29E+02±1.79E+01 

CEC201326 3.65E+02±9.76E+01− 3.08E+02±1.03E+02 2.89E+02±9.89E+01− 2.57E+02±8.30E+01 2.86E+02±9.35E+01− 2.75E+02±8.76E+01 

CEC201327 1.39E+03±3.33E+02− 1.24E+03±3.24E+02 1.17E+03±2.97E+02− 9.06E+02±2.17E+02 1.19E+03±1.01E+02− 1.09E+03±1.49E+02 

CEC201328 5.73E+02±6.99E+02− 4.57E+02±4.11E+02 4.00E+02±5.27E-14≈ 4.00E+02±1.60E-14 5.96E+02±7.93E+02− 4.00E+02±4.68E-14 

+ 5 4 6 

− 13 18 16 

≈ 10 6 6 
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shown in boldface in Tables 5-8. 
 CPI-JADE, CPI-jDE, and CPI-SaDE show similar 

superiority against their original algorithms when the 
dimension increases from 30 to 50. Moreover, the 
advantages of CPI-jDE and CPI-SaDE increase as the 
number of dimension increases for CEC20131- 
CEC201328 and CEC20141-CEC201430, respectively. 

The above comparison suggests that the performance of 
JADE, jDE, and SaDE can be significantly refined under our 
framework, which again verifies the importance of utilizing 
the cumulative population distribution information in DE. 
Some convergence graphs for the performance comparison 
between the three state-of-the-art DE variants and their 
augmented algorithms have been given in Fig. 5. 

5.3 Cumulative Population Distribution Information VS 
Single Population Distribution Information in DE 

The aim of this subsection is to investigate the performance 
difference between cumulative population distribution 

information and single population distribution information in 
DE. To this end, two groups of experiments have been 
implemented. 

 In the first group of experiments, the population 
distribution information of the current generation has 
been utilized in our framework. 

 In the second group of experiments, CPI-DE is 
compared with the methods in [11] and [12], which 
also exploit the distribution information of the current 
population in DE. In [11], all the individuals in the 
current population are used to compute the covariance 
matrix and the crossover is implemented in the Eigen 
coordinate system with a probability 0.5. In contrast, 
the method in [12] selects the best ps·NP individuals 
from the population to compute the covariance matrix 
and the crossover is executed in the Eigen coordinate 
system with a probability pb. 

JADE [6] is considered as the instance algorithm and 
CEC20131-CEC201328 with 30D are adopted in the 

Table 7 
Experimental results of JADE, CPI-JADE, jDE, CPI-jDE, SaDE, and CPI-SaDE over 51 independent runs on 30 test functions with 30D from IEEE CEC2014 
using 300,000 FEs.  

 
Test Functions with 30D from 

IEEE CEC2014 
JADE 

Mean Error±Std Dev 
CPI-JADE 

Mean Error±Std Dev 
jDE 

Mean Error±Std Dev 
CPI-jDE 

Mean Error±Std Dev 
SaDE 

Mean Error±Std Dev 
CPI-SaDE 

Mean Error±Std Dev 

Unimodal 
Functions 

CEC20141 6.09E+02±1.18E+03− 0.00E+00±0.00E+00 7.35E+04±6.12E+04− 1.10E-08±7.67E-08 3.60E+05±2.74E+05− 9.15E+01±3.10E+02 

CEC20142 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 

CEC20143 9.86E-04±5.95E-03− 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 1.92E+01±5.60E+01− 0.00E+00±0.00E+00 

Simple 
Multimodal 
Functions 

CEC20144 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 5.09E+00±1.48E+01− 6.84E-02±1.30E-01 4.13E+01±3.65E+01− 8.94E-05±4.41E-04 

CEC20145 2.03E+01±3.23E-02≈ 2.03E+01±3.68E-02 2.03E+01±3.80E-02≈ 2.04E+01±3.74E-02 2.05E+01±4.94E-02≈ 2.04E+01±3.93E-02 

CEC20146 9.15E+00±2.21E+00− 3.44E+00±3.57E+00 3.39E+00±3.97E+00− 1.06E+00±1.64E+00 4.86E+00±2.15E+00− 1.29E+00±1.78E+00 

CEC20147 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 1.12E-02±1.50E-02− 0.00E+00±0.00E+00 

CEC20148 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 5.85E-02±2.36E-01− 0.00E+00±0.00E+00 

