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Abstract: Differential evolution (DE) is an efficient and robust 

evolutionary algorithm, which has been widely applied to solve 

global optimization problems. As we know, crossover operator 

plays a very important role on the performance of DE. However, 

the commonly used crossover operators of DE are dependent 

mainly on the coordinate system and are not rotation-invariant 

processes. In this paper, covariance matrix learning is presented 

to establish an appropriate coordinate system for the crossover 

operator. By doing this, the dependence of DE on the coordinate 

system has been relieved to a certain extent, and the capability 

of DE to solve problems with high variable correlation has been 

enhanced. Moreover, bimodal distribution parameter setting is 

proposed for the control parameters of the mutation and 

crossover operators in this paper, with the aim of balancing the 

exploration and exploitation abilities of DE. By incorporating 

the covariance matrix learning and the bimodal distribution 

parameter setting into DE, this paper presents a novel DE 

variant, called CoBiDE. CoBiDE has been tested on 25 

benchmark test functions, as well as a variety of real-world 

optimization problems taken from diverse fields including radar 

system, power systems, hydrothermal scheduling, spacecraft 

trajectory optimization, etc. The experimental results 

demonstrate the effectiveness of CoBiDE for global numerical 

and engineering optimization. Compared with other DE variants 

and other state-of-the-art evolutionary algorithms, CoBiDE 

shows overall better performance. 

Keywords: Differential evolution, global numerical and 

engineering optimization, covariance matrix learning, bimodal 

distribution parameter setting 

1. Introduction 

Differential evolution (DE), proposed by Storn and Price 

[1], [2] in 1995, has become a hotspot in the community of 

evolutionary computation. Similar to other evolutionary 

algorithms (EAs), DE is a population-based optimization 

algorithm. In DE, each individual in the population is called a 

target vector. DE produces a mutant vector by making use of 

the mutation operator, which perturbs a target vector using 

the difference vector of other individuals in the population. 

Afterward, the crossover operator is applied to the target 

vector and the mutant vector to generate a trial vector. 

Finally, the trial vector competes with its target vector for 

survival according to their objective function values. Due to 

some advantages, e.g., simple structure, ease of 

implementation, and fast convergence speed, DE has been 

widely applied to some fields of science and engineering, 
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such as cluster analysis [3], robot control [4], controller 

design [5], and graph theory [6]. 

It is noteworthy that in DE, the crossover operator depends 

mainly on the coordinate system and the distribution 

information of the population is usually unreasonably 

ignored. Moreover, the crossover operator of DE can be 

considered as a discrete recombination [7], and thus, the 

interactions among variables have not been systematically 

studied. As a result, DE often loses its effectiveness and 

advantages when solving problems with high variable 

correlation. 

In addition, DE is sensitive to its two main control 

parameters: the scaling factor F and the crossover control 

parameter CR. These two control parameters have a 

significant impact on the performance of DE. Moreover, 

different control parameter settings show different 

characteristics [8]. For example, a larger F is effective for 

global search; however, a smaller F can accelerate the 

convergence. On the other hand, a larger CR results in higher 

diversity of the population, since the trial vector will inherit 

more information from the mutant vector. However, a smaller 

CR focuses on local exploitation since the target vector will 

contribute more information to the trial vector. Indeed, it is 

still an open issue to choose suitable settings of F and CR to 

balance the exploration and exploitation of DE during the 

evolution. 

Based on the above considerations, in this paper, we 

present a novel DE, referred as CoBiDE, including two main 

components: covariance matrix learning and bimodal 

distribution parameter setting. In CoBiDE, the covariance 

matrix learning establishes a coordinate system according to 

the current population distribution, and then the crossover 

operator is applied according to the coordinate system thus 

built to generate the trial vector. Furthermore, in CoBiDE, 

both F and CR are produced according to a bimodal 

distribution composed of two Cauchy distributions, the aim 

of which is to balance the global exploration and the local 

exploitation during the evolution. CoBiDE has been tested on 

25 benchmark test functions developed for the 2005 IEEE 

Congress on Evolutionary Computation (IEEE CEC2005) 

[9] , as well as a variety of real-world application problems 

[10]. The experimental results suggest that the performance 

of CoBiDE is better than that of four other DE variants and 

three other state-of-the-art EAs. 

The remainder of this paper is organized as follows. 

Section 2 briefly introduces DE and its operators. Section 3 
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reviews the related work and four main research directions of 

DE. Then, CoBiDE is presented in Section 4. The 

experimental results are given in Section 5. Section 6 

concludes this paper. 

2. Differential evolution (DE) 

DE is a population-based heuristic search algorithm. 

Similar to other EAs, DE contains three basic operators: 

mutation, crossover, and selection. Firstly, DE produces an 

initial population by randomly sampling several points (each 

point is called a target vector) from the search space: 

0 ,0 ,1,0 ,2,0 , ,0{ ( , , , ), 1,2, , }i i i i DP x x x x i NP         (1) 

where NP denotes the population size and D denotes the 

number of variables. 

At each generation G, a mutant vector , ,1, ,2,( , , ,i G i G i Gv v v  

, , )i D Gv  ( 1,2, ,i NP ) is produced by the mutation operator 

for each target vector ,i Gx . Afterward, the crossover operator 

is implemented on the mutant vector and the target vector to 

generate a trial vector , ,1, ,2, , ,( , , , )i G i G i G i D Gu u u u  ( 1,2, ,i  

NP ). The crossover operator and the mutation operator 

together are called trial vector generation strategy. The 

selection operator of DE is based on a one-to-one competition 

between the target vector and the trial vector. 

Next, the mutation, crossover, and selection operators are 

introduced. 

