
1

CaR: A Cutting and Repulsion-based Evolutionary
Framework for Mixed-Integer Programming

Problems
Jiao Liu, Yong Wang, Senior Member, IEEE, Pei-Qiu Huang, and Shouyong Jiang

Abstract—A mixed-integer programming (MIP) problem con-
tains both constraints and integer restrictions. Integer restrictions
divide the feasible region defined by constraints into multiple
discontinuous feasible parts. In particular, the number of discon-
tinuous feasible parts will drastically increase with the increase
of the number of integer decision variables and/or the size of can-
didate set of each integer decision variable. Due to the fact that
the optimal solution is located in one of discontinuous feasible
parts, it is a challenging task to solve a MIP problem. This paper
presents a cutting and repulsion-based evolutionary framework
(called CaR) to solve MIP problems. CaR includes two main
strategies: the cutting strategy and the repulsion strategy. In the
cutting strategy, an additional constraint is constructed based on
the objective function value of the best individual found so far, the
aim of which is to continuously cut unpromising discontinuous
feasible parts. As a result, the probability of the population
entering a wrong discontinuous feasible part can be decreased. In
addition, in the repulsion strategy, once it has been detected that
the population has converged to a discontinuous feasible part, the
population will be reinitialized. Moreover, a repulsion function is
designed to repulse the previous explored discontinuous feasible
parts. Overall, the cutting strategy can significantly reduce the
number of discontinuous feasible parts and the repulsion strategy
can probe the remaining discontinuous feasible parts. Sixteen test
problems developed in this paper and two real-world cases are
used to verify the effectiveness of CaR. The results demonstrate
that CaR performs well on solving MIP problems.

Index Terms—Evolutionary algorithms, mixed-integer pro-
gramming problems, cutting, repulsion, differential evolution

I. INTRODUCTION

In many science and engineering disciplines, it is common
to encounter mixed-integer programming (MIP) problems [1]-
[6]. In general, a MIP problem can be formulated as:

min f(x, y)

s.t. gk(x, y) ≤ 0, k = 1, . . . , l

hk(x, y) = 0, k = l+1, . . . , p

xLi ≤ xi ≤ xUi , i = 1, . . . , n1

yLi ≤ yi ≤ yUi , i = 1, . . . , n2

[x, y] ∈ S

yi is an integer

(1)

This work was supported by the National Natural Science Foundation of
China under Grant 61976225. (Corresponding authors: Yong Wang and Pei-
Qiu Huang.)

Jiao Liu, Yong Wang, and Pei-Qiu Huang are with the School of Au-
tomation, Central South University, Changsha 410083, China. (Email: li-
u jiao@csu.edu.cn; ywang@csu.edu.cn; pqhuang@csu.edu.cn).

Shouyong Jiang is with the School of Computer Science, University of
Aberdeen, Aberdeen AB24 3EE, U.K. (Email:math4neu@gmail.com).

Fig. 1. A common constrained optimization problem in (5). The green area
denotes the feasible region defined by constraints, and the blue cross denotes
the optimal solution.

where x = (x1, . . . , xn1) and y = (y1, . . . , yn2) are the
continuous and integer decision vectors, respectively; S is the
decision space; f(x, y) is the objective function, gk(x, y) is the
kth inequality constraint, and hk(x, y) is the (k− l)th equality
constraint; xLi and xUi are the lower and upper bounds of
xi, respectively; yLi and yUi are the lower and upper bounds
of yi, respectively; n1 is the number of continuous decision
variables, n2 is the number of integer decision variables, l is
the number of inequality constraints, and (p− l) is the number
of equality constraints. The degree of constraint violation of
[x, y] is calculated as follows:

Gk(x, y) =

{
max{0, gk(x, y)}, 1 ≤ k ≤ l
max{0, |hk(x, y)| − δ}, l+1 ≤ k ≤ p

(2)

G(x, y) =

p∑
k=1

Gk(x, y) (3)

where δ is a positive tolerance value to relax equality con-
straints to a certain extent. The feasible region defined by all
the constraints is denoted as:

Ω = {[x, y]|G(x, y) = 0, [x, y] ∈ S} (4)

It is noteworthy that MIP problems can be regarded as
a special class of constrained optimization problems. For a
common constrained optimization problem, its feasible region
is defined by constraints. However, apart from constraints, a
MIP problem also contains integer restrictions. These integer

2

Fig. 2. A MIP problem in (6). The green area denotes the feasible region
defined by constraints, the red lines denote the discontinuous feasible parts
defined by both constraints and integer restrictions, and the blue cross denotes
the optimal solution.

restrictions divide the feasible region into several discontin-
uous feasible parts. We construct two examples to illustrate
the difference between a common constrained optimization
problem and a MIP problem. The first example is a common
constrained optimization problem:

min − 20x1 − 10x2

s.t. x21 + x22 ≤ 12.25

− x21 − x22 ≤ −4

x1, x2 > 0

(5)

Fig. 1 shows its feasible region (the green area). The second
example is a MIP problem:

min − 20x1 − 10x2

s.t. x21 + x22 ≤ 12.25

− x21 − x22 ≤ −4

x1, x2 > 0

x2 is an integer

(6)

Fig. 2 shows its feasible region (the green area) and three
discontinuous feasible parts (the red lines). The optimal so-
lution of the first example is located in its feasible region.
In contrast, the optimal solution of the second example is
located in one of the discontinuous feasible parts. Compared
with the first example, solving the second example is more
challenging since we need to find the optimal solution from
multiple discontinuous feasible parts. Moreover, if a MIP
problem has many integer decision variables and/or the value
of each integer decision variable can be selected from many
integers, it will have a large number of discontinuous feasible
parts, which makes it more difficult to be solved. For example,
if a MIP problem has two integer decision variables, and the
value of each integer decision variable can be selected from
100 integers, it briefly has 10000 discontinuous feasible parts.
In this situation, we need to find the optimal solution from
these 10000 discontinuous feasible parts, which is obviously
a challenging task.

During the past decades, there has been a growing in-
terest in applying evolutionary algorithms (EAs) to solve

MIP problems [7]-[11]. When solving MIP problems, EAs
should be integrated with constraint-handling techniques and
integer-restriction-handling techniques due to the presence of
both constraints and integer restrictions. Current constraint-
handling techniques can mainly be classified into three classes:
methods based on penalty functions [12]-[15], methods based
on the preference of feasible solutions over infeasible solu-
tions [16]-[21], and methods based on multiobjective optimiza-
tion [22]-[25]. Meanwhile, many indirect integer-restriction-
handling techniques (e.g., rounding and truncation) [26]-[33]
and direct integer-restriction-handling techniques (e.g., dis-
crete code) [34]-[38] have been widely used to handle integer
restrictions in MIP problems. However, current methods gen-
erally combine constraint-handling techniques with integer-
restriction-handling techniques in a straightforward way, and
ignore the effect caused by discontinuous feasible parts. Thus,
they are easy to converge to a local optimal solution.

In order to find the optimal solution of a MIP problem, we
consider the following two issues in this paper:

• Since there are a considerable number of discontinuous
feasible parts and the optimal solution is located in one
of them, can we gradually remove unpromising discon-
tinuous feasible parts during the evolution?

• If the population has converged to a local optimal solution
in one of the remaining discontinuous feasible parts, how
can we guide the population to jump out of this local
optimal solution and explore other discontinuous feasible
parts?

To address these two issues, a novel cutting and repulsion-
based evolutionary framework, called CaR, is proposed in
this paper to solve MIP problems. CaR contains two main
strategies: the cutting strategy and the repulsion strategy.

The main contributions of this paper can be summarized as
follows:

• In the cutting strategy, an additional constraint is con-
structed based on the objective function value of the best
individual found so far. By adding this constraint to the
original MIP problem, a transformed MIP problem is ob-
tained. This constraint has the capability to continuously
cut unpromising discontinuous feasible parts along with
the evolution. Therefore, the transformed MIP problem
has fewer discontinuous feasible parts than the original
one. As a result, the possibility that the population
converges to a wrong discontinuous feasible part can be
reduced. Note that the feasibility rule [16] and rounding
are combined with differential evolution (DE) [39] to
solve the transformed MIP problem.

• Even though the cutting strategy can continuously remove
some unpromising discontinuous feasible parts, the al-
gorithm may still converge to a local optimal solution
in one of the remaining discontinuous feasible parts. In
the repulsion strategy, once it has been detected that
the algorithm cannot obtain a better solution during
a fixed number of generations, we consider that the
population has converged to one of the discontinuous
feasible parts. Under this condition, the integer decision
vector corresponding to this discontinuous feasible part is

3

recorded and the population is reinitialized. Subsequently,
we design a repulsion function to avoid to revisit this dis-
continuous feasible part. Thus, the population is capable
of exploring other promising discontinuous feasible parts.

• Systematic experiments have been conducted to study the
performance of CaR by 16 test problems devised in this
paper. The results suggest that CaR performs better than
three other state-of-the-art EAs on these 16 test problems.
Moreover, CaR has been successfully applied to two real-
world cases: the deployment optimization problem in
the multiunmanned aerial vehicle (multi-UAV)-assisted
Internet of things (IoT) data collection system and the
path planing problem of the curvature-constrained UAV.

The rest of this paper is organized as follows. Section II
introduces DE. The proposed framework, CaR, is elaborated
in Section III. The experimental studies and case studies are
executed in Section IV and Section V, respectively. Section
Finally, Section VI concludes this paper.

II. DIFFERENTIAL EVOLUTION (DE)
DE is a very popular population-based optimizer proposed

by Storn and Price, which have been applied to solve many
real-world optimization problems [39], [40], [41], [42]. It
contains four processes: initialization, mutation, crossover, and
selection.

In initialization, NP individuals are randomly generated
from the decision space:

xi = (xi,1, . . . , xi,n), i = 1, . . . , NP (7)

where xi is the ith individual and n is the number of the
decision variables.

In mutation, a mutant vector vi = (vi,1, . . . , vi,n) is created
for each individual xi by the mutation operator. The commonly
used mutation operators include:
• DE/rand/1:

vi = xr1 + F × (xr2 − xr3) (8)

• DE/rand/2:

vi = xr1 + F × (xr2 − xr3) + F × (xr4 − xr5) (9)

• DE/current-to-rand/1:

vi = xi + rand× (xr1 − xi) + F × (xr2 − xr3) (10)

• DE/rand-to-best/1:

vi = xr1 + rand× (xbest − xr1) + F × (xr2 − xr3)
(11)

where r1, r2, r3, r4, and r5 are five mutually different
integers randomly selected from {1, . . . , NP}, xbest is the best
individual in the population, rand is a uniformly distributed
random number from [0, 1], and F is the scaling factor.

By implementing crossover, a trial vector ui = (ui,1,
. . . , ui,D) is generated based on xi and vi. The commonly
used crossover operators include:
• Binomial crossover [43]:

ui,j =

{
vi,j , if randj < CR or j = jrand

xi,j , otherwise
(12)

where i = 1, . . . , NP , j = 1, . . . , n, CR ∈ [0, 1] is
the crossover control parameter, randj is a uniformly
distributed random number between 0 and 1, and jrand
is an integer randomly selected from [1, n].

• Exponential crossover [44]:

ui,j =

{
vi,j , if j =< l >n, . . . , < l + L− 1 >n

xi,j , otherwise
(13)

where i = 1, . . . , NP , j = 1, . . . , n, < · >n denotes the
modulo function with modulus n, l is a randomly chosen
integer from the interval [1, n], and L is an integer drawn
from the interval [1, n] with the probability Pr(L ≥ v) =
CRv−1(v > 0).

Das et al. [45] pointed out the behavior of these two crossover
operators: the behavior of the exponential crossover is more
sensitive to the problem size than the behavior of the binomial
crossover. The difference between these two crossover oper-
ators lies in different distributions of the number of mutated
components.

In selection, the better one between xi and ui is selected
into the next generation:

xi =

{
ui, if f(ui) ≤ f(xi)
xi, otherwise

(14)

III. PROPOSED METHOD

A. Cutting

At each generation, the best individual found so far is
denoted as [x′, y′], and its objective function value and degree
of constraint violation are denoted as f ′best and G′best, respec-
tively. Based on f ′best and G′best, the following constraint is
constructed:

gp+1(x, y) = f(x, y)− fcons ≤ 0 (15)

where

fcons =

{
f ′best, if G′best ≤ 0

+∞, otherwise
(16)

According to (16), if [x′, y′] is an infeasible individual, fcons =
+∞. In this case, (15) will not take effect. On the other
hand, if [x′, y′] is a feasible individual, fcons = f ′best. Then,
to satisfy (15), an individual must be better than [x′, y′] in
terms of the objective function value. Under this condition,
the discontinuous feasible parts in which the objective function
values of all solutions are worse than the objective function
value of [x′, y′] cannot satisfy (15). As a result, they are cut
by (15). In this paper, such discontinuous feasible parts are
considered as unpromising discontinuous feasible parts.

By adding (15) to (1), a transformed MIP problem can be

4

Fig. 3. Contours of the objective function and the feasible region of P1.
The green area is the feasible region defined by constraints, the red line and
red points are the discontinuous feasible parts defined by both constraints and
integer restrictions, and the optimal solution is located in feasible part I.

obtained:
min f(x, y)

s.t. gk(x, y) ≤ 0, k = 1, . . . , l

hk(x, y) = 0, k = l+1, . . . , p

gp+1(x, y) = f(x, y)− fcons ≤ 0

xLi ≤ xi ≤ xUi , i = 1, . . . , n1

yLi ≤ yi ≤ yUi , i = 1, . . . , n2

[x, y] ∈ S

yi is an integer

(17)

This transformed MIP problem has the following three prop-
erties:
• Property 1: Due to the fact that the optimal solution

of (1) can satisfy (15), (1) and (17) have the same optimal
solution.

• Property 2: Compared with (1), (17) has fewer discon-
tinuous feasible parts. It is because unpromising discon-
tinuous feasible parts have been removed.

• Property 3: When solving (17), all the individuals in
the population, other than [x′, y′], are infeasible solutions.
These infeasible solutions will be motivated to enter the
remaining promising discontinuous feasible parts during
the evolution.

Next, we design two artificial test functions (i.e., P1 and
P2) to illustrate the principle of the cutting strategy.

P1 : min (x1 − 1)2 + (x2 − 3)2

s.t. (x1 + 1)2 + (x2 + 1)2 ≤ 1

(x1 + 1.5)2 + (x2 + 1)2 ≤ 1.2

x1 ∈ [−3, 1]

x2 ∈ {−3,−2,−1, 0, 1}

(18)

P2 : min (x1 − 1)2 + (x2 − 3)2

s.t. (x1 + 1)2 + (x2 + 1)2 ≤ 1

(x1 + 1.5)2 + (x2 + 1)2 ≤ 1.2

(x1 − 1)2 + (x2 − 3)2 ≤ 17.3

x1 ∈ [−3, 1]

x2 ∈ {−3,−2,−1, 0, 1}

(19)

Fig. 4. Contours of the objective function and the feasible region of P2.
The green area is the feasible region defined by constraints, the red line and
red points are the discontinuous feasible parts defined by both constraints and
integer restrictions, and the optimal solution is located in feasible part I′.