CEC20149 2.62E+01±4.96E+00− 2.24E+01±5.33E+00 4.40E+01±5.33E+00− 4.16E+01±5.88E+00 3.72E+01±8.61E+00+ 4.16E+01±7.19E+00 

CEC201410 8.16E-03±1.18E-02+ 3.83E-01±7.47E-02 1.22E-03±4.94E-03+ 3.36E+00±1.61E+00 2.82E-01±4.35E-01− 1.17E-01±9.29E-02 

CEC201411 1.67E+03±2.13E+02≈ 1.77E+03±2.55E+02 2.41E+03±3.11E+02≈ 2.69E+03±3.23E+02 3.25E+03±5.37E+02− 2.63E+03±2.79E+02 

CEC201412 2.67E-01±3.57E-02+ 3.95E-01±8.64E-02 4.56E-01±6.46E-02+ 5.48E-01±9.15E-02 7.95E-01±9.96E-02− 5.59E-01±9.48E-02 

CEC201413 2.20E-01±3.25E-02− 2.04E-01±3.38E-02 3.04E-01±3.54E-02− 2.85E-01±3.66E-02 2.66E-01±4.05E-02+ 2.93E-01±4.07E-02 

CEC201414 2.41E-01±3.18E-02− 2.32E-01±3.35E-02 2.83E-01±2.95E-02− 2.58E-01±2.98E-02 2.35E-01±3.70E-02≈ 2.36E-01±2.93E-02 

CEC201415 3.20E+00±4.55E-01≈ 3.26E+00±3.78E-01 5.89E+00±7.23E-01≈ 5.91E+00±8.20E-01 4.10E+00±1.40E+00+ 6.29E+00±1.01E+00 

CEC201416 9.30E+00±4.61E-01+ 9.70E+00±2.79E-01 9.85E+00±3.81E-01+ 1.03E+01±3.22E-01 1.10E+01±2.64E-01− 1.03E+01±4.09E-01 

Hybrid 
Functions 

CEC201417 1.91E+04±1.08E+05− 1.16E+03±3.81E+02 1.13E+03±9.03E+02− 2.56E+02±1.74E+02 1.40E+04±1.36E+04− 8.08E+02±3.74E+02 

CEC201418 1.14E+02±1.97E+02− 9.47E+01±3.42E+01 1.66E+01±6.53E+00− 1.18E+01±4.24E+00 3.52E+02±4.95E+02− 6.91E+01±2.73E+01 

CEC201419 4.48E+00±7.56E-01+ 4.89E+00±7.64E-01 4.36E+00±5.94E-01− 4.15E+00±6.88E-01 6.31E+00±1.15E+01− 4.78E+00±8.97E-01 

CEC201420 3.11E+03±3.01E+03− 1.12E+01±5.24E+00 1.16E+01±3.51E+00− 8.53E+00±1.66E+00 1.39E+02±2.02E+02− 2.45E+01±1.52E+01 

CEC201421 1.33E+04±4.12E+04− 3.33E+02±1.54E+02 2.74E+02±1.71E+02− 7.09E+01±7.18E+01 4.46E+03±7.23E+03− 2.32E+02±1.19E+02 

CEC201422 1.44E+02±7.74E+01− 9.99E+01±6.09E+01 1.08E+02±7.15E+01− 6.08E+01±4.59E+01 1.54E+02±5.78E+01− 1.00E+02±6.49E+01 

Composition 
Functions 

CEC201423 3.15E+02±4.01E-13≈ 3.15E+02±4.01E-13 3.15E+02±4.01E-13≈ 3.15E+02±4.15E-13 3.15E+02±2.24E-13≈ 3.15E+02±2.29E-13 

CEC201424 2.25E+02±3.60E+00≈ 2.24E+02±2.93E+00 2.25E+02±2.56E+00≈ 2.23E+02±8.32E-01 2.26E+02±2.79E+00≈ 2.24E+02±9.76E-01 

CEC201425 2.03E+02±1.13E+00≈ 2.03E+02±5.77E-01 2.03E+02±5.31E-01≈ 2.02E+02±3.22E-01 2.08E+02±2.54E+00− 2.03E+02±1.07E+00 

CEC201426 1.02E+02±1.39E+01− 1.00E+02±2.92E-02 1.00E+02±4.02E-02≈ 1.00E+02±3.39E-02 1.11E+02±3.24E+01− 1.00E+02±4.09E-02 

CEC201427 3.35E+02±4.68E+01+ 3.53E+02±5.03E+01 3.62E+02±4.69E+01+ 3.84E+02±3.54E+01 4.20E+02±4.42E+01− 3.70E+02±4.18E+01 

CEC201428 7.96E+02±4.63E+01≈ 8.02E+02±4.34E+01 7.99E+02±2.68E+01≈ 8.02E+02±2.78E+01 8.93E+02±3.46E+01− 8.23E+02±3.26E+01 

CEC201429 8.28E+02±3.27E+02− 8.13E+02±7.12E+01 8.13E+02±7.12E+01− 5.51E+02±2.48E+02 1.10E+03±2.16E+02− 6.41E+02±1.62E+02 