2.1. Mutation operator 

The commonly used mutation operator can be formulated 

as follows: 

, 1, 2, 3,( )i G r G r G r Gv x F x x                (2) 

where r1, r2, and r3 are mutually different integers randomly 

chosen from [1,NP] and also different from i, and F is the 

scaling factor. 

2.2. Crossover operator 

The crossover operator combines the mutant vector ,i Gv  

with the target vector ,i Gx  to generate a trial vector ,i Gu : 

, ,

, ,

, ,

, (0,1)

,

i j G j rand

i j G

i j G

v if rand CR or j j
u

x otherwise

 
 


     (3) 

where jrand is a random integer between 1 and D, resulting in 

the trial vector being different from the target vector by at 

least one dimension, randj(0,1) is a uniformly distributed 

random number between 0 and 1, and CR is the crossover 

control parameter. 

Based on Eq. (3), it is clear that the trial vector is a vertex 

of the hyper-rectangle defined by the mutant and target 

vectors [11]. Moreover, since the information of the trial 

vector is provided by the mutant vector or the target vector, 

the crossover operator is dependent on the coordinate system. 

2.3. Selection operator 

The selection operator of DE adopts a one-to-one 

competition between the target vector ,i Gx  and the trial 

vector ,i Gu . If the objective function value of the trial vector 

is less than or equal to that of the target vector, then the trial 

vector will survive into the next generation, otherwise, the 

target vector will enter the next generation: 

, , ,

, 1

,

, ( ) ( )

,

i G i G i G

i G

i G

u if f u f x
x

x otherwise


 


            (4) 

3. The related work 

During the past fifteen years, DE has attracted much 

attention by the researchers [12]. The current studies of DE 

mainly focus on the following four aspects: 1) improving the 

trial vector generation strategy, 2) adapting the control 

parameter setting, 3) hybridizing with other techniques, and 

4) integrating multiple trial vector generation strategies with 

multiple control parameter settings.  

3.1. Improving the trial vector generation strategy 

Fan and Lampinen [13] proposed a trigonometric mutation 

operator and embedded it into DE to design a new method 

called TDE. In TDE, a probability parameter Mt is utilized to 

balance the trigonometric mutation operator and the original 

mutation operator of DE. The trigonometric mutation can be 

considered as a local search operator, which is able to 

enhance the convergence velocity of DE. The performance of 

TDE has been evaluated on two test functions and two 

practical problems. 

Zhang and Sanderson [14] presented an improved 

current-to-best/1 operator, called current-to-pbest/1, which 

can be formulated as follows: 

, , , , 1, 2,( ) ( )p

i G i G i best G i G i r G r Gv x F x x F x x       , {1,2, , }i NP (5) 

where ,

p

best Gx  is randomly chosen from the best 100p% 

individuals in the current population, and p is chosen from 

[0,1]. Moreover, the previously generated offspring, which 

cannot survive into the next population, have been stored into 

a predefined archive. The individual 2,r Gx  in Eq. (5) is 

randomly chosen from the union of the archive and the 

current population. As analyzed in [14], the advantages of the 

current-to-pbest/1 operator are twofold: 1) the information of 

multiple best individuals can balance the greediness of the 

mutation and the diversity of the population, and 2) the 

difference between the recently explored inferior individuals 

and the current population may represent promising 

directions towards the global optimum. 

Das et al. [15] proposed a neighborhood-based mutation 

operator, which contains two parts: global neighborhood- 

based mutation and local neighborhood-based mutation. In 

the method proposed by Das et al. [15], two trial vectors are 

produced by the global and local neighborhood-based 

mutation. Moreover, these two trial vectors are combined to 

form the actual trial vector by using a weight factor. Clearly, 

the main aim of the neighborhood-based mutation operator is 

to balance the exploration and exploitation abilities of DE. 

This mutation operator has been tested on 24 benchmark test 

functions and two real-world problems and shown very 
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competitive results. 

After recognizing that the trial vector generated by the 

crossover operator is just a vertex of the hyper-rectangle 

defined by the mutant and target vectors, Wang et al. [11] 

employed orthogonal crossover [16] to make a systematic and 

rational search in the hyper-rectangle defined by the mutant 

and target vectors, and proposed a generic framework to 

enhance the search ability of DE. The experimental results 

have demonstrated that this framework can be used to 

improve the performance of different variants of DE. 

3.2. Adapting the control parameter setting 

Liu and Lampinen [17] designed a fuzzy adaptive DE 

(FADE) based on fuzzy logic controller. In FADE, the mean 

square roots of differences of the objective function values and 

the population members during the successive generations are 

treated as the inputs of the fuzzy logic controller, and the 

outputs are the values of F and CR. The experimental results 

have shown that FADE outperforms the classic DE on 

problems with high dimensionality. The main weakness of 

FADE lies in its complicated implementation due to fuzzy 

adapting. 

Brest [18] proposed a DE with self-adaptive parameter 

control (jDE). In jDE, the control parameters F and CR are 

encoded into the chromosome and participate in the 

evolution. Each individual in the population is assigned an 

initial control parameter setting: Fi=0.5 and CRi=0.9 

( 1,2, ,i NP ). During the evolution, jDE regenerates Fi and 

CRi according to the uniform random distributions U(0.1,0.9) 

and U(0,1) with probabilities 
1  and 2 , respectively. One 

of the main advantages of jDE is that its implementation is 

very simple. In [18], 21 test functions have been used to 

assess the performance of jDE. 