It can be observed from (18) and (19) that the only difference
between P1 and P2 is that P2 has an additional constraint.
The left side of this constraint is the same with the objective
function, and the right side is a constant 17.3. The optimal
solutions of P1 and P2 are the same, which are (−1, 0),
and the optimal objective function values of P1 and P2
are both 13. The contours of the objective function and the
feasible region of P1 and P2 are shown in Fig. 3 and
Fig. 4, respectively. The green area is the feasible region
defined by constraints, and the red line and red points are the
discontinuous feasible parts defined by both constraints and
integer restrictions. As shown in Fig. 3 and Fig. 4, P1 contains
three discontinuous feasible parts (denoted as feasible part I,
feasible part II, and feasible part III) and P2 contains two
discontinuous feasible parts (denoted as feasible part I′ and
feasible part II′). Note that the optimal solutions of P1 and P2
are located in feasible part I and feasible part I′, respectively.

Assume that the best individual found so far is a feasible
individual, and its objective function value is 17.3. Clearly, as
shown in Fig. 4, the unpromising discontinuous feasible parts
are cut by the additional constraint in P2. Meanwhile, since
the optimal objective function value of P1 is 13, this additional
constraint does not cut the optimal solution. As a result,
compared with P1, P2 has only two discontinuous feasible
parts, and the best individuals in these two discontinuous
feasible parts have better objective function values than the
best individual in feasible part III.

B. Repulsion

The repulsion strategy includes two steps. The aim of the
first step are twofold: 1) judging whether the population has
converged to a discontinuous feasible part, and 2) recording the
explored discontinuous feasible parts. In addition, the second
step is to repulse the explored discontinuous feasible parts.

The process of the first step is explained as follows. First
of all, we define a counter denoted as ctr, the initial value of
which is equal to zero. Suppose that f

′′

best and G
′′

best are the
objective function value and the degree of constraint violation
of the best individual in the current generation, respectively.
If (f ′best − f

′′

best) ≤ 0 and (G′best − G
′′

best) ≤ 0, which

5

Algorithm 1 CaR
1: Generate the initial population X0 = {x0,1, . . . , x0,NP };
2: Evaluate the f value and G value of each individual in X0;
3: Arc = ∅; // Arc denotes a predefined archive
4: t = 0; // t denotes the generation number
5: ctr = 0; // ctr denotes the counter
6: FEs = 0; // FEs denotes the number of fitness evaluations
7: while FEs<MaxFEs do
8: for each individual xt,i in Xt do
9: Generate a trial vector vt,i via DE’s mutation and crossover

operators;
10: Implement rounding on the integer decision variables of vt,j ;
11: Calculate the objective function values of vt,i and xt,i based on

f(x, y) in (17);
12: Calculate the degree of constraint violation of vt,i and xt,i based

on (20);
13: Select the better one between vt,i and xt,i according to the

feasibility rule;
14: FEs = FEs + 1;
15: end for
16: if (f ′best − f

′′
best) ≤ 0 & (G′

best −G
′′
best) ≤ 0 then

17: ctr = ctr + 1;
18: else
19: ctr = 0;
20: end if
21: if ctr > T then
22: Add the integer decision vector of the current best individual into

Arc;
23: Reinitialize the population;
24: ctr = 0;
25: end if
26: t = t+ 1;
27: end while
28: Output the best individual

means that the algorithm fails to find a better individual, then
ctr = ctr + 1; otherwise, ctr = 0. If ctr is bigger than a
predefined threshold T, which means that the algorithm cannot
find a better individual during consecutive T generations,
then we consider that the population has converged to a
discontinuous feasible part and this discontinuous feasible part
has been explored. Under this condition, the integer decision
vector of the current best individual, which corresponds to
the explored discontinuous feasible part, is recorded into a
predefined archive Arc. Meanwhile, to make the population
jump out of this discontinuous feasible part, the population
will be reinitialized, and ctr will be reset as 0. Overall, Arc
records all the explored discontinuous feasible parts.

In the second step, the explored discontinuous feasible
parts recorded in Arc are repulsed as follows. Based on the
integer decision vectors in Arc, the actual degree of constraint
violation of an individual [x, y] is calculated as:

Grep(x, y) =

G(x, y), if y is different from any

integer decision vector in Arc
G(x, y) + η, otherwise

(20)
where G(x, y) is calculated according to (3) and η is a very big
positive number. When calculating G(x, y), all the constraints
in (17) are employed. According to (20), it can be concluded
that an individual which has the same integer decision vector
with one of the integer decision vectors in Arc will have a
very big Grep value. Since the individuals are selected based
on their f values and Grep values, the individuals with very
big Grep values are hard to survive into the next generation.

As a result, all the explored discontinuous feasible parts can
be repulsed.

C. CaR

The implementation of CaR is shown in Algorithm 1.
First, the generation number t = 0, an initial population
X0 = {x0,1, . . . , x0,NP } is randomly produced from the
decision space, Arc is initialized as an empty set, and ctr
is initialized as 0. Note that x0,j (j ∈ {1, . . . , NP}) is an
individual containing both continuous decision variables and
integer decision variables. At each generation, according to the
cutting strategy, (17) is constructed. Next, for each individual
xt,j , a trial vector vt,j is generated via DE operators, and
rounding is executed on the integer decision variables of vt,j .
Afterward, vt,j and xt,j are evaluated based on (17) and
(20), and their f values and Grep values can be obtained
as follows: Subsequently, the better one between vt,j and
xt,j will be selected for the next generation according to the
feasibility rule [16]. In Algorithm 1, Steps 15-19 are executed
to update the status of ctr, and Steps 20-24 are executed
to determine whether to update Arc and to reinitialize the
population according to the status of ctr. The above procedure
is repeated until the termination condition is satisfied.

Next, we would like to give the following comments on
CaR:

• In fact, CaR is implemented based on the following two
key components: 1) transforming (1) to (17) by adding
a constructed constraint (15) (i.e., the cutting strategy),
and 2) redefining the degree of constraint violation of an
individual by (20) (i.e., the repulsion strategy).

• Many methods have been proposed to deal with infeasible
solutions [46]. In this paper, the feasibility rule proposed
by Deb et al. [16] is employed to handle infeasible
solutions. We select this method because of the following
two reasons: 1) the feasibility rule is simple and easy to
operate, and 2) according to property 3, when solving
(17), all the solutions in the population, other than the
best solution in the population, are infeasible solutions,
and it is desirable to motivate these infeasible solutions
to enter the remaining discontinuous feasible parts. As
the feasibility rule tends to push the population into the
feasible region [21], it is very suitable for our method.

D. Discussions about CaR

1) Relationship Between the Branch-and-Bound Method
and the Cutting Strategy: Both the branch-and-bound method
and the cutting strategy aim to bound the search. However,
they have the following two differences:

• In the branch-and-bound method, some of the branches
that have no chance to find a better solution are eliminated
directly. However, in the cutting strategy, the added
constraint bounds the search by changing the unpromising
discontinuous feasible parts into the infeasible regions,
thus reducing the number of the discontinuous feasible
parts.

6

Fig. 5. Contours of the objective function and the feasible region of P3.
The green area is the feasible region defined by constraints, and the red line
and red points are the discontinuous feasible parts defined by both constraints
and integer restrictions.

• Commonly, in the branch-and-bound method, an accurate
algorithm is employed to solve the subproblem corre-
sponding to each branch. However, in the cutting strategy,
DE is used to solve the transformed problem.

2) Relationship Between the Tabu Search and the Repulsion
Strategy: The repulsion strategy shares the similar idea with
the tabu search. Both of them record a set of local optimal
solutions into an archive, and taboo these recorded local
optimal solutions. However, they have the following two
differences:
• In the tabu search, some complete solutions are recoded

and tabooed, the aim of which is to avoid revisiting
previous areas. However, in the repulsion strategy, only
the integer variables of a local optimal solution are
recored and repulsed, the aim of which is to repulse an
unpromising discontinuous part.

• In the tabu search, the archive is updated with the iteration
of the algorithm, and some of the recorded solutions have
the chance to be dropped by the archive. However, in the
repulsion strategy, once the integer variables of a local
optimal solution are recorded, they never be dropped by
the archive.

E. Proof-of-Principle Results

An artificial test function P3 is constructed to explain the
principle of CaR.

P3 : min (x1 − 3)2 + (x2 − 10)2

s.t. − x21 − x2 ≤ −5

0.9x21 + x2 ≤ 4

x1 ∈ [−3, 5]

x2 ∈ {−5,−4,−3,−2,−1,

0, 1, 2, 3, 4, 5}

(21)

The optimal solution of P3 is (0, 5) and the optimal objective
function value is 34. The contours of the objective function and
the feasible region of P3 are shown in Fig. 5. The green area
is the feasible region defined by constraints, and the red line
and red points are the discontinuous feasible parts defined by

(a) (b)

(c) (d)

(e) (f)

Fig. 6. Evolution of CaR in a typical run on P3. The black dashed line
is the constraint constructed based on (15), the region cut by this constraint
is shown in gray, and the yellow line segment is the repulsed discontinuous
feasible part. (a) The 1th generation. (b) The 10th generation. (c) The 78th
generation. (d) The 85th generation. (e) The 100th generation. (f) The 150th
generation.

both constraints and integer restrictions. In total, P3 contains
18 discontinuous feasible parts.

When solving P3 by CaR, NP was set to 6, T was set to 50,
and the evolution operator was DE/rand/1/bin. Fig. 6 provides
a typical run derived from CaR. In Fig. 6, the black dashed line
is the constraint constructed based on (15), and the region cut
by (15) is shown in gray. It can be observed from Fig. 6(a) that
(15) can cut 11 discontinuous feasible parts at the beginning.
Along with the evolution, more region can be cut. Specifically,
15 and 16 discontinuous feasible parts are cut in Fig. 6(b) and
Fig. 6(c), respectively. In the 85th generation, the population
cannot find a better solution during consecutive 50 generations.
Therefore, we consider that the population has converged to
a local optimum. Under this condition, the integer decision
vector of the current best individual is stored into Arc. Then,
as shown in Fig. 6(d), the yellow discontinuous feasible part,
which corresponds to the recorded integer decision vector, is
repulsed and the population is reinitialized. Afterward, the
evolution proceeds. From Fig. 6(e), it can be seen that the
population cannot enter the yellow discontinuous feasible part
again, and will search for the optimal solution from other
promising discontinuous feasible parts. Finally, the population
attains the optimal solution as shown in Fig. 6(f).

7

TABLE I
CHARACTERISTICS OF THE 16 TEST PROBLEMS, WHERE n IS THE

NUMBER OF DECISION VARIABLES, n1 IS THE NUMBER OF CONTINUOUS
DECISION VARIABLES, n2 IS THE NUMBER OF INTEGER DECISION

VARIABLES, IC IS THE NUMBER OF INEQUALITY CONSTRAINTS, AND EC
IS THE NUMBER OF EQUALITY CONSTRAINTS.

Problem n n1 n2 IC EC
F1 2 1 1 1 0
F2 3 1 2 1 0
F3 2 1 1 3 0
F4 2 1 1 2 0
F5 2 1 1 0 1
F6 2 1 1 2 0
F7 5 3 2 0 3
F8 8 5 3 6 0
F9 8 5 3 6 0
F10 8 5 3 6 0
F11 15 12 3 5 0
F12 15 10 5 5 0
F13 6 4 2 0 4
F14 6 4 2 0 4
F15 10 7 3 8 0
F16 10 5 5 8 0

TABLE II
PARAMETER SETTINGS OF CAR

Parameter Value
Population size: NP 60
Predefined threshold: T 800
Maximum number of function evaluations: MaxFEs 2.0E+05
Tolerance value: δ 0.0001

IV. EXPERIMENTAL STUDY

A. Test Problems and Parameters Settings

Sixteen test problems (called F1-F16) were developed in this
paper to investigate the performance of CaR, which are provid-
ed in the supplementary file. All of them are minimization MIP
problems. Specifically, F1-F4 were designed by ourselves and
F5-F16 were designed based on the test functions collected in
IEEE CEC2006 [47]. Their characteristics are listed in Table I,
where n is the number of decision variables, n1 is the number
of continuous decision variables, n2 is the number of integer
decision variables, IC is the number of inequality constraints,
and EC is the number of equality constraints.

For each test problem, 25 independent runs were implement-
ed. The parameter settings of CaR are listed in Table II. These
parameters were set according to the following considerations:
• For NP , in most of current EAs, it was set between 20

and 100 [20], [48]. In terms of T , inspired by [49] and
[50], we considered that if an algorithm cannot obtain
a better solution after several hundreds of FEs, it would
be difficult to continue to find a better solution. As a
result, NP and T were set to 60 and 800, respectively.
Furthermore, we investigated the influence of these two
parameters in Section S-III of the supplementary file, and
found that the performance of CaR is insensitive to NP
and T .

• In terms of MaxFEs, we plotted the convergence curves
to exhibit the convergence of CaR in Section S-III of
the supplementary file, and found that, in most cases,
CaR could converge within 5.0E+04 function evaluations
(FEs). However, to ensure that CaR can converge com-
pletely when solving an unknown problem, MaxFEs

was set to a large value, i.e., 2.0E+05.
• In terms of δ, in existing studies of constrained EAs, δ

was usually set to 0.0001 [11], [20], [21] since it was
considered as an acceptable precision.

To evaluate the performance of different algorithms, the
following five statistical values were calculated:

• Feasible Rate (FR): The percentage of runs where an
algorithm can find at least one feasible solution in the
end.

• Successful Rate (SR): The percentage of runs where an
algorithm can successfully obtain the optimal solution in
the end. Note that, a run is considered as successful if
the following condition is satisfied: |f(xbest)− f(x∗)| ≤
0.0001, where x∗ is the best known solution and xbest is
the best feasible solution provided by an algorithm.

• Average (Ave): The average objective function value of
the best feasible solutions provided by an algorithm over
25 independent runs. If an algorithm cannot achieve
100% FR over 25 independent runs, Ave is denoted as
“NA”.

• Standard Deviation (Std Dev): The standard deviation of
the objective function values of the best feasible solutions
provided by an algorithm over 25 independent runs.
Similarly, if an algorithm cannot achieve 100% FR over
25 independent runs, Std Dev is denoted as “NA”.

• Average CPU Time (ACT): The average CPU time over
25 independent runs on each case. In this paper, the CPU
time is measured by second.