CEC201430 1.66E+03±7.61E+02− 1.40E+03±7.24E+02 1.40E+03±5.06E+02− 7.23E+02±3.11E+02 1.48E+03±5.40E+02− 7.60E+02±3.65E+02 

+ 5 4 3 

− 14 14 22 

≈ 11 12 5 
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experimental study. The compared method in the first group 
of experiments is denoted as SPI-JADE, and the compared 
methods in the second group of experiments are denoted as 
JADE/eig and CoJADE. The source codes of JADE/eig and 
CoJADE were obtained from the authors of [11] and [12], 
respectively. It is necessary to emphasize that SPI-JADE, 
JADE/eig, and CoJADE only exploit the distribution 
information from a single population of one generation to 

update the covariance matrix, compared with CPI-JADE. 
Table 9 reports the experimental results, where “＋”, “－”, 

and “≈” denote that the performance of the corresponding 
algorithm is better than, worse than, and similar to that of 
CPI-JADE, respectively. As shown in this table, CPI-JADE 
demonstrates either similar or better performance against 
SPI-JADE on all the test functions and SPI-JADE cannot beat 
CPI-JADE even on one test function. In addition, CPI-JADE 

Table 8 
Experimental results of JADE, CPI-JADE, jDE, CPI-jDE, SaDE, and CPI-SaDE over 51 independent runs on 30 test functions with 50D from IEEE CEC2014 
using 500,000 FEs.  

 
Test Functions with 50D from 

IEEE CEC2014 
JADE 

Mean Error±Std Dev 
CPI-JADE 

Mean Error±Std Dev 
jDE 

Mean Error±Std Dev 
CPI-jDE 

Mean Error±Std Dev 
SaDE 

Mean Error±Std Dev 
CPI-SaDE 

Mean Error±Std Dev 

Unimodal 
Functions 

CEC20141 1.45E+04±9.43E+03− 4.73E+00±3.33E+01 4.58E+05±2.03E+05− 1.97E+04±2.08E+04 9.38E+05±2.96E+05− 5.53E+04±3.31E+04 

CEC20142 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 9.19E-09±1.83E-08+ 3.52E+02±1.24E+03 3.65E+03±4.02E+03− 2.27E-02±8.85E-02 

CEC20143 3.96E+03±2.41E+03− 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 3.04E+03±1.64E+03− 0.00E+00±0.00E+00 

Simple 
Multimodal 
Functions 

CEC20144 2.35E+01±4.12E+01− 9.70E+00±2.94E+01 8.70E+01±1.92E+01− 5.97E+01±3.77E+01 9.34E+01±3.89E+01− 1.68E+01±2.41E+01 

CEC20145 2.03E+01±2.81E-02≈ 2.04E+01±4.04E-02 2.04E+01±3.30E-02≈ 2.05E+01±3.99E-02 2.07E+01±4.62E-02≈ 2.05E+01±3.82E-02 

CEC20146 1.56E+01±6.56E+00− 4.62E+00±2.95E+00 8.88E+00±7.14E+00− 7.65E+00±7.59E+00 1.77E+01±3.55E+00− 9.27E+00±2.27E+00 

CEC20147 2.84E-03±6.74E-03− 7.24E-04±2.57E-03 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 1.43E-02±1.36E-02− 4.63E-03±6.52E-03 

CEC20148 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 1.46E+00±1.78E+00− 0.00E+00±0.00E+00 