In JADE proposed by Zhang and Sanderson [14], for each 

target vector, the scaling factor F is generated by the Cauchy 

distribution C(F,0.1), and the crossover control parameter 

CR obeys the normal distribution N(CR,0.1). In addition, 

JADE uses the following equations to update F and CR: 

(1 ) ( )F F L Fc c mean S                  (6) 

(1 ) ( )CR CR A CRc c mean S                 (7) 

where c controls the rate of parameter adaptation, SF and SCR 

are the sets of all successful scaling factor F and crossover 

control parameter CR at each generation, respectively, and 

meanA(·) and meanL(·) are the usual arithmetic mean and the 

Lehmer mean, respectively. The above parameter adaptation 

has the capability to adapt parameters to appropriate values, 

and thus, improves the robustness of DE. 

3.3. Hybridizing with other techniques 

Noman and Iba [7] proposed a crossover-based adaptive 

local search operator to enhance the convergence rate of DE. 

In this method, simplex crossover [19] is applied to the best 

individual and two other individuals of the population at each 

generation before implementing DE. This method does not 

add any additional complexity or any additional parameter. 

Moreover, it exhibits a higher convergence velocity 

compared with the original DE. 

Opposition-based DE (ODE) is proposed by Rahnamayan 

et al. [20], which employs opposition-based learning to 

generate the initial population and new solutions. The 

experimental results suggest that opposition-based learning is 

a very effective way to speed up the convergence of DE. 

Concretely, ODE is on average 44% faster than the original 

DE on 58 test functions. 

Sun et al. [21] combined DE with estimation of distribution 

algorithm (EDA), and proposed DE/EDA. In DE/EDA, one 

part of the trial vector is generated in the DE way, and the 

other part of the trial vector is sampled from the constructed 

probability distribution model. As a result, DE/EDA can not 

only utilize the global statistical information derived from 

EDA, but also use the differential information provided by 

DE. 

3.4. Integrating multiple trial vector generation strategies 

with multiple control parameter settings 

Recently, some researchers investigated the idea of 

integrating multiple trial vector generation strategies with 

multiple control parameter settings in DE. The main 

motivation is that different strategies along with different 

parameter settings may be suitable to different problems [8]. 

Qing et al. [8] proposed a self-adaptive DE (SaDE), in 

which both trial vector generation strategies and control 

parameter settings are self-adapted according to the previous 

information. SaDE establishes a strategy candidate pool 

which contains four trial vector generation strategies. At each 

generation, one trial vector generation strategy is chosen for 

one individual. In addition, SaDE assigns different control 

parameter settings for different individuals. SaDE has been 

used to solve a suite of 26 test functions and the experimental 

results are very promising. 

Mallipeddi et al. [22] proposed a DE with ensemble of 

control parameter settings and trial vector generation 

strategies (EPSDE). EPSDE involves a pool of distinct trial 

vector generation strategies and a pool of values for each 

control parameter. During the evolution, a trial vector 

generation strategy and a control parameter setting are chosen 

based on their success experience in the past generations to 

create a trial vector. As a result, the successful combination 

of strategy and parameter setting has a higher probability to 

produce the trial vector. Since the strategies and the 

parameter settings in a pool have distinct properties, EPSDE 

exhibit distinct performance characteristics during different 

stages of the evolution. 

During the past fifteen years, DE researchers have obtained 

some important experiences about choosing trial vector 

generation strategies and control parameter settings, which 

will be very useful for designing more effective DE. 

Motivated by the above consideration, Wang et al. [23] 

investigated whether the performance of DE can be improved 

by combining several trial vector generation strategies with 

several different control parameter settings, which exhibit 

different characterizes, and proposed a composite DE, named 
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CoDE. CoDE combines three trial vector generation 

strategies with three control parameter settings in a random 

way to produce the trial vectors. The performance of CoDE 

has been evaluated on 25 benchmark test functions developed 

for IEEE CEC2005 [9]. 

Gong et al. [24] used four trial vector generation strategies 

proposed in [14] to form the strategy candidate pool and 

designed two adaptive methods to choose a suitable trial 

vector generation strategy for a problem at hand. In addition, 

the parameter adaptation mechanism proposed by Gong et al. 

[24] is similar to that proposed in [14]. The experimental 

results on 20 test functions and two real-world problems have 

verified that the method proposed in [24] is able to adaptively 

determine a more suitable strategy for a specific problem. 

4. Proposed approach 

In this section, we propose a novel DE, named CoBiDE. 

CoBiDE contains two main components: covariance matrix 

learning and bimodal distribution parameter setting. Next, the 

implementation of the above two main components will be 

introduced in detail. 

4.1. Covariance matrix learning 

As mentioned previously, the crossover operator of DE is 

dependent mainly on the coordinate system, and the 

distribution information of the population, which could 

reflect the landscape of the problem to a certain extent [12], is 

usually ignored during the evolution. Indeed, the statistical 

properties of the population (such as mean value, variance, 

and covariance) can be utilized to represent the distribution of 

the population. In particular, the covariance matrix composed 

of variance and covariance reflects the diversity of the 

population and the interactions among the variables. Hence, 

systemically utilizing the covariance matrix should be very 

useful for relaxing the dependence of DE on the coordinate 

system and loosing the interactions among the variables. 

Based on the above analysis, covariance matrix learning is 

proposed in this paper, the aim of which is to establish an 

Eigen coordinate system with loose variable correlation for 

the crossover operator. Fig. 1 shows the differences between 

the crossover operator in the original coordinate system (Fig. 

1(a)) and the crossover operator in the Eigen coordinate 

system (Fig. 1(b)) for a problem with variable correlation. 

Suppose that the Eigen coordinate system (i.e., 
1 2ox x  ) is 

obtained after analyzing the distribution of the population. 