In the experimental study, the Wilcoxon’s rank-sum test at a
0.05 significance level was implemented between CaR and its
competitor to test the statistical significance. In Tables S-II–
S-V of the supplementary file, “+”, “−”, and “≈” denote that
CaR is better than, worse than, and similar to its competitor,
respectively.

B. Effectiveness of CaR with Different DE Variants

In this subsection, we validated the effectiveness of
CaR by employing four different DE variants, i.e.,
DE/rand/1/bin, DE/rand/2/bin, DE/current-to-rand/bin, and
DE/rand-to-best/bin introduced in Section II. The re-
sultant four algorithms are denoted as DE/rand/1/bin-
CaR, DE/rand/2/bin-CaR, DE/current-to-rand/bin-CaR, and
DE/rand-to-best/bin-CaR, respectively. These four algorithms
were compared with their corresponding original versions
(i.e., DE/rand/1/bin-MIP, DE/rand/2/bin-MIP, DE/current-to-
rand/bin-MIP, and DE/rand-to-best/bin-MIP). In the four ori-
ginal versions, the cutting strategy and the repulsion strategy
were not used. Note that the eight compared algorithms em-
ployed the feasibility rule to handle constraints and rounding
to deal with integer restrictions. In DE, the values of F
and CR have an important influence on the performance of
the algorithm [45]. F controls the ranges of the generated
mutation vectors and CR controls how many variables in
expectation are changed in a population member. In this paper,
we followed the suggestion of Store et al. [43], and set these
two parameters to 0.5 and 0.9, respectively.

8

The results are summarized in Table S-II of the supplemen-
tary file. From Table S-II, it is clear that no matter which
DE variant is employed, CaR can significantly improve the
performance. The detailed discussions are given below:

• DE/rand/1/bin-CaR provides 100% FR on all the 16 test
problems; however, DE/rand/1/bin-MIP fails to provide
100% FR on F10 and F14. In addition, DE/rand/1/bin-
CaR provides better SR on 14 test problems (i.e., F1-
F3, F5, F6, and F8-F16). For seven out of the 16 test
problems, DE/rand/1/bin-CaR successfully solves them
over 25 runs. In contrast, DE/rand/1/bin-MIP achieves
100% SR only on F4. Moreover, for all the 16 test
problems except F4, DE/rand/1/bin-CaR performs bet-
ter than DE/rand/1/bin-MIP in terms of Ave. From the
Wilcoxon’s rank-sum test, DE/rand/1/bin-CaR surpass-
es DE/rand/1/bin-MIP on 14 test problems. However,
DE/rand/1/bin-MIP cannot beat DE/rand/1/bin-CaR on
any test problem.

• For DE/rand/2/bin-MIP and DE/rand/2/bin-CaR, although
both of them can provide 100% FR on all the 16
test problems except F7, DE/rand/2/bin-CaR produces
better SR on 14 test problems (i.e., F1-F3, F5, F6, and
F8-F16). In terms of Ave, DE/rand/2/bin-CaR exhibits
better performance on all the 16 test problems except
F4 and F7. According to the Wilcoxon’s rank-sum test,
DE/rand/2/bin-CaR beats DE/rand/2/bin-MIP on 13 test
problems. However, DE/rand/2/bin-MIP cannot outper-
form DE/rand/2/bin-CaR on any test problem.

• DE/current-to-rand/bin-MIP provides 100% FR on 14 test
problems (i.e., F1-F6, F8, and F10-F16). In contrast,
DE/current-to-rand/bin-CaR achieves 100% FR on all the
16 test problems. In terms of SR, DE/current-to-rand/bin-
CaR is better than DE/current-to-rand/bin-MIP on 13 test
problems (i.e., F1-F3, F5, F6, F8-F10, and F12-F16). In
addition, DE/current-to-rand/bin-CaR provides better Ave
on all the 16 test problems except F4 and F15. From
the Wilcoxon’s rank-sum test, DE/current-to-rand/bin-
CaR surpasses DE/current-to-rand/bin-MIP on 13 test
problems; however, DE/current-to-rand/bin-MIP cannot
beat DE/current-to-rand/bin-CaR on any test problem.

• DE/rand-to-best/bin-MIP fail to provide 100% FR on four
test problems (F8-F10 and F14); however, DE/rand-to-
best/bin-CaR can provide 100% FR on all the 16 test pro-
blems. Regarding SR, DE/rand-to-best/bin-CaR is better
than DE/rand-to-best/bin-MIP on 11 test problems (i.e.,
F1-F3, F5-F7, F9, F10, F13, F14, and F16). In terms of
Ave, DE/rand-to-best/bin-CaR shows better performance
than DE/rand-to-best/bin-MIP on 15 test problems (F1-
F3 and F5-F16). According to the Wilcoxon’s rank-sum
test, DE/rand-to-best/bin-CaR outperforms DE/rand-to-
best/bin-MIP on 11 test problems and performs similarly
on the remaining test problems.

• In terms of ACT, it can be observed that the four DE
variants with CaR usually take about one second longer
than the four DE variants without CaR on each case.
Therefore, the use of CaR does not add any significant
computational burden.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

FEs 105

102

103

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n
 V

a
lu

e

DE/rand/2/bin-WOR

DE/rand/2/bin-CaR

Repulsion

Fig. 7. Convergence curves provided by DE/rand/2/bin-WOR and
DE/rand/2/bin-CaR on solving F12.

The superiority of CaR can be attributed to the fact that it
is able to effectively reduce the possibility that the population
converges to a wrong discontinuous feasible part.

C. Effectiveness of The Cutting Strategy and The Repulsion
Strategy

As introduced in Section III, CaR includes two main
strategies, i.e., the cutting strategy and the repulsion stra-
tegy. To investigate the effectiveness of them, three vari-
ants of DE/rand/2/bin-CaR were devised, which were
named as DE/rand/2/bin-WOCR, DE/rand/2/bin-WOC, and
DE/rand/2/bin-WOR, respectively. In DE/rand/2/bin-WOC,
only the repulsion strategy was employed; in DE/rand/2/bin-
WOR, only the cutting strategy was utilized; and in
DE/rand/2/bin-WOCR, both the cutting strategy and the re-
pulsion strategy were removed.

The results are given in Table S-III of the supplemen-
tary file. As shown in Table S-III, in terms of SR and
Ave, DE/rand/2/bin-WOC and DE/rand/2/bin-WOR have an
edge over DE/rand/2/bin-WOCR on 14 test problems (i.e.,
F1, F3, and F5-F16) and 14 test problems (i.e., F1-F3 and
F6-F16), respectively. Thus, one can conclude that both of
these two strategies have a positive influence on the per-
formance of CaR. However, compared with DE/rand/2/bin-
CaR, DE/rand/2/bin-WOC and DE/rand/2/bin-WOR perform
worse on 11 (i.e., F2, F3, F6, and F8-F15) and nine (i.e.,
F5, F7, and F9-F15) test problems, respectively. From the
Wilcoxon’s rank-sum test, it can be seen that DE/rand/2/bin-
CaR beats DE/rand/2/bin-WOCR, DE/rand/2/bin-WOC, and
DE/rand/2/bin-WOR on 13, eight, and seven test problems,
respectively. However, DE/rand/2/bin-WOCR, DE/rand/2/bin-
WOC, and DE/rand/2/bin-WOR cannot surpass FROFI-CaR
on any test problem. The above results can be explained
as follows. Although the cutting strategy has the capabili-
ty to remove unpromising discontinuous feasible parts, the
population may be trapped into one of the remaining wrong
discontinuous feasible parts if the repulsion strategy is not
utilized. On the other hand, if only the repulsion strategy is
adopted, even though the population can jump out of some
wrong discontinuous feasible parts, it still runs a high risk to
converge to a wrong discontinuous feasible part since a MIP
problem may have a large number of discontinuous feasible
parts.

9

We also use an example to further exhibit the effectiveness
of the repulsion strategy. This example shows the convergence
curves of DE/rand/2/bin-WOR and DE/rand/2/bin-CaR on
solving F12 in Fig. 7. From Fig. 7, CaR-WOR stagnates
from about 4.0E+04 FEs to 2.0E+05 FEs. Although CaR also
stagnates from about 4.0E+04 FEs to 1.6E+05 FEs, it jumps
out from the local optimum at about 1.6E+05 FEs. This is
because the repulsion strategy reinitializes the population and
makes the algorithm explore other promising feasible parts,
thus finding a better solution.

D. Combining CaR with Other EAs

In principle, CaR is an open framework and can be flexibly
combined with EAs to deal with MIP problems. To verify
this, by combining CaR with JADE [48] and FROFI [21],
two new algorithms, called JADE-CaR and FROFI-CaR, were
designed. We also developed two compared methods called
JADE-MIP and FROFI-MIP. In JADE-MIP and FROFI-MIP,
rounding was used to deal with integer restrictions. For JADE-
MIP and JADE-CaR, the feasibility rule was employed to
handle constraints. In these four compared algorithms, all the
parameter settings were the same with their original algorithms
(i.e., JADE and FROFI).

The results are shown in Table S-IV of the supplementary
file and the detailed discussions are given below:
• As far as FR, SR, and Ave are concerned, JADE-CaR

achieves better performance than JADE-MIP on 14 test
problems (i.e., F1-F3, F5, and F7-F16). According to the
Wilcoxon’s rank-sum test, JADE-CaR surpasses JADE-
MIP on 10 test problems. However, JADE-MIP cannot
beat JADE-CaR on any test problem.

• Regarding SR and Ave, FROFI-CaR is better than FROFI-
MIP on 13 test problems (i.e., F1, F3, F5, and F7-
F16). According to the Wilcoxon’s rank-sum test, FROFI-
CaR outperforms FROFI-MIP on 11 test problems and
performs similarly on the remaining test problems.

The above comparison demonstrates the potential of CaR
when combined with other EAs. In addition, from Table S-IV,
it can also be observed that FROFI-CaR is significantly better
than JADE-CaR on 10 test problems (i.e., F7-F16) in terms of
SR and Ave. This is because FRORI includes a replacement
mechanism which can alleviate the greediness of the feasibility
rule by exploiting objective function information.

E. Comparison with Three State-of-the-Art Methods for Solv-
ing MIP Problems

Based on the results in Section IV-D, as an instance of
our framework, FROFI-CaR shows good performance for
solving MIP problems. Next, we selected three state-of-the-
art EAs (i.e., MDE-LS [31], MDE-IHS [31], and EMDE [32]),
and compared their performance with FROFI-CaR. MDE-LS
incorporates a local search operator into DE, with the aim
of improving the exploitation ability. In MDE-IHS, harmony
search is integrated with DE to enhance the search ability. In
EMDE, a novel triangular mutation operator is designed. In
our experiment, the DE operators used in MDE-LS, MDE-IHS,

Fig. 8. Multi-UAV-assisted IoT data collection system considered in this
paper

and FROFI-CaR were the same with FROFI. Since one main
contribution of EMDE is the triangular mutation operator,
EMDE was implemented without any modification.

The results provided by FROFI-CaR, MDE-LS, MDE-IHS,
and EMDE are recorded in Table S-V of the supplementary
file. In terms of SR and Ave, FROFI-CaR is better than MDE-
LS and MDE-IHS on all the 16 test problems except F2 and
F4. For F2 and F4, FROFI-CaR, MDE-LS, and MDE-IHS
have similar performance. In addition, FROFI-CaR provides
similar results with EMDE on F4 and F6, and performs better
than EMDE on the remaining 14 test problems. According
to the Wilcoxon’s rank-sum test, FROFI-CaR outperforms
MDE-LS, MDE-IHS, and EMDE on 13, 14, and 14 test
problems, respectively. However, MDE-LS, MDE-IHS, and
EMDE cannot surpass FROFI-CaR on any test problem. The
above comparison suggests that, overall, the performance of
FROFI-CaR is better than that of the three competitors on
solving the 16 test problems.

V. CASE STUDIES

A. Deployment Optimization Problem in the Multi-UAV-
Assisted IoT Data Collection System

Recently, UAVs have become emerging data collection tools
in current data collection systems [51], [52]. However, to
efficiently use UAVs, the deployment of them should be
optimized. In this paper, we use up to m rotary-wing UAVs
to collect data from a set of γ ground IoT devices as shown
in Fig. 8. Note that, considering the cost of the system man-
agement, not all of the m UAVs are employed to collect data;
therefore, we use uj ∈ {0, 1} (j = 1, . . . ,m) to represent
whether the jth UAV is employed or not. Specifically, if the
jth UAV is employed, then uj = 1; otherwise, uj = 0. For
each IoT device, its coordinate is known and fixed at (xi, yi, 0)
(i = 1, . . . , γ). Each UAV is flying horizontally at a constant
altitude H , and the location of the jth UAV is denoted as
(Xj , Yj , H). Thus, the distance between the ith IoT device
and the jth UAV is expressed as:

dij =
√

(Xj − xi)2 + (Yj − yi)2 +H2 (22)

We apply aij to represent the association between the ith
IoT device and the jth UAV. If aij = 1, then the ith IoT

10

device sends data to the jth UAV; otherwise, aij = 0. In the
studied system, each IoT always chooses the nearest UAV to
send data, thus aij is calculated as:

aij =

 1, if j = arg min
j

dij

0, otherwise
(23)

Also, each IoT device chooses only one UAV to send its
data, thus

m∑
j=1

ujaij = 1 (24)

Each UAV can accept at most M IoT devices to send data
simultaneously due to the system bandwidth limitation. Thus,
we have:

γ∑
i=1

ujaij ≤M (25)

Moreover, to ensure that all the IoT devices can be serviced,
the following condition should be satisfied:

γ∑
i=1

m∑
j=1

ujaij = γ (26)

Our aim is to minimize the energy consumption of the whole
system, which is composed of the energy consumption of all
the IoT devices and UAVs. The energy consumption of all the
IoT devices is calculated as:

Eiot =

γ∑
i=1

m∑
j=1

ujaijEij (27)

where Eij is the energy consumption of the ith IoT device if
it sends data to the jth UAV. Eij is calculated as follows:

Eij =
piDi

rij
(28)

rij = B log(1 +
pih0d

−2
ij

σ2
) (29)

where pi and Di are the transmitting power and datasize of
the ith IoT device, respectively, rij is the transmission rate if
the ith IoT device sends data to the jth UAV, h0 is the channel
power gain at the reference distance d0 = 1m, σ2 is the white
Gaussian noise power, and B is the system bandwidth.