CEC20149 5.15E+01±7.85E+00− 4.97E+01±7.66E+00 9.15E+01±9.51E+00− 9.10E+01±1.03E+01 8.78E+01±1.45E+01− 8.62E+01±1.23E+01 

CEC201410 1.17E-02±1.33E-02+ 1.93E+00±5.04E-01 7.34E-04±2.96E-03+ 7.58E+00±2.70E+00 1.57E+00±1.11E+00+ 6.05E+00±2.53E+00 

CEC201411 3.84E+03±3.04E+02+ 4.06E+03±2.77E+02 5.22E+03±3.62E+02+ 5.47E+03±3.86E+02 6.49E+03±1.70E+03− 5.81E+03±5.12E+02 

CEC201412 2.50E-01±3.42E-02+ 3.96E-01±6.93E-02 4.93E-01±5.40E-02+ 5.98E-01±6.22E-02 1.10E+00±1.10E-01− 7.05E-01±7.51E-02 

CEC201413 3.29E-01±4.25E-02− 3.07E-01±5.63E-02 3.84E-01±4.45E-02− 3.63E-01±4.17E-02 4.26E-01±5.82E-02− 4.16E-01±6.58E-02 

CEC201414 3.04E-01±8.56E-02≈ 3.06E-01±6.30E-02 3.26E-01±5.50E-02− 2.90E-01±2.09E-02 3.09E-01±3.72E-02− 2.98E-01±2.97E-02 

CEC201415 7.17E+00±8.18E-01+ 7.64E+00±8.11E-01 1.20E+01±1.28E+00≈ 1.19E+01±1.53E+00 1.46E+01±4.25E+00+ 1.66E+01±2.30E+00 

CEC201416 1.77E+01±3.71E-01≈ 1.78E+01±4.28E-01 1.82E+01±3.72E-01≈ 1.85E+01±3.55E-01 2.01E+01±3.19E-01− 1.93E+01±3.65E-01 

Hybrid 
Functions 

CEC201417 2.40E+03±6.31E+02− 2.26E+03±4.13E+02 2.16E+04±1.32E+04− 1.95E+03±5.08E+02 5.72E+04±3.41E+04− 2.05E+03±5.70E+02 

CEC201418 1.74E+02±5.03E+01≈ 1.74E+02±5.18E+01 5.91E+02±7.38E+02− 1.35E+02±4.59E+01 5.82E+02±5.63E+02− 1.45E+02±3.04E+01 

CEC201419 1.30E+01±6.01E+00− 1.09E+01±5.16E+00 1.30E+01±4.48E+00≈ 1.28E+01±5.21E+00 1.39E+01±6.45E+00+ 2.28E+01±1.24E+01 

CEC201420 8.27E+03±6.67E+03− 1.86E+02±4.63E+01 4.86E+01±1.64E+01− 4.54E+01±1.89E+01 8.79E+02±6.50E+02− 2.18E+02±8.91E+01 

CEC201421 1.25E+03±3.07E+02+ 1.49E+03±3.61E+02 8.53E+03±7.94E+03− 9.13E+02±3.41E+02 6.25E+04±3.33E+04− 1.23E+03±3.70E+02 

CEC201422 4.81E+02±1.58E+02− 3.59E+02±1.31E+02 5.40E+02±1.12E+02− 3.64E+02±1.12E+02 4.80E+02±1.43E+02≈ 4.78E+02±1.47E+02 

Composition 
Functions 

CEC201423 3.44E+02±4.26E-13≈ 3.44E+02±4.30E-13 3.44E+02±4.17E-13≈ 3.44E+02±3.19E-13 3.44E+02±2.85E-13≈ 3.44E+02±2.87E-13 

CEC201424 2.74E+02±1.66E+00≈ 2.74E+02±2.14E+00 2.68E+02±2.17E+00≈ 2.67E+02±2.05E+00 2.75E+02±3.44E+00≈ 2.72E+02±3.48E+00 

CEC201425 2.16E+02±7.03E+00− 2.08E+02±3.78E+00 2.07E+02±1.47E+00≈ 2.07E+02±1.34E+00 2.17E+02±8.71E+00− 2.11E+02±1.01E+01 

CEC201426 1.00E+02±1.33E-01≈ 1.08E+02±2.73E+01 1.00E+02±3.69E-02≈ 1.00E+02±3.95E-02 1.94E+02±2.36E+01− 1.35E+02±4.80E+01 

CEC201427 4.48E+02±5.03E+01+ 4.75E+02±6.08E+01 4.48E+02±7.13E+01− 4.04E+02±6.97E+01 7.67E+02±6.81E+01− 6.08E+02±6.72E+01 

CEC201428 1.18E+03±5.71E+01≈ 1.21E+03±2.21E+02 1.09E+03±3.35E+01≈ 1.13E+03±5.08E+01 1.41E+03±1.25E+02− 1.23E+03±1.04E+02 

CEC201429 9.00E+02±6.73E+01− 8.86E+02±5.73E+01 1.04E+03±1.95E+02− 7.80E+02±7.33E+01 1.43E+03±3.82E+02− 8.70E+02±6.22E+01 

CEC201430 9.71E+03±7.21E+02+ 1.07E+04±8.37E+02 8.70E+03±4.77E+02+ 9.20E+03±7.44E+02 1.19E+04±1.78E+03− 1.02E+04±1.13E+03 
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(a) CEC20141 with 30D           (b) CEC201417 with 30D             (c) CEC201418 with 30D           (b) CEC201420 with 30D 

Fig. 5. Evolution of the average function error values derived from three state-of-the-art DE variants (JADE, jDE, and SaDE) and their augmented algorithms 
versus the number of FES on CEC20141 with 30D, CEC201417 with 30D, CEC201418 with 30D, and CEC201420 with 30D 