From Fig. 1, it is clear that crossover in the Eigen coordinate 

system is more promising to find the global optimum, since 

the trial vectors generated by the crossover in the Eigen 

coordinate system may be more close to the global optimum 

than the trial vectors created by the crossover in the original 

coordinate system. 

In this paper, the covariance matrix learning includes two 

core techniques: Eigen decomposition of the covariance 

matrix and the coordinate transformation. The purpose of the 

former is to obtain Eigen vectors which can serve as the axial 

orientations of the Eigen coordinate system. In addition, the 

latter transforms the trial vectors into the original coordinate 

system, after implementing the crossover operator according 

to the Eigen coordinate system. The procedure of the 

covariance matrix learning is introduced as follows. 

Step 1. Compute the covariance matrix C of the top 

ps  NP individuals in the current population, and 

apply Eigen decomposition to C as follows: 
2 TC BD B               (8) 

where B and B
T
 are orthogonal matrices and D is 

a diagonal matrix composed of Eigen values. 

Note that each column of B is an Eigen vector of 

the covariance matrix C. 

Step 2. Update the target vector and the mutant vector in 

the Eigen coordinate system by making use of 

B
T
: 

1

, , ,

T

i G i G i Gx B x B x              (9) 

 

2x  

,i Gx  

1x  

,i Gv  

        

 

,i Gv  

,i Gx  

1x 

1x  

2x  

2x  

 
(a)                                                  (b) 

Fig. 1. Crossover in the original coordinate system (i.e., 
1 2ox x ) and in the Eigen coordinate system (i.e., 

1 2ox x  ), where 
,i Gx  is a target vector in the population, 

,i Gv  is its mutant vector, and the square points denote the possible trial vectors. 
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1

, , ,

T

i G i G i Gv B v B v             (10) 

Step 3. Apply the crossover operator to ,i Gx  and ,i Gv , 

and create a trial vector ,i Gu  in the Eigen 

coordinate system: 

, ,

, ,

, ,

, (0,1)

,

i j G j rand

i j G

i j G

v if rand CR or j j
u

x otherwise

  
  


(11) 

Step 4. Transform ,i Gu  into the original coordinate 

system by taking advantage of B: 

, ,i G i Gu Bu               (12) 

where ,i Gu  is the trial vector in the original 

coordinate system. 

During the evolution, due to the randomness of the 

distribution of the population, if all the individuals in the 

population are used to compute the covariance matrix, the 

covariance matrix will be disturbed by such randomness and, 

as a result, the Eigen coordinate system constructed may not 

be quite reasonable. Therefore, in Step 1, we use the ps  NP 

individuals with the minimum objective function values in 

the population to compute the covariance matrix, where ps is 

in the interval [0,1]. 

Remark 1. CMA-ES [25], BLXPCA [26], and BLXICA 

[26] have a similar motivation to use statistical information 

based on the covariance matrix. However, there are some 

differences between CoBiDE and them. In CoBiDE, the 

parameter ps is introduced to compute the covariance matrix 

of the top ps  NP individuals in the current population, while 

CMA-ES adopts a weighted method to compute the 

covariance matrix. In addition, all the individuals in the 

population are used to compute the covariance matrix in 

BLXPCA and BLXICA. On the other hand, CMA-ES, 

BLXPCA, and BLXICA use Eigen values and Eigen vectors 

obtained by the Eigen decomposition of the covariance 

matrix simultaneously. However, because of the properties of 

crossover in DE, the proposed approach only uses Eigen 

vectors to construct an appropriate coordinate system, and 

Eigen values are not used. 

Remark 2. Recently, several methods which hybridize DE 

with CMA-ES [25] have been proposed. For example, DE 

performs the global exploration and CMA-ES is used as a 

local search engine in [27]. In [28], CMA-ES and a hybrid 

DE are executed serially. Moreover, two populations are 

utilized, one for CMA-ES and the other for the hybrid DE. 

LaTorre et al. [29] presented a multiple offspring sampling 

framework to combine a restart CMA-ES [30] with DE. In 

this framework, the average fitness increment is adopted as a 

quality function to update the participation ratios of the restart 

CMA-ES and DE. There are two major differences between 

CoBiDE and the above three methods. Firstly, DE is not 

coupled with CMA-ES in CoBiDE. Indeed, CoBiDE only 

exploits the statistical information provided by the covariance 

matrix of the population. Secondly, in CoBiDE the statistical 

information provided by the covariance matrix is embedded 

into DE to strengthen the crossover operator. However, in the 

above three methods, CMA-ES is independent of DE. 

4.2. Bimodal distribution parameter setting 

In this subsection, bimodal distribution parameter setting is 

proposed for the scaling factor F and the crossover control 

parameter CR. It is necessary to emphasize that the proposed 

bimodal distribution parameter setting is inspired by [14] and 

[23]. In addition, like [18], the parameters F and CR are 

encoded into each target vector ,i Gx , i.e., ,i GF  and ,i GCR  

correspond to each ,i Gx . Moreover, if the trial vector ,i Gu  

can successfully enter the next population, then , 1 ,i G i GF F   

and , 1 , ;i G i GCR CR  otherwise, , 1i GF  and , 1i GCR   are 

generated for the next generation according to the bimodal 

distribution parameter setting. 

The bimodal distribution for ,i GF  ( {1, , }i NP ) is 

composed of two Cauchy distributions as follows: 

,

(0.65,0.1),  (0,1) 0.5

(1.0,0.1),

i

i G

i

randc if rand
F

randc otherwise


 


      (13) 

where rand(0,1) is a uniformly distributed random number 

between 0 and 1, and randci(a,b) is a random number obeying 

a Cauchy distribution with location parameter a and scale 

parameter b. If the value of ,i GF  is larger than 1.0, then is 

truncated to 1.0; and if the value of ,i GF  is less than 0.0, then 

is regenerated according to Eq. (13). 