The energy consumption of all the UAVs can be calculated
as:

Euav =

m∑
j=1

uj(E
n
j + Ehj) (30)

where Enj and Ehj are the no-load energy consumption and
hover energy consumption of the jth UAV, respectively. For
each UAV, the no-load energy consumption is a fixed value.
In addition, the hover energy consumption of the jth UAV is
calculated as:

Ehj = phThj (31)

where Thj is the hover time of the jth UAV. As each UAV will
not be landed until all the data sent from the corresponding

IoT devices have been collected, the hover time of the jth
UAV is given by:

Thj = max
i
{ujaijDi

rij
} (32)

In summary, the considered deployment optimization prob-
lem can be formulated as:

min E(X,Y,U) = Euav + φEiot

s.t. aij ∈ {0, 1},∀i ∈ {1, . . . , γ}, j ∈ {1, . . . ,m}
uj ∈ {0, 1},∀j ∈ {1, . . . ,m}
m∑
j=1

ujaij = 1,∀i ∈ {1, . . . , γ}

γ∑
i=1

ujaij ≤M,∀j ∈ {1, . . . ,m}

γ∑
i=1

m∑
j=1

ujaij = γ

Xmin ≤ Xj ≤ Xmax,∀j ∈ {1, . . . ,m}
Ymin ≤ Yj ≤ Ymax,∀j ∈ {1, . . . ,m}

(33)

where X = {Xj |j = 1, . . . ,m}, Y = {Yj |j = 1, . . . ,m},
U = {uj |j = 1, . . . ,m}, φ is a weight, Xmin and Xmax are
the lower and upper bounds of Xj , respectively, and Ymin and
Ymax are the lower and upper bounds of Yj , respectively. In
this optimization problem, X and Y are two sets of continuous
variables, and U is a set of integer variables; therefore, it is a
typical MIP problem.

The parameters of (33) were set as follows:
• All the IoT devices were randomly distributed in a 2000

m × 2000 m square area, i.e., Xmin = Ymin = −1000
and Xmax = Ymax = 1000.

• The flight altitude of each UAV was 200 m, i.e., H = 200.
• Di was randomly distributed within [1,1000] MB.
• The no-load energy consumption Enj was set to 100 kJ.
• M = 10, pi = 0.1 W, h0 = −30 dB, σ = −250 dBm,
B = 1 MHz, ph = 1000 W, φ = 10000, γ = 50, and
m = 10.

We employed FROFI-CaR to solve (33). For comparison,
we also used FROFI-MIP to solve (33). Specifically, each
algorithm was independently run 25 times. According to the
results, the average E values produced by FROFI-CaR and
FROFI-MIP are 1.5735E+06 J and 1.6065E+06 J, respectively.
Clearly, FROFI-CaR can provide smaller energy consumption
than FROFI-MIP. The above results verify the effectiveness of
CaR on solving the deployment optimization problem in the
multi-UAV-assisted IoT data collection system.

B. Path Planning Problem of the Curvature-Constrained UAV

Due to the advantages of low cost, high maneuverability,
and good survivability, fixed-wing UAVs have shown their
great potential in performing surveillance of multiple ground
targets [53]. To better complete the task of surveillance, it
is necessary to optimize the path of a UAV, and make it fly
through all the targets by using the shortest distance traveled,

11

Fig. 9. Curvature-constrained UAV performs surveillant of multiple ground
targets

as shown in Fig 9. Note that, the path of the UAV should
satisfy the following two conditions:
• To make the planned path flyable, the curvature constraint

should be satisfied, i.e., the minimum curvature radius
of the path should not be less than the minimal turning
radius of the UAV [54]. For simplicity, in this paper, we
consider the UAV flies in the Dubins trajectory, which
can be described as:

ẋ = v cos(θ)

ẏ = v sin(θ)

θ̇ = v
ru, u ∈ [−1, 1]

v̇ = 0

(34)

where (x, y) and θ are the planar coordinate and heading
of the UAV, respectively, v is the speed of the UAV, r
is the minimal turning radius, and u is the control input.
Commonly, a triplet (x, y, θ) is called as a configuration.

• As the equipments on the UAV usually have large surveil-
lance scopes, the UAV only needs to pass through a
certain neighborhood of each target.

Overall, the considered path planning problem can be de-
scribed as a Dubins traveling salesman problem with neigh-
borhood [55], which is formulated as:

min D(R,X) =

n−1∑
i=1

d(XRi
,XRi+1

) + d(XRn
,XR1

)

s.t. Ri 6= Rj , if i 6= j,∀i ∈ {1, . . . , n},∀j ∈ {1, . . . , n}√
(xi − oxi)2 + (yi − oyi)2 ≤ Si,∀i ∈ {1, . . . , n}

Xmin ≤ xi ≤ Xmax,∀i ∈ {1, . . . , n}
Ymin ≤ yi ≤ Ymax,∀i ∈ {1, . . . , n}
0 ≤ θi ≤ 2π,∀i ∈ {1, . . . , n}

(35)
where R = {Ri|i = 1, . . . , n} represents the sequence of
targets that the UAV needs to surveil, Ri ∈ {1, . . . , n} is the
ith target, n is the number of targets, X = {Xi|i = 1, . . . , n}
is the set containing all the waypoints that the UAV passes
through, Xi = (xi, yi, θi) is the configuration of the ith
waypoint, (xi, yi) is the coordinate of the ith waypoint, θi is
the heading of the UAV at the ith waypoint, d(·, ·) represents

-60 -40 -20 0 20 40 60

x

-60

-40

-20

0

20

40

60

y

(a)

-60 -40 -20 0 20 40 60

x

-80

-60

-40

-20

0

20

40

60

y

(b)

Fig. 10. Paths provided by DE-CE-CaR and DE-CE-MIP in a typical run.
(a) the path provided by DE-CE-CaR (b) the path provided by DE-CE-MIP.

the shortest Dubins path between two configurations, (oxi,
oyi) is the coordinate of the ith target, Si is the radius of the
neighborhood of the ith target, Xmin and Xmax are the lower
and upper bounds of xi, respectively, and Ymin and Ymax are
the lower and upper bounds of yi, respectively. For d(·, ·),
the shortest path from one configuration to another must be
one of the following six Dubins path patterns {RSL, LSR,
RSR, LSL, RLR, LRL} [56], in which L, R, and S represent
turning left with the minimal turning radius, turning right with
the minimal turning radius, and moving along a straight line,
respectively. Since X contains several continuous variables,
and the elements in R can be treated as integer variables, (35)
is a MIP problem. Moreover, r, Si, and n were set to 5, 5,
and 10, respectively.

We combined DE with CaR (denoted as DE-CE-CaR) to
solve (35). To deal with the sequence variables, the encoding
method in [55] was employed. For comparison, we also
combined DE, the encoding method in [55], and the feasibility
rule to solve (35). The resultant algorithm is called DE-CE-
MIP. After 20 independently runs, the average D values of DE-
CE-CaR and DE-CE-MIP are 299.09 and 329.12, respectively.
Hence, the average D value provided by DE-CE-CaR is
9.12% better than that of DE-CE-MIP. Fig. 10(a) and 10(b)
depict the paths provided by DE-CE-CaR and DE-CE-MIP
in a typical run, respectively. Obviously, DE-CE-CaR can
provide a shorter path. The above experiments demonstrate the
effectiveness of CaR on solving the path planning problem of
the curvature-constrained UAV.

VI. CONCLUSION

A MIP problem may contain a large number of discontin-
uous feasible parts if it has many integer decision variables
and/or the value of each integer variable can be selected from
many integers. Therefore, when solving MIP problems, an
algorithm is very likely to converge to a wrong discontinuous
feasible part. To overcome the issue, a cutting and repulsion-
based evolutionary framework (called CaR) was proposed in
this paper. CaR contained two main strategies: the cutting
strategy and the repulsion strategy. The cutting strategy aimed
to remove unpromising discontinuous feasible parts during
the evolution. This strategy was implemented by adding a
constraint constructed based on the objective function value
of the best individual found so far. The repulsion strategy
aimed at exploring the remaining discontinuous feasible parts.

12

Moreover, when the population had converged to a discontin-
uous feasible part, it was reinitialized. Afterward, a repulsion
function was designed to make the population repulse the
explored discontinuous feasible parts, thus motivating the
population to search for the optimal solution from other
promising discontinuous feasible parts. From the comparative
studies on 16 test problems, the effectiveness of CaR was
verified. CaR could also be flexibly combined with other EAs
to solve MIP problems. In addition, the results showed that
the performance of CaR is better than that of three other state-
of-the-art EAs. Moreover, we also applied CaR to solve two
practical cases: the deployment optimization problem in the
multi-UAV-assisted IoT data collection system and the path
planing problem of the curvature-constrained UAV. The results
showed that CaR has the capability to solve MIP problems in
the real world.

The source code of this paper can be downloaded from:
https://intleo.csu.edu.cn/publication.html.

REFERENCES

[1] R. Angira and B. V. Babu, “Optimization of process synthesis and
design problems: A modified differential evolution approach,” Chemical
Engineering Science, vol. 61, no. 14, pp. 4707–4721, 2006.

[2] R. Balamurugan and S. Subramanian, “Hybrid integer coded differential
evolution dynamic programming approach for economic load dispatch
with multiple fuel options,” Energy Conversion & Management, vol. 49,
no. 4, pp. 608–614, 2008.

[3] X. F. Liu, Z. H. Zhan, J. D. Deng, Y. Li, and J. Zhang, “An energy
efficient ant colony system for virtual machine placement in cloud
computing,” IEEE Transactions on Evolutionary Computation, vol. 22,
no. 1, pp. 113–128, 2018.

[4] X. Y. Zhang, Y. J. Gong, Z. Zhan, W. N. Chen, Y. Li, and J. Zhang,
“Kuhn-munkres parallel genetic algorithm for the set cover problem
and its application to large-scale wireless sensor networks,” IEEE
Transactions on Evolutionary Computation, vol. 20, no. 5, pp. 695–710,
2016.

[5] C. Zhan, Y. Zeng, and R. Zhang, “Energy-efficient data collection in
uav enabled wireless sensor network,” IEEE Wireless Communications
Letters, vol. 7, no. 3, pp. 328–331, 2018.

[6] H. Wu, C. Nie, F. C. Kuo, H. Leung, and C. J. Colbourn, “A discrete
particle swarm optimization for covering array generation,” IEEE Trans-
actions on Evolutionary Computation, vol. 19, no. 4, pp. 575–591, 2015.

[7] V. Hinojosa and R. Araya, “Modeling a mixed-integer-binary small-
population evolutionary particle swarm algorithm for solving the optimal
power flow problem in electric power systems,” Applied Soft Computing,
vol. 13, no. 9, pp. 3839–3852, 2013.

[8] Y. Lin, Y. Liu, W.-N. Chen, and J. Zhang, “A hybrid differential evolu-
tion algorithm for mixed-variable optimization problems,” Information
Sciences, vol. 466, pp. 170–188, 2018.

[9] H.-Y. Zheng and L. Wang, “Reduction of carbon emissions and project
makespan by a pareto-based estimation of distribution algorithm,” In-
ternational Journal of Production Economics, vol. 164, pp. 421–432,
2015.

[10] Q. K. Pan, L. Wang, K. Mao, J. H. Zhao, and M. Zhang, “An effective
artificial bee colony algorithm for a real-world hybrid flowshop problem
in steelmaking process,” IEEE Transactions on Automation Science &
Engineering, vol. 10, no. 2, pp. 307–322, 2013.

[11] G. Jia, Y. Wang, Z. Cai, and Y. Jin, “An improved (µ+ λ)-constrained d-
ifferential evolution for constrained optimization,” Information Sciences,
vol. 222, pp. 302–322, 2013.

[12] D. W. Coit, A. E. Smith, and D. M. Tate, “Adaptive penalty methods for
genetic optimization of constrained combinatorial problems,” INFORMS
Journal on Computing, vol. 8, no. 2, pp. 173–182, 1996.

[13] J. Liu, K. L. Teo, X. Wang, and C. Wu, “An exact penalty function-
based differential search algorithm for constrained global optimization,”
Soft Computing, vol. 20, no. 4, pp. 1305–1313, 2016.

[14] V. V. D. Melo and G. Iacca, “A modified covariance matrix adapta-
tion evolution strategy with adaptive penalty function and restart for
constrained optimization,” Expert Systems with Applications, vol. 41,
no. 16, pp. 7077–7094, 2014.

[15] R. Farmani and J. A. Wright, “Self-adaptive fitness formulation for
constrained optimization,” IEEE Transactions on Evolutionary Compu-
tation, vol. 7, no. 5, pp. 445–455, 2003.

[16] K. Deb, “An efficient constraint handling method for genetic algorithms,”
Computer Methods in Applied Mechanics and Engineering, vol. 186, no.
2-4, pp. 311–338, 2000.

[17] T. Takahama and S. Sakai, “Constrained optimization by applying the
α constrained method to the nonlinear simplex method with mutations,”
IEEE Transactions on Evolutionary Computation, vol. 9, no. 5, pp. 437–
451, 2005.

[18] T. P. Runarsson and X. Yao, “Stochastic ranking for constrained evolu-
tionary optimization,” IEEE Transactions on Evolutionary Computation,
vol. 4, no. 3, pp. 284–294, 2000.

[19] E. Mezura-Montes and C. A. C. Coello, “A simple multimembered
evolution strategy to solve constrained optimization problems,” IEEE
Transactions on Evolutionary computation, vol. 9, no. 1, pp. 1–17, 2005.

[20] B.-C. Wang, H.-X. Li, J.-P. Li, and Y. Wang, “Composite differential
evolution for constrained evolutionary optimization,” IEEE Transactions
on Systems, Man, and Cybernetics: Systems, no. 99, pp. 1–14, 2018.

[21] Y. Wang, B.-C. Wang, H.-X. Li, and G. G. Yen, “Incorporating objective
function information into the feasibility rule for constrained evolutionary
optimization,” IEEE Transactions on Cybernetics, vol. 46, no. 12, pp.
2938–2952, 2016.

[22] C. A. Coello Coello, “Constraint-handling using an evolutionary mul-
tiobjective optimization technique,” Civil Engineering Systems, vol. 17,
no. 4, pp. 319–346, 2000.

[23] C. Fonseca and P. Fleming, “Multiobjective optimization and multiple
constraint handling with evolutionary algorithms. I. A unified formula-
tion,” IEEE Transactions on Systems Man & Cybernetics Part A: Systems
and Humans, vol. 28, no. 1, pp. 26–37, 2002.

[24] L. Jiao, L. Li, R. Shang, F. Liu, and R. Stolkin, “A novel selection evo-
lutionary strategy for constrained optimization,” Information Sciences,
vol. 239, pp. 122–141, 2013.

[25] Y. Wang, Z. Cai, Y. Zhou, and W. Zeng, “An adaptive tradeoff model
for constrained evolutionary optimization,” IEEE Transactions on Evo-
lutionary Computation, vol. 12, no. 1, pp. 80–92, 2008.

[26] Y.-C. Lin, K.-S. Hwang, and F.-S. Wang, “Co-evolutionary hybrid differ-
ential evolution for mixed-integer optimization problems,” Engineering
Optimization, vol. 33, no. 6, pp. 663–682, 2001.