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performs better than JADE/eig and CoJADE on 15 and 13 
test functions, respectively. Whereas, JADE/eig and CoJADE 
surpass CPI-JADE on only two test functions. The above 
comparison suggests that cumulative population distribution 
information is able to provide a more reasonable estimation 
of the covariance matrix compared with single population 
distribution information. 

On the other hand, it can be seen from Table 9 that the 
overall performance of CPI-JADE and SPI-JADE is better 
than that of JADE/eig and CoJADE. In CPI-JADE and 
SPI-JADE, the crossover is implemented in a deterministic 
manner, i.e., two trial vectors are generated for each target 
vector by the crossover in both the original coordinate system 
and the Eigen coordinate system. However, JADE/eig and 
CoJADE implement the crossover via a random manner, i.e., 
one trial vector is created for each target vector by the 
crossover in either the original coordinate system or the Eigen 
coordinate system. Clearly, the above comparison supports 
the deterministic manner, by which not only could the 
superiority and the search behavior of the original DE be kept, 
but also the modality of the fitness landscape could be 

identified by utilizing the cumulative population distribution 
information in DE. Moreover, a problem-dependent 
parameter in JADE/eig and CoJADE, i.e., the rate at which 
the crossover is implemented in the Eigen coordinate system, 
has been eliminated in CPI-JADE and SPI-JADE through the 
deterministic manner. 

5.4 Crossover in the Eigen Coordinate System VS Crossover 
in the Original Coordinate System 

We have introduced two kinds of crossover in DE, i.e., the 
crossover in the Eigen coordinate system and the crossover in 
the original coordinate system. One may be interested in the 
roles of these two kinds of crossover. At each generation, for 
each target vector if the trial vector generated by the 
crossover in the Eigen coordinate system is better than the 
trial vector generated by the crossover in the original 
coordinate system, then it is called a successful crossover in 
the Eigen coordinate system. Otherwise, it is called a 
successful crossover in the original coordinate system. With 
the termination of the gth generation, there are g NP∗  trial 
vectors generated by the crossover in the Eigen coordinate 

Table 9 
Experimental results of SPI-JADE, JADE/eig, CoJADE, and CPI-JADE over 51 independent runs on 28 test functions with 30D from IEEE CEC2013 using 
300,000 FEs.  

 
Test Functions with 30D from 

IEEE CEC2013 
SPI-JADE 

Mean Error±Std Dev 
JADE/eig 

Mean Error±Std Dev 
CoJADE 

Mean Error±Std Dev 
CPI-JADE 

Mean Error±Std Dev 

Unimodal 
Functions 

CEC20131 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 
CEC20132 1.20E+03±1.89E+03− 9.42E+03±7.67E+03− 3.37E+03±3.39E+03− 0.00E+00±0.00E+00 
CEC20133 8.19E+02±3.82E+03− 7.15E+02±2.91E+03− 1.55E+03±8.06E+03− 2.33E+02±1.21E+03 
CEC20134 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 
CEC20135 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 