The crossover control parameter ,i GCR ( {1, , }i NP ) is 

generated using the bimodal distribution composed of two 

Cauchy distributions as follows: 

(0.1,0.1),  (0,1) 0.5

(0.95,0.1),

i

i

i

randc if rand
CR

randc otherwise


 


      (14) 

where rand(0,1) is a uniformly distributed random number 

between 0 and 1, and randci(a,b) is a random number obeying 

a Cauchy distribution with location parameter a and scale 

parameter b. If the value of ,i GCR  is larger than 1.0, then is 

truncated to 1.0; and if the value of ,i GCR is less than 0.0, then 

is truncated to 0.0. 

The scaling factor F has the capability to control the search 

range of the mutation operator. In CoBiDE, two Cauchy 

distributions with the same probability (i.e., 0.5) are used for 

the setting of F. It is necessary to note that, Cauchy 

distribution with a higher location parameter (i.e., 1.0) tends 

to produce a bigger value for F which emphasizes the global 

exploration; however, Cauchy distribution with a relatively 

lower location parameter (i.e., 0.65) aims at producing a 

slightly smaller value for F, which focuses on the local 

exploitation. 

On the other hand, two Cauchy distributions with the same 

probability (i.e., 0.5) are designed for the setting of CR. The 

Cauchy distribution with a bigger location parameter (i.e., 

0.95) means that the trial vector may inherit more information 

from the mutant vector, which encourages the diversity of the 

population and the exploration. On the contrary, the Cauchy 

distribution with a smaller location parameter (i.e., 0.1) 

signifies that the trial vector may be quite similar to the target 

vector. In this case, the search will put emphasis on the 
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neighbor of the parent population, which can accelerate the 

convergence. 
Based on the above analysis, the use of Eq. (13) and Eq. 

(14) is able to achieve an effective tradeoff between the 

exploration and exploitation. In addition, the scale parameter 

in both Eq. (13) and Eq. (14) is set to 0.1, which results in the 

values of F and CR being located in the relatively small 

neighborhood of the location parameter with a higher 

probability. 

4.3. Framework of CoBiDE 

By combining the covariance matrix learning with the 

bimodal distribution parameter setting, CoBiDE is presented. 

The pseudocode of CoBiDE has been shown in Fig. 2. 

At each generation, for each target vector ,i Gx , a mutant 

vector ,i Gv  is generated by making use of the mutation 

operator (i.e., Eq. (2)). Afterward, if the predefined parameter 

pb is larger than a random number between 0 and 1, the 

crossover operator according to the covariance matrix learning 

is utilized to produce a trial vector ,i Gu , otherwise, the 

crossover operator according to the original coordinate system 

is exploited to produce a trial vector ,i Gu . Moreover, during 

the evolution, each target vector has its control parameter 

setting and the control parameter setting is dynamically 

adapted based on Eq. (13) and Eq. (14). 

In the above procedure, we use the parameter pb to adjust 

the effect of the covariance matrix learning on the 

performance. The main reason is the following. Although the 

covariance matrix learning is an effective way to alleviate the 

dependence of DE on the coordinate system and the 

interactions among the variables, it is a relatively 

deterministic and greedy mechanism due to the use of some 

best individuals of the population to compute the covariance 

matrix, and as a result, the performance of the algorithm 

might degrade for some complex problems. Note that the 

crossover operator according to the original coordinate 

system has no bias to any special search directions. 

Consequently, the crossover operator is implemented in the 

original coordinate system with a probability (1-pb) to 

encourage the diversity of the population. With respect to 

CoBiDE, combining these two kinds of crossover can achieve 

a good tradeoff between diversity and convergence. 

Input: NP: the number of individuals contained by the population 

MAX_FES: maximum number of function evaluations 
pb: the probability to execute DE according to the covariance matrix learning 

ps: the proportion of the individuals chosen from the current population to calculate the covariance matrix 

(1) G=0; 

(2) Generate an initial population 0 1,0 ,0{ , , }NPP x x  by randomly sampling from the search space; 

(3) Evaluate the objective function values of each individual (i.e., each target vector) in P0; 

(4) FES=NP;   /* FES records the number of function evaluations */ 

(5) Generate the initial scaling factor Fi,0 and crossover control parameter CRi,0 ( {1, , }i NP ) for each target vector ,0ix  in the population according 

to Eq. (13) and Eq. (14), respectively; 
(6) While FES<MAX_FES 

(7)      
1GP   ; 

(8)      For i=1:NP 

(9)          Apply the mutation operator (i.e., Eq. (2)) to produce a mutant vector 
,i Gv  for the target vector 

,i Gx ; 

(10)      End For 

(11)      If rand(0,1)<pb    /* rand(0,1) denotes a uniformly distributed random number between 0 and 1 */ 

(12)          For i=1:NP 

(13)      Implement the crossover operator according to the covariance matrix learning (i.e., Eqs. (8)-(12)), and produce a trial vector 
,i Gu ; 

(14)          End For 

(15)      Else 
(16)          For i=1:NP 

(17)            Implement the crossover operator according to the original coordinate system (i.e., Eq. (3)), and produce a trial vector 
,i Gu ; 

(18)          End For 

(19)      End If 
(20)      For i=1:NP 

(21)          Evaluate the objective function value of 
,i Gu ; 