[27] J.-P. Chiou and F.-S. Wang, “A hybrid method of differential evolution
with application to optimal control problems of a bioprocess system,” in
Evolutionary Computation Proceedings, 1998. IEEE World Congress on
Computational Intelligence., The 1998 IEEE International Conference
on. IEEE, 1998, pp. 627–632.

[28] K. Deep, K. P. Singh, M. Kansal, and C. Mohan, “A real coded genetic
algorithm for solving integer and mixed integer optimization problems,”
Applied Mathematics & Computation, vol. 212, no. 2, pp. 505–518,
2009.

[29] R. Angira and B. Babu, “Optimization of process synthesis and design
problems: A modified differential evolution approach,” Chemical Engi-
neering Science, vol. 61, no. 14, pp. 4707–4721, 2006.

[30] J. Wu, Y. Gao, and L. Yan, “An improved differential evolution al-
gorithm for mixed integer programming problems,” in Computational
Intelligence and Security (CIS), 2013 9th International Conference on.
IEEE, 2013, pp. 31–35.

[31] T. W. Liao, “Two hybrid differential evolution algorithms for engineering
design optimization,” Applied Soft Computing, vol. 10, no. 4, pp. 1188–
1199, 2010.

[32] A. W. Mohamed, “An efficient modified differential evolution algorithm
for solving constrained non-linear integer and mixed-integer global
optimization problems,” International Journal of Machine Learning and
Cybernetics, vol. 8, no. 3, pp. 989–1007, 2017.

[33] Y. Luo, X. Yuan, and Y. Liu, “An improved PSO algorithm for
solving non-convex NLP/MINLP problems with equality constraints,”
Computers & Chemical Engineering, vol. 31, no. 3, pp. 153–162, 2007.

[34] R. Li, M. T. Emmerich, J. Eggermont, T. Bäck, M. Schütz, J. Dijkstra,
and J. H. Reiber, “Mixed integer evolution strategies for parameter
optimization,” Evolutionary Computation, vol. 21, no. 1, pp. 29–64,
2013.

[35] W.-C. Wu and M.-S. Tsai, “Application of enhanced integer coded par-
ticle swarm optimization for distribution system feeder reconfiguration,”
IEEE Transactions on Power Systems, vol. 26, no. 3, pp. 1591–1599,
2011.

[36] S. Y. Wang and L. Wang, “An estimation of distribution algorithm-
based memetic algorithm for the distributed assembly permutation flow-
shop scheduling problem,” IEEE Transactions on Systems Man &
Cybernetics: Systems, vol. 46, no. 1, pp. 139–149, 2015.

13

[37] J. Kennedy and R. C. Eberhart, “A discrete binary version of the particle
swarm algorithm,” in 1997 IEEE International Conference on Systems,
Man, and Cybernetics. Computational Cybernetics and Simulation,
vol. 5. IEEE, 1997, pp. 4104–4108.

[38] D. Datta and J. R. Figueira, “A real-integer-discrete-coded particle
swarm optimization for design problems,” Applied Soft Computing,
vol. 11, no. 4, pp. 3625–3633, 2011.

[39] R. Storn and K. Price, “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
Global Optimization, vol. 11, no. 4, pp. 341–359, 1997.

[40] P.-Q. Huang, Y. Wang, K. Wang, and K. Yang, “Differential evolution
with a variable population size for deployment optimization in a uav-
assisted iot data collection system,” IEEE Transactions on Emerging
Topics in Computational Intelligence, vol. 4, no. 3, pp. 324–335, 2020.

[41] Y. Li, Z. Zhan, Y. Gong, W. Chen, J. Zhang, and Y. Li, “Differential
evolution with an evolution path: A deep evolutionary algorithm,” IEEE
Transactions on Cybernetics, vol. 45, no. 9, pp. 1798–1810, 2015.

[42] Q. Fan and X. Yan, “Self-adaptive differential evolution algorithm with
zoning evolution of control parameters and adaptive mutation strategies,”
IEEE Transactions on Cybernetics, vol. 46, no. 1, pp. 219–232, 2016.

[43] R. Storn and K. Price, “Differential evolution ? a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
Global Optimization, vol. 11, no. 4, pp. 341–359, 1997.

[44] R. Storn, “System design by constraint adaptation and differential
evolution,” IEEE Transactions on Evolutionary Computation, vol. 3,
no. 1, pp. 22–34, 1999.

[45] S. Das and P. N. Suganthan, “Differential evolution: A survey of
the state-of-the-art,” IEEE Transactions on Evolutionary Computation,
vol. 15, no. 1, pp. 4–31, 2011.

[46] F. Caraffini, A. V. Kononova, and D. Corne, “Infeasibility and structural
bias in differential evolution,” Information Sciences, vol. 496, pp. 161–
179, 2019.

[47] J. Liang, T. P. Runarsson, E. Mezura-Montes, M. Clerc, P. N. Sugan-
than, C. C. Coello, and K. Deb, “Problem definitions and evaluation
criteria for the CEC 2006 special session on constrained real-parameter
optimization,” Journal of Applied Mechanics, vol. 41, no. 8, pp. 8–31,
2006.

[48] J. Zhang and A. C. Sanderson, “JADE: Adaptive differential evolution
with optional external archive,” IEEE Transaction on Evolutionary
Computation, vol. 13, no. 5, pp. 945–958, 2009.

[49] P. Huang and Y. Wang, “A framework for scalable bilevel optimization:
Identifying and utilizing the interactions between upper-level and lower-
level variables,” IEEE Transactions on Evolutionary Computation, pp.
1–1, 2020.

[50] X. He, Y. Zhou, and Z. Chen, “Evolutionary bilevel optimization based
on covariance matrix adaptation,” IEEE Transactions on Evolutionary
Computation, vol. 23, no. 2, pp. 258–272, 2019.

[51] X. Liu, “A deployment strategy for multiple types of requirements in
wireless sensor networks,” IEEE Transactions on Cybernetics, vol. 45,
no. 10, pp. 2364–2376, 2015.

[52] Y. Wang, Z. Ru, K. Wang, and P. Huang, “Joint deployment and
task scheduling optimization for large-scale mobile users in multi-uav-
enabled mobile edge computing,” IEEE Transactions on Cybernetics,
vol. 50, no. 9, pp. 3984–3997, 2020.

[53] X. Zhang, J. Chen, B. Xin, and Z. Peng, “A memetic algorithm for
path planning of curvature-constrained uavs performing surveillance of
multiple ground targets,” Chinese Journal of Aeronautics, vol. 27, no. 3,
pp. 622 – 633, 2014.

[54] J. Drchal, J. Faigl, and P. V?a, “Wism: Windowing surrogate model for
evaluation of curvature-constrained tours with dubins vehicle,” IEEE
Transactions on Cybernetics, pp. 1–10, 2020.

[55] D. X. B. Xin, J. Chen and Y. Chen, “Hybrid encoding based differ-
ential evolution algorithms for dubins traveling salesman problem with
neighborhood,” American Journal of Mathematics, vol. 79, no. 3, pp.
497–516, 1957.

[56] L. E. Dubins, “On curves of minimal length with a constraint on
average curvature and with prescribed initial and terminal positions and
tangents,” American Journal of Mathematics, vol. 79, no. 3, pp. 497–
516, 1957.

Jiao Liu received the B.S. degree in process equip-
ment and control engineering and the M.S. degree
in power engineering and engineering thermophysics
both from the Taiyuan University of Technology,
Taiyuan, China, in 2013 and 2016, respectively. He
is currently pursuing the Ph.D. degree in control
science and engineering, Central South University,
Changsha, China.

His current research interests include evolutionary
computation, mixed-integer programming, and auto-
motive lightweight design.

Yong Wang (M’08–SM’17) received the Ph.D. de-
gree in control science and engineering from the
Central South University, Changsha, China, in 2011.

He is a Professor with the School of Automa-
tion, Central South University, Changsha, China. His
current research interests include intelligent learning
and optimization and their interdisciplinary applica-
tions.

Dr. Wang is an Associate Editor for the IEEE
Transactions on Evolutionary Computation and the
Swarm and Evolutionary Computation. He was a

recipient of Cheung Kong Young Scholar in 2018 and a Web of Science
highly cited researcher in Computer Science in 2017 and 2018.

Pei-Qiu Huang received the B.S. degree in au-
tomation and the M.S. degree in control theory and
control engineering both from the Northeastern Uni-
versity, Shenyang, China, in 2014 and 2017, respec-
tively, and the Ph.D. degree in control science and
engineering, Central South University, Changsha,
China, in 2021. His current research interests include
evolutionary computation, bilevel optimization, and
mobile edge computing.

Shouyong Jiang received the B.Sc. degree in in-
formation and computation science and the M.Sc.
degree in control theory and control engineering
from in Northeastern University, China in 2011 and
2013, respectively, and the Ph.D. degree in computer
science from De Montfort University, UK in 2017.
He is now a Lecturer in Computer Science at the
University of Aberdeen, UK. His current research
interests include AI optimisation, evolutionary com-
putation, machine learning, and data science.

1

Supplementary File for “CaR: A Cutting and
Repulsion-based Evolutionary Framework for

Mixed-Integer Programming Problems”

S-I. TEST PROBLEMS F1-F16

F1 : minimize : f(x, y) = (x− 1)2 + (y − 3)2

subject to :

g(x, y) = (x+ 1)2 + (y + 1)2 − 1 ≤ 0

x ∈ [−3, 1]
y ∈ {−3,−2,−1, 0, 1}

The optimal solution is x∗ = −1 and y∗ = 0, and f(x∗, y∗) = 13.0000.

F2 : minimize : f(x, y) = x2 + (y1 − 1)2 + (y2 − 2)2

subject to :

g(x, y) = x2 + y21 + 0.5y22 − 1.5 ≤ 0

x ∈ [−1, 100]
y1, y2 ∈ {−1, 0, . . . , 100}

The optimal solution is x∗ = 0 and y∗ = (1, 1), and f(x∗, y∗) = 1.0000.

F3 : minimize : f(x, y) = −x− y

subject to :

g1(x, y) = −x+ y − 2.005 ≤ 0

g2(x, y) = x− y + 0.5 ≤ 0

g3(x, y) = 0.505x+ y − 3.505 ≤ 0

x ∈ [−1, 100]
y ∈ {−1, 0, . . . , 100}

The optimal solution is x∗ = 1 and y∗ = 3, and f(x∗, y∗) = −4.0000.

F4 : minimize : f(x, y) = −x− y

subject to :

g1(x, y) = y − 3.4 ≤ 0

g2(x, y) = x− y ≤ 0

x ∈ [−1, 100]
y ∈ {−1, 0, . . . , 100}

The optimal solution is x∗ = 3 and y∗ = 3, and f(x∗, y∗) = −6.0000.

F5 : minimize : f(x, y) = (x− 0.5)2 + (y − 1)2

subject to :

h(x, y) = −x2 + y = 0

x ∈ [−1, 3.1]
y ∈ {−1, 0, . . . , 4}

2

The best known optimal solution is x∗ = 1 and y∗ = 1, and f(x∗, y∗) = 0.2500.

F6 : minimize : f(x, y) = (x− 10)3 + (y − 20)3

subject to :

g1(x, y) = −(x− 5)2 − (y − 4.86)2 + 100 ≤ 0

g2(x, y) = (x− 8)2 + (y − 5.48)2 − 60 ≤ 0

x ∈ [−1, 100]
y ∈ {−1, 0, . . . , 100}

The best known optimal solution is x∗ = 14.22498780 and y∗ = 1, and f(x∗, y∗) = −6783.5818.

F7 : minimize : f(x, y) = exp(x1x2x3y1y2)

subject to :

h1(x, y) = x2
1 + x2

2 + x2
3 + y21 + y22 − 10 = 0

h2(x, y) = x2y1 − 5x3y2 = 0

h3(x, y) = x3
1 + y31 + 1 = 0

x1 ∈ [−2.3, 2.3]
x2, x3 ∈ [−3.2, 3.2]
y1 ∈ {−2,−1, 0, 1, 2}
y2 ∈ {−3,−2,−1, 0, 1, 2, 3}

The best known optimal solution is x∗ = (−1.25994205,−2.48314049, 0.496648098) and y∗ = (1,−1), and f(x∗, y∗) =
0.2114.

F8 : minimize : f(x, y) = x1 + x2 + y1

subject to :

g1(x, y) = −1 + 0.0025(x3 + x4) ≤ 0

g2(x, y) = −1 + 0.0025(−x3 + y2 + y3) ≤ 0

g3(x, y) = −1 + 0.01(x5 − y2) ≤ 0

g4(x, y) = −x1x4 + 833.33252x3 + 100x1 − 83333.333 ≤ 0

g5(x, y) = −y1y3 + 1250y2 + x3y1 − 1250x3 ≤ 0

g6(x, y) = −x2x5 + 1250000 + x2y2 − 2500y2 ≤ 0

x1 ∈ [100, 10000]

x2 ∈ [1000, 10000]

x3, x4, x5 ∈ [10, 1000]

y1 ∈ {1000, 1020, . . . , 10000}
y2, y3 ∈ {20, 40, . . . , 1000}

The best known optimal solution is x∗ = (555.55433833, 5000, 180, 220, 400) and y∗ = (1500, 300, 280), and f(x∗, y∗) =
7055.5544.

F9 : minimize : f(x, y) = x1 + x2 + y1

subject to :

g1(x, y) = −1 + 0.0025(x3 + x4) ≤ 0

g2(x, y) = −1 + 0.0025(−x3 + y2 + y3) ≤ 0

g3(x, y) = −1 + 0.01(x5 − y2) ≤ 0

g4(x, y) = −x1x4 + 833.33252x3 + 100x1 − 83333.333 ≤ 0

g5(x, y) = −y1y3 + 1250y2 + x3y1 − 1250x3 ≤ 0

g6(x, y) = −x2x5 + 1250000 + x2y2 − 2500y2 ≤ 0

x1 ∈ [100, 10000]

3

x2 ∈ [1000, 10000]

x3, x4, x5 ∈ [10, 1000]

y1 ∈ {1000, 1050, . . . , 10000}
y2, y3 ∈ {50, 100, . . . , 1000}

The best known optimal solution is x∗ = (833.33171, 5000, 200, 200, 400) and y∗ = (1250, 300, 300), and f(x∗, y∗) =
7083.3317.