Basic 
Multimodal 
Functions 

CEC20136 1.55E+00±6.27E+00≈ 3.79E+00±5.24E+00− 2.66E+00±7.92E+00− 1.03E+00±5.17E+00 
CEC20137 2.33E+00±2.44E+00≈ 2.33E+00±2.44E+00≈ 2.34E+00±3.44E+00≈ 2.34E+00±2.22E+00 
CEC20138 2.09E+01±5.43E-02≈ 2.09E+01±4.24E-02≈ 2.09E+01±8.41E-02≈ 2.09E+01±4.92E-02 
CEC20139 2.59E+01±1.57E+00≈ 2.62E+01±1.50E+00≈ 2.58E+01±1.86E+00≈ 2.60E+01±1.44E+00 
CEC201310 2.97E-02±1.80E-02≈ 2.33E-02±1.25E-02+ 3.05E-02±1.71E-02≈ 3.02E-02±1.65E-02 
CEC201311 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 
CEC201312 2.35E+01±3.76E+00≈ 2.60E+01±4.09E+00− 2.44E+01±4.83E+00− 2.36E+01±3.16E+00 
CEC201313 4.52E+01±1.18E+01− 5.06E+01±1.10E+01− 4.88E+01±1.14E+01− 4.28E+01±1.18E+01 
CEC201314 2.92E+00±9.08E-01≈ 5.74E+00±1.67E+00− 5.25E+00±1.40E+00− 2.95E+00±8.42E-01 
CEC201315 3.23E+03±3.12E+02≈ 3.24E+03±3.39E+02≈ 3.19E+03±3.79E+02≈ 3.20E+03±3.27E+02 
CEC201316 2.19E+00±4.92E-01≈ 1.71E+00±7.23E-01+ 1.87E+00±5.87E-01+ 2.21E+00±4.99E-01 
CEC201317 3.04E+01±1.53E-03≈ 3.04E+01±3.53E-03≈ 3.04E+01±4.97E-03≈ 3.04E+01±1.44E-03 
CEC201318 7.75E+01±6.65E+00− 7.78E+01±7.26E+00− 7.68E+01±7.35E+00− 7.62E+01±6.25E+00 
CEC201319 1.67E+00±1.25E-01≈ 1.75E+00±1.35E-01− 1.77E+00±1.42E-01− 1.65E+00±1.30E-01 
CEC201320 1.03E+01±4.92E-01≈ 1.05E+01±5.95E-01≈ 1.04E+01±4.90E-01≈ 1.03E+01±4.77E-01 

Composition 
Functions 

CEC201321 3.11E+02±8.00E+01≈ 3.21E+02±8.41E+01− 2.93E+02±7.72E+01+ 3.08E+02±8.64E+01 
CEC201322 1.17E+02±1.30E+01≈ 1.39E+02±3.98E+01− 1.37E+02±3.33E+01− 1.19E+02±2.09E+01 
CEC201323 3.23E+03±3.92E+02≈ 3.30E+03±3.92E+02− 3.34E+03±3.90E+02− 3.20E+03±4.23E+02 
CEC201324 2.08E+02±6.83E+00≈ 2.15E+02±1.49E+01− 2.10E+02±1.19E+01≈ 2.09E+02±1.18E+01 
CEC201325 2.59E+02±1.19E+01≈ 2.67E+02±1.31E+01− 2.68E+02±1.26E+01− 2.60E+02±1.37E+01 
CEC201326 2.16E+02±4.21E+01≈ 2.19E+02±4.67E+01− 2.26E+02±5.45E+01− 2.15E+02±3.99E+01 
CEC201327 4.82E+02±2.02E+02≈ 6.68E+02±2.24E+02− 6.19E+02±2.11E+02− 4.85E+02±2.16E+02 
CEC201328 3.00E+02±0.00E+00≈ 3.00E+02±0.00E+00≈ 3.00E+02±0.00E+00≈ 3.00E+02±0.00E+00 

+ 0 2 2  
− 4 15 13  
≈ 24 11 13  
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system and by the crossover in the original coordinate system, 
respectively. Suppose that the number of successful crossover 
in the Eigen coordinate system is NS. Thus, the number of 
successful crossover in the original coordinate system is 
( )g NP NS∗ − . Then, the success rates of the crossover in the 
Eigen coordinate system and in the original coordinate 
system are computed as / ( )NS g NP∗  and 1 / ( ),NS g NP− ∗  
respectively. In this subsection, the change of such success 
rates is monitored during the evolution. 