(22)          If 
, ,( ) ( )i G i Gf u f x  

(23)             
1GP 

=
1 ,G i GP u

; 

(24)             Fi,G+1=Fi,G and CRi,G+1=CRi,G; 

(25)          Else 

(26)             
1GP 

=
1 ,G i GP x

; 

(27)             Generate Fi,G+1 and CRi,G+1 according to Eq. (13) and Eq. (14) for the next generation; 

(28)          End If 
(29)      End For 
(30)      FES=FES+NP; 

(31)      G=G+1; 

(32) End While 

Output: the individual with the smallest objective function value in the population 

Fig. 2. Pseudocode of CoBiDE 
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5. Experimental Study 

CoBiDE was tested on 25 benchmark test functions 

developed for IEEE CEC2005 [9]. These 25 benchmark test 

functions can be divided into four classes: 

1) Unimodal functions F1-F5, 

2) Basic multimodal functions F6-F12, 

3) Expanded multimodal functions F13-F14, and 

4) Hybrid composition functions F15-F25. 

Among the above test functions, F1 and F9 are separable 

functions and the others are non-separable functions. Some 

test functions are rotated using orthogonal matrices to make 

variables correlated with each other, and the global optima of 

some test functions are shifted so as to not at the center of the 

search space. Moreover, F4 and F17 are used to test the 

Table 1 

Experimental results of JADE, jDE, SaDE, CoDE, and CoBiDE over 25 independent runs on 25 test functions of 30 variables with 300000 FES. “Mean Error” 
and “Std Dev” indicate the average and standard deviation of the function error values obtained in 25 runs, respectively. Wilcoxon’s rank sum test at a 0.05 

significance level is performed between CoBiDE and each of JADE, jDE, SaDE, and CoDE. The effect size is shown in the parentheses. 

Function 
JADE 

Mean Error±Std Dev 

jDE 

Mean Error±Std Dev 

SaDE 

Mean Error±Std Dev 

CoDE 

Mean Error±Std Dev 

CoBiDE 

Mean Error±Std Dev 

Unimodal 

Functions 

F1 0.00E+00±0.00E+00≈ (NaN) 0.00E+00±0.00E+00≈ (NaN) 0.00E+00±0.00E+00≈ (NaN) 0.00E+00±0.00E+00≈ (NaN) 0.00E+00±0.00E+00 

F2 1.07E-28±1.00E-28＋ (0.80) 1.11E-06±1.96E-06－ (-0.82) 8.26E-06±1.65E-05－ (-0.72) 1.69E-15±3.95E-15＋ (0.80) 1.60E-12±2.90E-12 

F3 8.42E+03±7.26E+03＋ (1.63) 1.98E+05±1.10E+05－ (-1.46) 4.27E+05±2.08E+05－ (-2.37) 1.05E+05±6.25E+04－ (-0.56) 7.26E+04±5.64E+04 

F4 1.73E-16±5.43E-16＋ (0.61) 4.40E-02±1.26E-01－ (-0.49) 1.77E+02±2.67E+02－ (-0.96) 5.81E-03±1.38E-02－ (-0.48) 1.16E-03±2.74E-03 

F5 8.59E-08±5.23E-07＋ (0.77) 5.11E+02±4.40E+02－ (-1.33) 3.25E+03±5.90E+02－ (-7.51) 3.31E+02±3.44E+02－ (-0.96) 8.03E+01±1.51E+02 

Basic 

Multimodal 

Functions 

F6 1.02E+01±2.96E+01－ (-0.50) 2.35E+01±2.50E+01－ (-1.35) 5.31E+01±3.25E+01－ (-2.36) 1.60E-01±7.85E-01－ (-0.22) 4.13E-02±9.21E-02 

F7 8.07E-03±7.42E-03－ (-1.09) 1.18E-02±7.78E-03－ (-1.68) 1.57E-02±1.38E-02－ (-1.40) 7.46E-03±8.55E-03－ (-0.88) 1.77E-03±3.73E-03 

F8 2.09E+01±1.68E-01－ (-0.70) 2.09E+01±4.86E-02－ (-0.76) 2.09E+01±4.95E-02－ (-0.76) 2.01E+01±1.41E-01＋ (2.16) 2.07E+01±3.75E-01 

F9 0.00E+00±0.00E+00≈ (NaN) 0.00E+00±0.00E+00≈ (NaN) 2.39E-01±4.33E-01－ (-0.80) 0.00E+00±0.00E+00≈ (NaN) 0.00E+00±0.00E+00 

F10 2.41E+01±4.61E+00＋ (1.69) 5.54E+01±8.46E+00－ (-1.43) 4.72E+01±1.01E+01≈ (-0.62) 4.15E+01±1.16E+01≈ (-0.12) 4.41E+01±1.29E+01 

F11 2.53E+01±1.65E+00－ (-10.36) 2.79E+01±1.61E+00－ (-11.83) 1.65E+01±2.42E+00－ (-4.81) 1.18E+01±3.40E+00－ (-2.21) 5.62E+00±2.19E+00 

F12 6.15E+03±4.79E+03－ (-0.75) 8.63E+03±8.31E+03－ (-0.89) 3.02E+03±2.33E+03≈ (-0.02) 3.05E+03±3.80E+03≈ (-0.03) 2.94E+03±3.93E+03 

Expanded 

Multimodal 

Functions 

F13 1.49E+00±1.09E-01＋ (1.46) 1.66E+00±1.35E-01＋ (1.24) 3.94E+00±2.81E-01－ (-1.61) 1.57E+00±3.27E-01＋ (1.31) 2.64E+00±1.13E+00 