F10 : minimize : f(x, y) = x1 + x2 + y1

subject to :

g1(x, y) = −1 + 0.0025(x3 + x4) ≤ 0

g2(x, y) = −1 + 0.0025(−x3 + y2 + y3) ≤ 0

g3(x, y) = −1 + 0.01(x5 − y2) ≤ 0

g4(x, y) = −x1x4 + 833.33252x3 + 100x1 − 83333.333 ≤ 0

g5(x, y) = −y1y3 + 1250y2 + x3y1 − 1250x3 ≤ 0

g6(x, y) = −x2x5 + 1250000 + x2y2 − 2500y2 ≤ 0

x1 ∈ [100, 10000]

x2 ∈ [1000, 10000]

x3, x4, x5 ∈ [10, 1000]

y1 ∈ {1000, 1100, . . . , 10000}
y2, y3 ∈ {100, 200, . . . , 1000}

The best known optimal solution is x∗ = (833.33171, 5000, 200, 200, 400) and y∗ = (1300, 300, 300), and f(x∗, y∗) =
7133.3317.

F11 : minimize : f(x) =
5∑

j=1

5∑
i=1

cijx(10+i)x(10+j) + 2

5∑
j=1

djx
3
(10+j) −

10∑
i=1

bixi

subject to :

gj(x) = −2
5∑

i=1

cijx(10+i) − 3djx
2
(10+j) − ej +

10∑
i=1

aijxi ≤ 0, j = 1, . . . , 5

x1, x2, x4, x6, . . . , x11, x13, x14, x15 ∈ [0, 10]

x3, x5, x12 ∈ {0, 1, . . . , 10}

where b = [−40,−2,−0.25,−4,−4,−1,−40,−60, 5, 1] and the remaining data is in Table S-I. The best known optimal solu-
tion is x∗ = (x1, x2, x4, x6, . . . , x11, x13, x14, x15) = (0, 0, 0, 9.99999985, 0, 0, 0, 0, 0.28879805, 0.43951302, 0.31935496, 0.44885950)
and y∗ = (x3, x5, x12) = (4, 4, 0), and f(x∗, y∗) = 33.5066.

F12 : minimize : f(x) =
5∑

j=1

5∑
i=1

cijx(10+i)x(10+j) + 2

5∑
j=1

djx
3
(10+j) −

10∑
i=1

bixi

subject to :

gj(x) = −2
5∑

i=1

cijx(10+i) − 3djx
2
(10+j) − ej +

10∑
i=1

aijxi ≤ 0, j = 1, . . . , 5

x1, x2, x4, x6, . . . , x9, x11, x13, x14 ∈ [0, 10]

x3, x5, x10, x12, x15 ∈ {0, 1, . . . , 10}

where b = [−40,−2,−0.25,−4,−4,−1,−40,−60, 5, 1] and the remaining data is in Table S-I. The best known optimal solu-
tion is x∗ = (x1, x2, x4, x6, . . . , x9, x11, x13, x14) = (0, 0, 0, 9.99999999, 0, 0, 2.96750117, 0.39963905, 0.82151768, 0.64848398)

4

TABLE S-I
DATASET FOR TEST PROBLEMS F11 AND F12

j 1 2 3 4 5
ej -15 -27 -36 -18 -12
c1j 30 -20 -10 32 -10
c2j -20 39 -6 -31 32
c3j -10 -6 10 -6 -10
c4j 32 -31 -6 39 -20
c5j -10 32 -10 -20 30
dj 4 8 10 6 2
a1j -16 2 0 1 0
a2j 0 -2 0 0.4 2
a3j -3.5 0 2 0 0
a4j 0 -2 0 -4 -1
a5j 0 -9 -2 1 -2.8
a6j 2 0 -4 0 0
a7j -1 -1 -1 -1 -1
a8j -1 -2 -3 -2 -1
a9j 1 2 3 4 5
a10j 1 1 1 1 1

and y∗ = (x3, x5, x10, x12, x15) = (2, 4, 0, 0, 1), and f(x∗, y∗) = 41.7399.

F13 : minimize : f(x, y) = f1(y1) + f2(x1)

where :

f1(y1) =

{
30y1, 0 ≤ y1 ≤ 300

31y1, 300 ≤ y1 ≤ 400

f2(x1) =

28x1, 0 ≤ x1 ≤ 100

29x1, 100 ≤ x1 ≤ 200

30x1, 200 ≤ x1 ≤ 1000

subject to :

h1(x, y) = −y1 + 300− y2x2

131.078
cos(1.48477− x4) +

0.90798y22
131.078

cos(1.47588) = 0

h2(x, y) = −x1 −
y2x2

131.078
cos(1.48477 + x4) +

0.90798x2
2

131.078
cos(1.47588) = 0

h3(x, y) = −x3 −
y2x2

131.078
sin(1.48477 + x4) +

0.90798x2
2

131.078
sin(1.47588) = 0

h4(x, y) = 200− y2x2

131.078
sin(1.48477− x4) +

0.90798y22
131.078

sin(1.47588) = 0

x1 ∈ [0, 1000]

x2 ∈ [340, 420]

x3 ∈ [−1000, 1000]
x4 ∈ [0, 0.5236]

y1 ∈ {0, 20, . . . , 400}
y2 ∈ {340, 360, . . . , 420}

The best known optimal solution is x∗ = (81.57454322, 416.85149297,−9.77394390, 0.05912763) and y∗ = (220, 380), and
f(x∗, y∗) = 8884.0872.

F14 : minimize : f(x, y) = f1(y1) + f2(x1)

where :

f1(y1) =

{
30y1, 0 ≤ y1 ≤ 300

31y1, 300 ≤ y1 ≤ 400

f2(x1) =

28x1, 0 ≤ x1 ≤ 100

29x1, 100 ≤ x1 ≤ 200

30x1, 200 ≤ x1 ≤ 1000

5

subject to :

h1(x, y) = −y1 + 300− y2x2

131.078
cos(1.48477− x4) +

0.90798y22
131.078

cos(1.47588) = 0

h2(x, y) = −x1 −
y2x2

131.078
cos(1.48477 + x4) +

0.90798x2
2

131.078
cos(1.47588) = 0

h3(x, y) = −x3 −
y2x2

131.078
sin(1.48477 + x4) +

0.90798x2
2

131.078
sin(1.47588) = 0

h4(x, y) = 200− y2x2

131.078
sin(1.48477− x4) +

0.90798y22
131.078

sin(1.47588) = 0

x1 ∈ [0, 1000]

x2 ∈ [340, 420]

x3 ∈ [−1000, 1000]
x4 ∈ [0, 0.5236]

y1 ∈ {0, 50, . . . , 400}
y2 ∈ {350, 400}

The best known optimal solution is x∗ = (51.69905661, 394.30118556, 20.47601024, 0.03816719) and y∗ = (250, 350), and
f(x∗, y∗) = 8947.5736.

F15 : minimize : f(x, y) = x2
1 + y21 + x1y1 − 14x1 − 16y1 + (y2 − 10)2 + 4(x2 − 5)2 + (x3 − 3)2

+ 2(x4 − 1)2 + 5x2
5 + 7(x6 − 11)2 + 2(y3 − 10)2 + (x7 − 7)2 + 45

subject to :

g1(x, y) = −105 + 4x1 + 5y1 − 3x5 + 9x6 ≤ 0

g2(x, y) = 10x1 − 8y1 − 17x5 + 2x6 ≤ 0

g3(x, y) = −8x1 + 2y1 + 5y3 − 2x7 − 12 ≤ 0

g4(x, y) = 3(x1 − 2)2 + 4(y1 − 3)2 + 2y22 − 7x2 − 120 ≤ 0

g5(x, y) = 5x2
1 + 8y1 + (y2 − 6)2 − 2x2 − 40 ≤ 0

g6(x, y) = x2
1 + 2(y1 − 2)2 − 2x1y1 + 14x3 − 6x4 ≤ 0

g7(x, y) = 0.5(x1 − 8)2 + 2(y1 − 4)2 + 3x2
3 − x2

4 − 30 ≤ 0

g8(x, y) = −3x1 + 6y1 + 12(y3 − 8)2 − 7x7 ≤ 0

x1, x2, . . . , x7 ∈ [−10, 10]
y1, y2, y3 ∈ {−10,−9, . . . , 10}

The best known optimal solution is x∗ = (2.45799944, 5.10440319, 0.89287364, 1.45166575, 1.68117614, 9.99999999, 8.66800226)
and y∗ = (2, 8, 9), and f(x∗, y∗) = 28.3514.

F16 : minimize : f(x, y) = x2
1 + y21 + x1y1 − 14x1 − 16y1 + (y2 − 10)2 + 4(x2 − 5)2 + (y3 − 3)2

+ 2(x3 − 1)2 + 5x2
4 + 7(y4 − 11)2 + 2(y5 − 10)2 + (x5 − 7)2 + 45

subject to :

g1(x, y) = −105 + 4x1 + 5y1 − 3x4 + 9y4 ≤ 0

g2(x, y) = 10x1 − 8y1 − 17x4 + 2y4 ≤ 0

g3(x, y) = −8x1 + 2y1 + 5y5 − 2x5 − 12 ≤ 0

g4(x, y) = 3(x1 − 2)2 + 4(y1 − 3)2 + 2y22 − 7x2 − 120 ≤ 0

g5(x, y) = 5x2
1 + 8y1 + (y2 − 6)2 − 2x2 − 40 ≤ 0

g6(x, y) = x2
1 + 2(y1 − 2)2 − 2x1y1 + 14y3 − 6x3 ≤ 0

g7(x, y) = 0.5(x1 − 8)2 + 2(y1 − 4)2 + 3y23 − x2
3 − 30 ≤ 0

g8(x, y) = −3x1 + 6y1 + 12(y5 − 8)2 − 7x5 ≤ 0

x1, x2, . . . , x5 ∈ [−10, 10]
y1, y2, . . . , y5 ∈ {−10,−9, . . . , 10}

6

The best known optimal solution is x∗ = (2.45787583, 5.10288399, 1.70160838, 1.68110343, 8.66849668) and y∗ = (2, 8, 1, 10, 9),
and f(x∗, y∗) = 28.4879.

7

S-II. RESULTS

TABLE S-II
RESULTS OF DE/RAND/1/BIN-MIP, DE/RAND/2/BIN-MIP, DE/CURRENT-TO-RAND/BIN-MIP, DE/RAND-TO-BEST/BIN-MIP, DE/RAND/1/BIN-CAR,

DE/RAND/2/BIN-CAR, DE/CURRENT-TO-RAND/BIN-CAR, AND DE/RAND-TO-BEST/BIN-CAR OVER 25 INDEPENDENT RUNS. FR AND SR INDICATE THE
FEASIBLE RATE AND SUCCESSFUL RATE, RESPECTIVELY. Ave AND Std Dev INDICATE THE AVERAGE AND STANDARD DEVIATION OF THE BEST
FEASIBLE OBJECTIVE FUNCTION VALUES OVER 25 INDEPENDENT RUNS, RESPECTIVELY. ACT INDICATES THE AVERAGE CPU TIME OVER 25

INDEPENDENT RUNS. THE WILCOXON’S RANK-SUM TEST AT A 0.05 SIGNIFICANCE LEVEL IS PERFORMED BETWEEN DE/RAND/1/BIN-MIP AND
DE/RAND/1/BIN-CAR,DE/RAND/2/BIN-MIP AND DE/RAND/2/BIN-CAR, DE/CURRENT-TO-RAND/BIN-MIP AND DE/CURRENT-TO-RAND/BIN-CAR,

AND DE/RAND-TO-BEST/BIN-MIP AND DE/RAND-TO-BEST/BIN-CAR.

Problem Status DE/rand/1/bin-MIP DE/rand/1/bin-CaR DE/rand/2/bin-MIP DE/rand/2/bin-CaR DE/current-to-rand/bin-MIP DE/current-to-rand/bin-CaR DE/rand-to-best/bin-MIP DE/rand-to-best/bin-CaR
F1 FR 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

SR 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00%
Ave 17.0000 13.0000 17.0000 13.0000 17.0000 13.0000 17.0000 13.0000
Std Dev 0.0000 + 0.0000 0.0000 + 0.0000 0.0000 + 0.0000 0.0000 + 0.0000
ACT 4.16 5.05 4.13 5.04 4.22 5.07 4.27 5.18

F2 FR 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
SR 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00%
Ave 2.0000 1.0000 2.0000 1.0000 2.0000 1.0000 2.0000 1.0000
Std Dev 0.0000 + 0.0000 0.0000 + 0.0000 0.0000 + 0.0000 0.0000 + 0.0000
ACT 4.55 6.25 4.54 6.19 4.62 6.33 4.69 6.35

F3 FR 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
SR 24.00% 100.00% 32.00% 100.00% 12.00% 100.00% 8.00% 100.00%
Ave -3.6200 -4.0000 -3.6600 -4.0000 -3.5800 -4.0000 -3.5400 -4.0000
Std Dev 0.2179 + 0.0000 0.2380 + 0.0000 0.1871 + 0.0000 0.1384 + 0.0000
ACT 4.73 5.43 4.77 5.40 4.72 5.39 4.80 5.82

F4 FR 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
SR 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Ave -6.0000 -6.0000 -6.0000 -6.0000 -6.0000 -6.0000 -6.0000 -6.0000
Std Dev 0.0000 ≈ 0.0000 0.0000 ≈ 0.0000 0.0000 ≈ 0.0000 0.0000 ≈ 0.0000
ACT 4.71 5.68 4.74 5.67 4.74 5.71 4.77 5.69

F5 FR 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
SR 4.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00%
Ave 1.2005 0.2500 1.2401 0.2500 1.2401 0.2500 1.2401 0.2500
Std Dev 0.1980 + 0.0000 0.0000 + 0.0000 0.0000 + 0.0000 0.0000 + 0.0000
ACT 4.17 5.34 4.17 5.33 4.24 5.39 4.31 5.36

F6 FR 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
SR 52.00% 100.00% 88.00% 100.00% 24.00% 100.00% 96.00% 100.00%
Ave -6205.8268 -6783.5818 -6657.8460 -6783.5818 -5875.0374 -6783.5818 -6741.6698 -6783.5818
Std Dev 661.3729 + 0.0000 347.5154 ≈ 0.0000 602.9786 + 0.0000 209.5596 ≈ 0.0000
ACT 4.73 5.89 4.72 5.85 4.81 5.95 4.87 5.97

F7 FR 100.00% 100.00% 84.00% 92.00% 92.00% 100.00% 100.00% 100.00%
SR 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 4.00%
Ave 0.9917 0.9311 NA NA NA 0.9945 0.9862 0.8503
Std Dev 0.0229 + 0.1192 NA ≈ NA NA + 0.0191 0.0281 + 0.2309
ACT 4.99 6.69 4.59 5.80 4.43 5.77 5.26 7.22

F8 FR 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 96.00% 100.00%
SR 0.00% 48.00% 0.00% 100.00% 0.00% 28.00% 0.00% 0.00%
Ave 7327.6789 7097.5704 7097.8528 7055.5543 7235.9826 7081.6662 NA 7400.7217
Std Dev 235.1243 + 47.0169 41.8793 + 0.0000 160.2011 + 31.4088 NA + 831.5231
ACT 5.03 6.19 4.70 5.38 5.01 5.90 5.33 6.76