In the experiments, JADE is still chosen as the instance 
algorithm. In addition, three test functions with 30D from 
IEEE CEC2014 are used to produce the experimental results: 
the unimodal function CEC20143, the simple multimodal 
function CEC20146, and the hybrid function CEC201417. 
Since CEC20143, CEC20146, and CEC201417 represent 
different kinds of test functions, it is expected to carry out a 
multi-facet investigation on the roles of the crossover in the 
Eigen coordinate system and the crossover in the original 
coordinate system. Fig. 6 depicts the evolution of the success 

rates of these two kinds of crossover. Note that the success 
rates are initialized to 0.5 for both of them. 

From Fig. 6, two interesting phenomena can be observed: 
 The relationship between the success rates of these 

two kinds of crossover can be divided into three types. 
In the first type, the success rate of the crossover in the 
Eigen coordinate system is consistently higher than 
that of the crossover in the original coordinate system 
throughout the whole evolutionary process (as shown 
in Fig. 6(b)). Nevertheless, the second type is contrary 
to the first type (as shown in Fig. 6(c)). For the third 
type, the success rate of the crossover in the Eigen 
coordinate system is lower at the early stage of the 
evolution yet higher at the later stage of the evolution, 
compared with that of the crossover in the original 
coordinate system (as shown in Fig. 6(a)). The 
occurrence of the above three types of relationship is 
dependent on the characteristics of test functions, such 
as the number and size of the basin of attraction. For 
example, for the unimodal function (such as 
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(a) CEC20143 with 30D 
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(b) CEC20146 with 30D 
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(c) CEC201417 with 30D 

Fig. 6. The success rates of the crossover in the Eigen coordinate system and the crossover in the original coordinate system during the evolution. 
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CEC20143), there is only one basin of attraction. In the 
later stage of evolution, the search will be 
implemented around this basin of attraction. As a 
result, the modality of the fitness landscape can be 
well identified by utilizing the cumulative population 
distribution information, which leads to a higher 
success rate of the crossover in the Eigen coordinate 
system. 

 During the evolution, the success rates of these two 
kinds of crossover exhibit opposite tendencies. That is, 
the success rate of the crossover in the Eigen 
coordinate system gradually increases while the 
success rate of the crossover in the original coordinate 
system gradually decreases. It is not difficult to 
understand since more and more information of the 
population will be exploited to update the covariance 
matrix over the course of evolution, and thus, the 
capability of the covariance matrix associated with 
cumulative population distribution information identi- 
fying the modality of the fitness landscape will be 
strengthened gradually. Consequently, the crossover in 
the Eigen coordinate system becomes more and more 
powerful to guide the population toward the promising 
areas. 

Based on the above discussion, we can give the following 
comments: 

 Since neither of these two kinds of crossover can 
consistently provide better success rate on different 
kinds of test functions, both of them are very 
important for our framework. 

 It seems that the crossover in the Eigen coordinate 
system plays a more and more important role along 
with the evolution. 

6. Conclusion 

A simple yet efficient DE framework, which is referred as 
CPI-DE, has been presented in this paper. In CPI-DE, the 
cumulative population distribution information is utilized to 
establish an Eigen coordinate system for DE’s crossover. 
Moreover, CPI-DE performs the crossover in both the 
original coordinate system and the Eigen coordinate system 
in a deterministic manner. As a result, two trial vectors are 
generated for each target vector and the best one among the 
target vector and two trial vectors will survive into the next 
generation. CPI-DE does not add any extra parameters into 
DE. 

CPI-DE has been applied to two classic DE versions and 
three state-of-the-art DE variants. Experiments across two 
benchmark test sets from IEEE CEC2013 and IEEE 
CEC2014 show that CPI-DE has the capability to 
significantly enhance the performance of DE. Moreover, the 
effectiveness of utilizing cumulative population distribution 
information in DE has been demonstrated by experiments, 
and the roles of the crossover in the Eigen coordinate system 
and the crossover in the original coordinate system have been 
analyzed. In the future, we will propose some advanced DE 

variants based on our framework. 
The Matlab source code of CPI-DE can be downloaded 

from Y. Wang’s homepage: 
http://www.escience.cn/people/yongwang1/index.html  
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