F14 1.23E+01±3.11E-01≈ (0) 1.30E+01±2.00E-01－ (-1.91) 1.26E+01±2.83E-01－ (-0.77) 1.23E+01±4.81E-01≈ (0) 1.23E+01±4.90E-01 

Hybrid 

Composition 

Functions 

F15 3.51E+02±1.28E+02＋ (0.56) 3.77E+02±8.02E+01＋ (0.41) 3.76E+02±7.83E+01≈ (0.43) 3.88E+02±6.85E+01≈ (0.27) 4.04E+02±5.03E+01 

F16 1.01E+02±1.24E+02－ (-0.30) 7.94E+01±2.96E+01－ (-0.17) 8.57E+01±6.94E+01－ (-0.21) 7.37E+01±5.13E+01≈ (0.00) 7.38E+01±3.66E+01 

F17 1.47E+02±1.33E+02－ (-0.80) 1.37E+02±3.80E+01－ (-2.16) 7.83E+01±3.76E+01≈ (-0.20) 6.67E+01±2.12E+01＋ (0.29) 7.25E+01±2.02E+01 

F18 9.04E+02±1.03E+00≈ (-0.14) 9.04E+02±1.08E+01≈ (-0.10) 8.68E+02±6.23E+01≈ (0.80) 9.04E+02±1.04E+00－ (-0.14) 9.03E+02±1.05E+01 

F19 9.04E+02±8.40E-01≈ (-0.14) 9.04E+02±1.11E+00≈ (-0.14) 8.74E+02±6.22E+01≈ (0.66) 9.04E+02±9.42E-01－ (-0.14) 9.03E+02±1.04E+01 

F20 9.04E+02±8.47E-01≈ (0) 9.04E+02±1.10E+00≈ (0) 8.78E+02±6.03E+01＋ (0.62) 9.04E+02±9.01E-01－ (0) 9.04E+02±5.95E-01 

F21 5.00E+02±4.67E-13≈ (0) 5.00E+02±4.80E-13≈ (0) 5.52E+02±1.82E+02－ (-0.41) 5.00E+02±4.88E-13≈ (0) 5.00E+02±4.62E-13 

F22 8.66E+02±1.91E+01≈ (-0.17) 8.75E+02±1.91E+01－ (-0.55) 9.36E+02±1.83E+01－ (-3.19) 8.63E+02±2.43E+01≈ (-0.04) 8.62E+02±2.80E+01 

F23 5.50E+02±8.05E+01－ (-0.29) 5.34E+02±2.77E-04－ (0) 5.34E+02±3.57E-03－ (0) 5.34E+02±4.12E-04－ (0) 5.34E+02±1.30E-04 

F24 2.00E+02±2.85E-14≈ (0) 2.00E+02±2.85E-14≈ (0) 2.00E+02±6.20E-13≈ (0) 2.00E+02±2.85E-14≈ (0) 2.00E+02±2.85E-14 

F25 2.11E+02±7.92E-01－ (-1.30) 2.11E+02±7.32E-01－ (-1.36) 2.14E+02±2.00E+00－ (-2.69) 2.11E+02±9.02E-01－ (-1.21) 2.10E+02±7.73E-01 

－ 9 16 16 11  

＋ 7 2 1 4  

≈ 9 7 8 10  

“－”, “＋”, and “≈” denote that the performance of the corresponding algorithm is worse than, better than, and similar to that of CoBiDE, respectively. 

 

Table 2 

Results of the multiple-problem Wilcoxon’s test for JADE, jDE, SaDE, CoDE, and CoBiDE at a 0.05 significance level and at a 0.1 significance level 

Algorithm R+ R- p-value α=0.05 α=0.1 

CoBiDE vs JADE 209.0 116.0 0.206006 No No 

CoBiDE vs jDE 263.0 37.0 0.001183 Yes Yes 

CoBiDE vs SaDE 252.5 72.5 0.014889 Yes Yes 

CoBiDE vs CoDE 213.0 87.0 0.069634 No Yes 

 

Table 3 

Ranking of JADE, jDE, SaDE, CoDE, and CoBiDE according to the statistical test of the Friedman test 

Algorithm Ranking 

CoBiDE 2.08 

CoDE 2.64 

JADE 2.84 

SaDE 3.64 

jDE 3.8 
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robustness of the algorithm on noise. F15-F25 are hybrid 

composition functions which are composed of 10 sub- 

functions. The details of these 25 benchmark test functions 

have been given in [9]. 

In our experiments, the dimension (D) of each test function 

was set to 30 and each test function was independently run 25 

times with 300000 function evaluations (FES) as the 

termination criterion. All the experiments are performed on a 

computer with 2.4 GHz Dual-core Processor and 4.0 GB of 

RAM in Windows XP. The population size NP in CoBiDE 

was set to 60, pb=0.4, and ps=0.5. 

In this section, the mean and standard deviation of the 

function error value ( )()( *xfxf


 ) were calculated over 25 

independent runs for each test function, where x


 is the best 

solution in the population when the algorithm terminates and 
*x


 is the global optimal solution. Wilcoxon’s rank sum test 

at a 0.05 significance level was performed to test the 

statistical significance of the experimental results between 

two algorithms. 

5.1. Comparison with other DE variants 

CoBiDE was compared with four other DE variants: JADE 

[14], jDE [18], SaDE [8], and CoDE [23]. These four 

algorithms have been briefly introduced in Section 3. JADE 

and jDE adopt self-adaptive parameter setting, and SaDE uses 

the normal distribution N(0.5,0.3) to produce the scaling 

factor F and adjusts the crossover control parameter CR in a 

self-adaptive way. For the above four algorithms, we used the 

same parameter settings as given in their original papers. The 

experimental results of CoBiDE and other four algorithms are 

summarized in Table 1. It is necessary to emphasize that the 

experimental results of JADE, jDE, SaDE, and CoDE were 

directly taken from [23] to ensure the comparison fair.  