F9 FR 100.00% 100.00% 100.00% 100.00% 96.00% 100.00% 92.00% 100.00%
SR 0.00% 20.00% 0.00% 32.00% 0.00% 52.00% 8.00% 16.00%
Ave 7912.2222 7226.4436 7567.3332 7120.1722 NA 7138.8877 NA 7645.3336
Std Dev 451.1959 + 170.5967 172.0754 + 44.8031 NA + 93.4454 NA + 791.3634
ACT 5.08 6.36 4.89 5.69 5.15 6.25 5.33 6.74

F10 FR 96.00% 100.00% 100.00% 100.00% 100.00% 100.00% 88.00% 100.00%
SR 4.00% 56.00% 0.00% 36.00% 0.00% 80.00% 12.00% 24.00%
Ave NA 7338.6658 8600.0000 7413.3327 7772.0000 7268.4890 NA 7682.6703
Std Dev NA + 236.4248 474.3416 + 233.3341 249.1987 + 329.7006 NA + 565.1227
ACT 5.14 6.38 5.08 5.93 5.20 6.45 5.34 6.87

F11 FR 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
SR 4.00% 16.00% 24.00% 28.00% 0.00% 0.00% 0.00% 0.00%
Ave 74.5033 43.3592 40.9682 36.6424 73.5353 46.1278 79.2500 77.1227
Std Dev 53.1960 + 6.9833 7.2714 + 4.4466 61.9544 ≈ 9.2244 58.0917 ≈ 41.5648
ACT 10.57 11.88 10.35 11.33 10.75 11.54 10.78 12.50

F12 FR 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
SR 0.00% 4.00% 28.00% 44.00% 0.00% 4.00% 0.00% 0.00%
Ave 161.2159 47.0600 74.7723 42.1174 178.8217 63.6321 122.3971 119.3997
Std Dev 89.3781 + 4.9272 26.8670 + 0.6135 63.1152 + 25.9556 44.4599 ≈ 15.5185
ACT 10.64 12.08 10.40 11.51 10.76 11.74 10.73 12.49

F13 FR 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
SR 8.00% 56.00% 0.00% 20.00% 0.00% 8.00% 8.00% 24.00%
Ave 9002.8026 8892.1970 8966.8064 8904.9290 8934.5410 8915.4794 9001.2513 8919.8126
Std Dev 125.6644 + 12.9662 83.7794 + 22.5612 24.1431 + 28.0801 111.2674 + 27.8651
ACT 5.05 6.51 4.62 5.72 4.46 5.44 5.35 7.09

F14 FR 96.00% 100.00% 100.00% 100.00% 100.00% 100.00% 76.00% 100.00%
SR 16.00% 44.00% 8.00% 80.00% 4.00% 28.00% 8.00% 52.00%
Ave NA 8954.4795 8981.1015 8948.6209 8962.6657 8951.3441 NA 8958.8276
Std Dev NA + 8.8424 74.2260 + 2.1379 40.4182 + 2.3998 NA + 41.0848
ACT 5.05 6.59 4.73 5.90 4.46 5.77 5.34 7.13

F15 FR 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
SR 8.00% 40.00% 36.00% 48.00% 8.00% 8.00% 0.00% 0.00%
Ave 30.0639 28.6154 28.9027 28.6649 30.9901 33.6415 31.5377 29.4806
Std Dev 1.9622 ≈ 0.2021 0.9408 + 0.1798 3.1633 ≈ 13.6143 3.2770 ≈ 1.6260
ACT 4.63 6.13 4.58 5.86 4.79 5.68 4.62 6.44

F16 FR 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
SR 32.00% 100.00% 88.00% 100.00% 12.00% 52.00% 16.00% 40.00%
Ave 32.6737 28.4879 28.7992 28.4879 33.8383 29.6948 42.8956 30.9216
Std Dev 5.7933 + 0.0000 0.8604 + 0.0000 5.0148 + 2.0945 8.4415 + 3.4193
ACT 4.86 6.43 4.62 6.24 4.80 6.39 4.65 6.70

+/≈/− 14/2/0 13/3/0 13/3/0 11/5/0

8

TABLE S-III
RESULTS OF DE/RAND/2/BIN-WOCR, DE/RAND/2/BIN-WOC, DE/RAND/2/BIN-WOR, AND DE/RAND/2/BIN-CAR OVER 25 INDEPENDENT RUNS. FR

AND SR INDICATE THE FEASIBLE RATE AND SUCCESSFUL RATE, RESPECTIVELY. Ave AND Std Dev INDICATE THE AVERAGE AND STANDARD
DEVIATION OF THE BEST FEASIBLE OBJECTIVE FUNCTION VALUES OVER 25 INDEPENDENT RUNS, RESPECTIVELY. ACT INDICATES THE AVERAGE

CPU TIME OVER 25 INDEPENDENT RUNS. THE WILCOXON’S RANK-SUM TEST AT A 0.05 SIGNIFICANCE LEVEL IS PERFORMED BETWEEN
DE/RAND/2/BIN-CAR AND EACH OF DE/RAND/2/BIN-WOCR, DE/RAND/2/BIN-WOC, AND DE/RAND/2/BIN-WOR.

Problem Status DE/rand/2/bin-WOCR DE/rand/2/bin-WOC DE/rand/2/bin-WOR DE/rand/2/bin-CaR
F1 FR 100.00% 100.00% 100.00% 100.00%

SR 0.00% 100.00% 100.00% 100.00%
Ave 17.0000 13.0000 13.0000 13.0000
Std Dev 0.0000 + 0.0000 ≈ 0.0000 ≈ 0.0000
ACT 4.13 4.98 4.38 5.04

F2 FR 100.00% 100.00% 100.00% 100.00%
SR 0.00% 0.00% 100.00% 100.00%
Ave 2.0000 2.0000 1.0000 1.0000
Std Dev 0.0000 + 0.0000 + 0.0000 ≈ 0.0000
ACT 4.54 6.00 5.09 6.19

F3 FR 100.00% 100.00% 100.00% 100.00%
SR 32.00% 60.00% 100.00% 100.00%
Ave -3.6600 -3.8000 -4.0000 -4.0000
Std Dev 0.2380 + 0.2500 + 0.0000 ≈ 0.0000
ACT 4.77 5.61 5.26 5.40

F4 FR 100.00% 100.00% 100.00% 100.00%
SR 100.00% 100.00% 100.00% 100.00%
Ave -6.0000 -6.0000 -6.0000 -6.0000
Std Dev 0.0000 ≈ 0.0000 ≈ 0.0000 ≈ 0.0000
ACT 4.74 5.42 5.23 5.67

F5 FR 100.00% 100.00% 100.00% 100.00%
SR 0.00% 100.00% 0.00% 100.00%
Ave 1.2401 0.2500 1.2401 0.2500
Std Dev 0.0000 + 0.0000 ≈ 0.0000 + 0.0000
ACT 4.17 5.07 4.62 5.33

F6 FR 100.00% 100.00% 100.00% 100.00%
SR 88.00% 96.00% 100.00% 100.00%
Ave -6657.8460 -6741.6698 -6783.5818 -6783.5818
Std Dev 347.5154 ≈ 209.5596 ≈ 0.0000 ≈ 0.0000
ACT 4.72 5.52 5.19 5.85

F7 FR 84.00% 92.00% 88.00% 92.00%
SR 0.00% 0.00% 0.00% 0.00%
Ave NA NA NA NA
Std Dev NA ≈ NA ≈ NA ≈ NA
ACT 4.59 5.69 5.03 5.80

F8 FR 100.00% 100.00% 100.00% 100.00%
SR 0.00% 0.00% 100.00% 100.00%
Ave 7097.8528 7093.8274 7055.5543 7055.5543
Std Dev 41.8793 + 18.3067 + 0.0000 ≈ 0.0000
ACT 4.70 5.38 4.94 5.38

F9 FR 100.00% 100.00% 100.00% 100.00%
SR 0.00% 0.00% 32.00% 48.00%
Ave 7567.3332 7481.7776 7132.4432 7120.1722
Std Dev 172.0754 + 193.4869 + 48.1578 + 44.8031
ACT 4.89 5.74 5.20 5.69

F10 FR 100.00% 100.00% 100.00% 100.00%
SR 0.00% 0.00% 20.00% 36.00%
Ave 8600.0000 8364.0000 7506.6663 7413.3327
Std Dev 474.3416 + 494.8737 + 190.5165 + 233.3341
ACT 5.08 6.21 5.32 5.93

F11 FR 100.00% 100.00% 100.00% 100.00%
SR 24.00% 32.00% 28.00% 36.00%
Ave 40.9682 37.4760 40.9630 36.6424
Std Dev 7.2714 + 6.4018 ≈ 7.2769 + 4.4466
ACT 10.35 11.51 11.26 11.33

F12 FR 100.00% 100.00% 100.00% 100.00%
SR 28.00% 36.00% 40.00% 44.00%
Ave 74.7723 73.8780 47.5951 42.1174
Std Dev 26.8670 + 26.3449 + 14.8921 ≈ 0.6135
ACT 10.40 11.18 10.95 11.51

F13 FR 100.00% 100.00% 100.00% 100.00%
SR 0.00% 0.00% 0.00% 20.00%
Ave 8966.8064 8946.1031 8930.6730 8904.9290
Std Dev 83.7794 + 73.9180 + 27.5154 + 22.5612
ACT 4.62 5.27 5.26 5.72

F14 FR 100.00% 100.00% 100.00% 100.00%
SR 8.00% 28.00% 0.00% 80.00%
Ave 8981.1015 8956.6418 8972.9400 8948.6209
Std Dev 74.2260 + 9.1689 + 55.1837 + 2.1379
ACT 4.73 5.47 5.30 5.90

F15 FR 100.00% 100.00% 100.00% 100.00%
SR 40.00% 40.00% 0.00% 48.00%
Ave 28.9027 28.5329 28.7639 28.4709
Std Dev 0.9408 + 0.1798 ≈ 0.0000 + 0.1787
ACT 4.58 5.69 4.98 5.86

F16 FR 100.00% 100.00% 100.00% 100.00%
SR 88.00% 100.00% 100.00% 100.00%
Ave 28.7992 28.4879 28.4879 28.4879
Std Dev 0.8604 + 0.0000 ≈ 0.0000 ≈ 0.0000
ACT 4.62 5.74 4.98 6.24

+/≈/− 13/3/0 8/8/0 7/9/0

9

TABLE S-IV
RESULTS OF JADE-MIP, JADE-CAR, FROFI-MIP, AND FROFI-CAR OVER 25 INDEPENDENT RUNS. FR AND SR INDICATE THE FEASIBLE RATE AND

SUCCESSFUL RATE, RESPECTIVELY. Ave AND Std Dev INDICATE THE AVERAGE AND STANDARD DEVIATION OF THE BEST FEASIBLE OBJECTIVE
FUNCTION VALUES OVER 25 INDEPENDENT RUNS, RESPECTIVELY. ACT INDICATES THE AVERAGE CPU TIME OVER 25 INDEPENDENT RUNS. THE

WILCOXON’S RANK-SUM TEST AT A 0.05 SIGNIFICANCE LEVEL IS PERFORMED BETWEEN JADE-MIP AND JADE-CAR, AND FROFI-MIP AND
FROFI-CAR.

Problem Status JADE-MIP JADE-CaR FROFI-MIP FROFI-CaR
F1 FR 100.00% 100.00% 100.00% 100.00%

SR 0.00% 100.00% 0.00% 100.00%
Ave 17.0000 13.0000 17.0000 13.0000
Std Dev 0.0000 + 0.0000 0.0000 + 0.0000
ACT 7.86 8.08 5.11 5.49

F2 FR 100.00% 100.00% 100.00% 100.00%
SR 0.00% 100.00% 100.00% 100.00%
Ave 2.0000 1.0000 1.0000 1.0000
Std Dev 0.0000 + 0.0000 0.0000 ≈ 0.0000
ACT 8.43 9.80 4.77 5.14

F3 FR 100.00% 100.00% 100.00% 100.00%
SR 0.00% 100.00% 96.00% 100.00%
Ave -3.5000 -4.0000 -3.9800 -4.0000
Std Dev 0.0000 + 0.0000 0.1000 ≈ 0.0000
ACT 8.75 8.96 5.24 5.62

F4 FR 100.00% 100.00% 100.00% 100.00%
SR 100.00% 100.00% 100.00% 100.00%
Ave -6.0000 -6.0000 -6.0000 -6.0000
Std Dev 0.0000 ≈ 0.0000 0.0000 ≈ 0.0000
ACT 8.78 9.07 5.21 5.58

F5 FR 100.00% 100.00% 100.00% 100.00%
SR 0.00% 100.00% 48.00% 100.00%
Ave 1.2401 0.2500 0.7648 0.2500
Std Dev 0.0000 + 0.0000 0.5049 + 0.0000
ACT 7.90 8.64 4.58 4.96

F6 FR 100.00% 100.00% 100.00% 100.00%
SR 100.00% 100.00% 100.00% 100.00%
Ave -6783.5818 -6783.5818 -6783.5818 -6783.5818
Std Dev 0.0000 ≈ 0.0000 0.0000 ≈ 0.0000
ACT 8.54 9.26 5.28 5.64

F7 FR 100.00% 100.00% 92.00% 100.00%
SR 0.00% 0.00% 84.00% 100.00%
Ave 1.0000 0.9954 NA 0.2114
Std Dev 0.0000 + 0.0158 NA + 0.0000
ACT 7.72 8.22 5.35 5.70

F8 FR 100.00% 100.00% 100.00% 100.00%
SR 0.00% 0.00% 56.00% 100.00%
Ave 7187.4492 7159.7941 7073.9490 7055.5543
Std Dev 104.4648 ≈ 80.1203 24.0099 + 0.0000
ACT 7.11 7.73 5.35 5.71

F9 FR 100.00% 100.00% 100.00% 100.00%
SR 0.00% 0.00% 24.00% 100.00%
Ave 7217.8317 7214.2284 7273.3326 7083.3317
Std Dev 136.7341 ≈ 128.0025 211.4586 + 0.0000
ACT 7.21 8.01 5.53 5.89

F10 FR 100.00% 100.00% 100.00% 100.00%
SR 4.00% 12.00% 28.00% 100.00%
Ave 7487.3189 7402.7927 7541.3329 7133.3317
Std Dev 450.2467 ≈ 272.9971 259.6800 + 0.0000
ACT 7.84 8.20 5.48 5.86

F11 FR 100.00% 100.00% 100.00% 100.00%
SR 4.00% 72.00% 36.00% 92.00%
Ave 37.7755 33.6079 33.5850 33.5171
Std Dev 2.6320 + 0.2254 0.0653 + 0.0362
ACT 13.43 14.87 10.70 11.07

F12 FR 100.00% 100.00% 100.00% 100.00%
SR 0.00% 16.00% 60.00% 72.00%
Ave 61.7478 41.9968 44.0349 41.8516
Std Dev 26.4311 + 0.1817 10.8712 ≈ 0.1662
ACT 13.99 14.75 11.07 11.41

F13 FR 60.00% 68.00% 100.00% 100.00%
SR 0.00% 0.00% 24.00% 68.00%
Ave NA NA 8893.4324 8886.8089
Std Dev NA ≈ NA 13.3607 + 4.0494
ACT 8.07 7.96 6.41 6.78

F14 FR 100.00% 100.00% 100.00% 100.00%
SR 8.00% 12.00% 20.00% 96.00%
Ave 9053.1344 8985.8192 8955.0741 8947.7481
Std Dev 125.3470 + 75.4249 7.5813 + 0.9561
ACT 7.44 7.64 6.46 6.86

F15 FR 100.00% 100.00% 100.00% 100.00%
SR 0.00% 12.00% 28.00% 100.00%
Ave 29.5538 28.6939 28.9173 28.3514
Std Dev 1.6882 + 0.5253 1.3815 + 0.0000
ACT 7.49 8.07 6.07 6.40

F16 FR 100.00% 100.00% 100.00% 100.00%
SR 0.00% 8.00% 68.00% 100.00%
Ave 30.2381 28.8030 29.3181 28.4879
Std Dev 1.1629 + 0.8591 1.2351 + 0.0000
ACT 8.02 8.57 6.16 6.54

+/≈/− 10/6/0 11/5/0

10

TABLE S-V
RESULTS OF MDE-LS, MDE-IHS, EMDE, AND FROFI-CAR OVER 25 INDEPENDENT RUNS. FR AND SR INDICATE THE FEASIBLE RATE AND

SUCCESSFUL RATE, RESPECTIVELY. Ave AND Std Dev INDICATE THE AVERAGE AND STANDARD DEVIATION OF THE BEST FEASIBLE OBJECTIVE
FUNCTION VALUES OVER 25 INDEPENDENT RUNS, RESPECTIVELY. ACT INDICATES THE AVERAGE CPU TIME OVER 25 INDEPENDENT RUNS. THE
WILCOXON’S RANK-SUM TEST AT A 0.05 SIGNIFICANCE LEVEL IS PERFORMED BETWEEN FROFI-CAR AND EACH OF THE THREE COMPETITORS.

Problem Status MDE-LS MDE-IHS EMDE FROFI-CaR
F1 FR 100.00% 100.00% 100.00% 100.00%

SR 0.00% 0.00% 0.00% 100.00%
Ave 17.0000 17.0000 17.0000 13.0000
Std Dev 0.0000 + 0.0000 + 0.0000 + 0.0000
ACT 2.01 2.06 1.71 5.49

F2 FR 100.00% 100.00% 100.00% 100.00%
SR 100.00% 100.00% 0.00% 100.00%
Ave 1.0000 1.0000 2.0000 1.0000
Std Dev 0.0000 ≈ 0.0000 ≈ 0.0000 + 0.0000
ACT 2.44 2.46 1.97 5.14

F3 FR 100.00% 100.00% 100.00% 100.00%
SR 12.00% 24.00% 4.00% 100.00%
Ave -3.5600 -3.7998 -3.5200 -4.0000
Std Dev 0.1658 + 0.2499 + 0.1000 + 0.0000
ACT 2.55 2.61 2.40 5.62

F4 FR 100.00% 100.00% 100.00% 100.00%
SR 100.00% 100.00% 100.00% 100.00%
Ave -6.0000 -6.0000 -6.0000 -6.0000
Std Dev 0.0000 ≈ 0.0000 ≈ 0.0000 ≈ 0.0000
ACT 2.51 2.51 2.40 5.58

F5 FR 100.00% 100.00% 100.00% 100.00%
SR 8.00% 16.00% 0.00% 100.00%
Ave 1.1609 1.0817 1.2500 0.2500
Std Dev 0.2742 + 0.3705 + 0.0000 + 0.0000
ACT 2.00 1.84 1.76 4.96

F6 FR 100.00% 100.00% 100.00% 100.00%
SR 92.00% 64.00% 100.00% 100.00%
Ave -6699.7579 -6657.2603 -6783.5818 -6783.5818
Std Dev 290.1222 ≈ 347.2974 + 0.0000 ≈ 0.0000
ACT 2.66 2.52 2.57 5.64

F7 FR 12.00% 96.00% 76.00% 100.00%
SR 0.00% 0.00% 0.00% 100.00%
Ave NA NA NA 0.2114
Std Dev NA + NA + NA + 0.0000
ACT 3.24 3.25 2.91 5.70

F8 FR 100.00% 100.00% 100.00% 100.00%
SR 8.00% 0.00% 0.00% 100.00%
Ave 7126.4658 7545.4781 7567.5140 7055.5543
Std Dev 44.2469 + 497.3655 + 607.1346 + 0.0000
ACT 3.31 3.33 3.05 5.71

F9 FR 100.00% 100.00% 100.00% 100.00%
SR 0.00% 0.00% 4.00% 100.00%
Ave 7346.6662 7732.1012 7695.5554 7083.3317
Std Dev 211.1115 + 404.3210 + 307.3518 + 0.0000
ACT 3.45 3.49 3.06 5.89

F10 FR 100.00% 100.00% 96.00% 100.00%
SR 16.00% 0.00% 8.00% 100.00%
Ave 7645.3331 7852.3596 NA 7133.3317
Std Dev 290.0962 + 508.5911 + NA + 0.0000
ACT 3.42 3.45 3.05 5.86

F11 FR 100.00% 100.00% 100.00% 100.00%
SR 0.00% 0.00% 12.00% 92.00%
Ave 50.6751 106.2005 42.9037 33.5171
Std Dev 8.1057 + 55.7755 + 8.1029 + 0.0362
ACT 13.97 13.72 14.14 11.07

F12 FR 100.00% 100.00% 100.00% 100.00%
SR 0.00% 0.00% 0.00% 72.00%
Ave 101.5348 131.4884 111.7425 41.8516
Std Dev 3.8791 + 52.5734 + 69.8873 + 0.1662
ACT 13.82 13.75 13.82 11.41

F13 FR 88.00% 72.00% 12.00% 100.00%
SR 0.00% 4.00% 0.00% 68.00%
Ave NA NA NA 8886.8089
Std Dev NA + NA + NA + 4.0494
ACT 3.29 3.23 3.02 6.78

F14 FR 100.00% 92.00% 0.00% 100.00%
SR 16.00% 16.00% 0.00% 96.00%
Ave 8980.6825 NA NA 8947.7481
Std Dev 74.4063 + NA + NA + 0.9561
ACT 3.31 3.27 3.08 6.86

F15 FR 100.00% 100.00% 100.00% 100.00%
SR 0.00% 0.00% 0.00% 100.00%
Ave 31.7988 36.2163 32.7862 28.3514
Std Dev 2.7397 + 6.3672 + 2.7529 + 0.0000
ACT 3.52 3.54 3.13 6.40

F16 FR 100.00% 100.00% 100.00% 100.00%
SR 8.00% 0.00% 4.00% 100.00%
Ave 32.5555 40.9216 35.1298 28.4879
Std Dev 4.0209 + 7.3693 + 5.7166 + 0.0000
ACT 3.57 3.50 3.14 6.54

+/≈/− 13/3/0 14/2/0 14/2/0

11

S-III. ADDITIONAL RESULTS AND DISCUSSIONS

A. Study of The Parameter Settings in CaR

We firstly discussed the sensitivity of two parameters (i.e., NP and T) introduced in Section IV-A. To this end, DE/rand/2/bin-
CaR was selected as the instance algorithm, and its performance was tested on three test problems: F8, F12, and F16. NP and
T were selected from the following two sets: {20, 40, 60, 80, 100} and {400, 600, 800, 1000, 1200}, respectively. Fig. S-1
records the Ave values provided by the 25 different combinations of NP and T . It can be observed from Fig. S-1 that the
influences of these two parameters are not obvious.

0

2000

4000

20

A
v
e

6000

40

8000

1200

NP

60
1000

T

80
800

100 600

400

(a)

0

10

20

20

30

A
v
e

40

40

50

1200

NP

60
1000

T

80
800

100 600

400

(b)

0

10

20

A
v
e

20

40

30

1200

NP

60
1000

T

80
800

100 600

400

(c)

Fig. S-1. Ave values provided by DE/rand/2/bin-CaR with 25 different combinations of NP and T on F8, F12, and F16. (a) F8 (b) F12 (c) F16

Subsequently, we used DE/rand/2/bin-CaR to solve F8, F12, and F16, with the aim of investigating the settings of MaxFEs.
The convergence curves are plotted in Fig. S-2, in which the horizontal axis represents the number of FEs and the vertical axis
represents the Ave value. From Fig. S-2, we can observe that CaR can converge within 5.0E+04 FEs for these three problems.
However, in this paper, we still set MaxFEs to 2.0E+05 to ensure that our algorithm can converge completely when facing
with an unknown optimization problem.

0 0.5 1 1.5 2

FEs 10
5

10
3

10
4

10
5

A
v
e

(a)

0 0.5 1 1.5 2

FEs 10
5

10
1

10
2

10
3

10
4

A
v
e

(b)

0 0.5 1 1.5 2

FEs 10
5

10
1

10
2

10
3

10
4

A
v
e

(c)

Fig. S-2. Evolution of the Ave value on F8, F12, and F16. (a) F8 (b) F12 (c) F16

B. Comparison with The Commercial Solver

We also compared FROFI-CaR with a commercial solver, i.e., branch-and-deduce optimization navigator (BARON). The
results derived from BARON and FROFI-CaR are recorded in Table S-VI. Since both of them can provide 100% FR, we do
not exhibit FR in Table S-VI. From Table S-VI, FROFI-CaR provides similar Ave values as BARON on F1-F10, F15, and
F16. Moreover, BARON takes less ACT than FROFI-CaR to find the optimal solutions of these test problems. In addition,
BARON provides better Ave and ACT values than FROFI-CaR on F11 and F12. The superiority of BARON on F1-F12, F15,
and F16 is not difficult to understand since it contains several deterministic mathematical programming algorithms and is
good at solving optimization problems with simple nonlinearity. When solving these test problems, BARON usually adopts
the gradient information, thus greatly enhancing the efficiency. However, BARON cannot solve F13 and F14 in any run. Note
that compared with F1-F12, F15, and F16, F13 and F14 are with high nonlinearity (e.g., trigonometric function terms sin(x)
and cos(x)), which signifies that the performance of BARON may be limited when solving highly nonlinear MIP problems. In

12

TABLE S-VI
RESULTS OF BARON AND FROFI-CAR OVER 25 INDEPENDENT RUNS. SR INDICATE THE SUCCESSFUL RATE. Ave AND Std Dev INDICATE THE

AVERAGE AND STANDARD DEVIATION OF THE BEST FEASIBLE OBJECTIVE FUNCTION VALUES OVER 25 INDEPENDENT RUNS, RESPECTIVELY. ACT
INDICATES THE AVERAGE CPU TIME OVER 25 INDEPENDENT RUNS.

Problem Status BARON FROFI-CaR Problem Status BARON FROFI-CaR
F1 SR 100.00% 100.00% F9 SR 100.00% 100.00%

Ave 13.0000 13.0000 Ave 7083.3317 7083.3317
Std Dev 0.0000 0.0000 Std Dev 0.0000 0.0000
ACT 0.09 5.04 ACT 0.34 5.69

F2 SR 100.00% 100.00% F10 SR 100.00% 100.00%
Ave 1.0000 1.0000 Ave 7133.3317 7133.3317
Std Dev 0.0000 0.0000 Std Dev 0.0000 0.0000
ACT 0.08 6.19 ACT 0.14 5.93

F3 SR 100.00% 100.00% F11 SR 100.00% 92.00%
Ave -4.0000 -4.0000 Ave 33.5066 33.5171
Std Dev 0.0000 0.0000 Std Dev 0.0000 0.0362
ACT 0.03 5.40 ACT 0.61 11.33

F4 SR 100.00% 100.00% F12 SR 100.00% 72.00%
Ave -6.0000 -6.0000 Ave 41.7399 41.8516
Std Dev 0.0000 0.0000 Std Dev 0.0000 0.1662
ACT 0.03 5.67 ACT 0.62 11.51

F5 SR 100.00% 100.00% F13 SR NA 68%
Ave 0.2500 0.2500 Ave NA 8886.8089
Std Dev 0.0000 0.0000 Std Dev NA 4.0494
ACT 0.19 5.33 ACT NA 5.72

F6 SR 100.00% 100.00% F14 SR NA 96%
Ave -6783.5818 -6783.5818 Ave NA 8947.7481
Std Dev 0.0000 0.0000 Std Dev NA 0.9561
ACT 1.33 5.85 ACT NA 5.90

F7 SR 100.00% 100.00% F15 SR 100% 100%
Ave 0.2114 0.2114 Ave 28.3514 28.3514
Std Dev 0.0000 0.0000 Std Dev 0.0000 0.0000
ACT 0.20 5.80 ACT 0.23 5.86

F8 SR 100.00% 100.00% F16 SR 100% 100%
Ave 7055.5543 7055.5543 Ave 28.4879 28.4879
Std Dev 0.0000 0.0000 Std Dev 0.0000 0.0000
ACT 0.50 5.38 ACT 0.23 6.24

contrast, FROFI-CaR can achieve 68% SR and 96% SR on F13 and F14, respectively. Therefore, the advantage of FROFI-CaR
against BARON is its capability to deal with MIP problems with high nonlinearity.

On the other hand, BARON needs some mathematical properties of test problems, such as the gradient information; therefore,
it cannot solve black-box optimization problems. However, FROFI-CaR does not depend on any mathematical property of test
problems; thus, another advantage of FROFI-CaR is that it has the potential to handle black-box optimization problems.

	Introduction
	Differential Evolution (DE)
	Proposed Method
	Cutting
	Repulsion
	CaR
	Discussions about CaR
	Relationship Between the Branch-and-Bound Method and the Cutting Strategy
	Relationship Between the Tabu Search and the Repulsion Strategy

	Proof-of-Principle Results

	Experimental Study
	Test Problems and Parameters Settings
	Effectiveness of CaR with Different DE Variants
	Effectiveness of The Cutting Strategy and The Repulsion Strategy
	Combining CaR with Other EAs
	Comparison with Three State-of-the-Art Methods for Solving MIP Problems

	Case Studies
	Deployment Optimization Problem in the Multi-UAV-Assisted IoT Data Collection System
	Path Planning Problem of the Curvature-Constrained UAV

	Conclusion
	References
	Biographies
	Jiao Liu
	Yong Wang
	Pei-Qiu Huang
	Shouyong Jiang