Table 1 also records the Cohen’s d effect size [31] (within 

parentheses), which is a simple measure for quantifying the 

difference between two groups of data. The Cohen’s d effect 

size is independent of the sample size. In general, we call a 

“small” effect if an effect size is between 0.2 and 0.3, a 

“medium” effect if an effect size is around 0.5, and a “large” 

effect if an effect size is from 0.8 to infinity [31]. Concretely, 

for F3 the effect size is equal to 1.63 when comparing JADE 

with CoBiDE, which means that the performance difference 

between JADE and CoBiDE is large and that JADE exhibits 

performance improvement. In contrast, for F11 the effect size 

is equal to -10.36 when comparing JADE with CoBiDE, 

which means that the performance difference between JADE 

and CoBiDE is also large and that JADE shows performance 

deterioration. It is necessary to note that for some test 

functions, the differences between both the mean and the 

standard deviation are equal to 0 when comparing CoBiDE 

with another algorithm and, as a result, the corresponding 

effect size is denoted as NaN in Table 1. 

The last three lines of Table 1 summarize the experimental 

Table 4 

Comparison of the average runtime (in seconds) of JADE, jDE, SaDE, CoDE, and CoBiDE for each test function. AR denotes the acceleration rate and the last 
row of the table represents the average AR. 

Function JADE jDE SaDE CoDE CoBiDE 

Unimodal 
Functions 

F1 3.74 2.43 39.14 8.93 4.91 

F2 3.77 2.82 35.65 9.53 5.64 

F3 3.82 2.83 36.51 12.49 5.26 

F4 3.83 3.07 32.63 9.89 5.91 

F5 4.59 3.74 36.21 11.12 6.28 

Basic 

Multimodal 
Functions 

F6 3.36 2.37 34.31 9.29 5.07 

F7 3.48 2.73 32.36 8.28 5.03 

F8 4.14 3.52 36.36 12.33 5.94 

F9 3.47 2.69 35.40 9.82 5.36 

F10 4.07 3.21 35.50 9.98 5.31 

F11 67.34 67.31 109.46 80.76 70.74 

F12 19.56 19.23 52.92 28.66 24.40 

Expanded 

Multimodal 

Functions 

F13 4.22 3.23 33.65 10.03 6.57 

F14 5.00 4.28 39.34 13.74 7.21 

Hybrid 

Composition 
Functions 

F15 152.24 155.58 245.17 179.93 171.61 

F16 158.03 152.60 215.81 175.75 169.60 

F17 149.77 153.18 222.27 209.18 165.98 

F18 162.03 160.15 227.57 230.69 176.28 

F19 163.59 155.65 212.93 193.63 180.76 

F20 162.14 158.16 226.92 186.80 177.43 

F21 159.13 155.38 227.15 178.51 183.83 

F22 204.95 203.20 277.54 233.41 222.01 

F23 158.61 157.33 242.07 183.79 180.15 

F24 104.40 107.61 199.99 128.66 125.99 

F25 120.10 115.51 215.87 136.15 131.38 

Average AR 0.80 0.72 3.77 1.45  
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results: 

1) Unimodal functions F1-F5: JADE exhibits the best 

performance on five unimodal functions among the five 

algorithms. Evidently, the greedy mutation operator, i.e., 

current-to-pbest/1, results in the fast convergence speed and 

high convergence precision of JADE under these conditions. 

CoBiDE is outperformed by JADE on four test functions and 

surpasses jDE, SaDE, and CoDE on four, four, and three test 

functions, respectively. jDE and SaDE cannot show better 

performance than CoBiDE on any test functions and CoDE 
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Fig. 3. Evolution of the mean function error values derived from JADE, jDE, SaDE, CoDE, and CoBiDE versus the number of FES on F1, F2, F3, F4, F5, F6, F7, 

and F8. 
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performs better than CoBiDE on only one test function. 

Therefore, the performance of CoBiDE is the second best in 

terms of these five unimodal functions. 

2) Basic multimodal functions F6-F12: Clearly, CoBiDE 

has the best performance on this kind of test functions. 

CoBiDE has an edge over JADE, jDE, SaDE, and CoDE on 

five, six, five, and three test functions, respectively. JADE 

and CoDE are statistically better than CoBiDE on one test 

function, and jDE and SaDE cannot outperform CoBiDE on 

any test functions. The outstanding performance of CoBiDE 
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Fig. 4. Evolution of the mean function error values derived from JADE, jDE, SaDE, CoDE, and CoBiDE versus the number of FES on F9, F10, F11, F12, F13, F14, 

F16, and F17. 
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can be attributed to its capability to balance the exploration 

and exploitation. 

3) Expanded multimodal functions F13-F14: The mean 

function error values of all the algorithms are of the same 

order of magnitude on F13 and F14. JADE and CoDE are 

statistically better than CoBiDE. CoBiDE exhibits the similar 

performance with jDE. In addition, CoBiDE outperforms 

SaDE on these two test functions. 

4) Hybrid composition functions F15-F25: The solution of 

these 11 test functions is much more difficult than that of 

other test functions. For these 11 test functions, the results 

provided by the five algorithms are far way from the global 

optima. However, from Table 1, we can still observe that the 

performance of CoBiDE is superior to that of the other four 

algorithms according to the Wilcoxon’s rank sum test. 

According to the last three lines of Table 1, overall 

CoBiDE is the best among the five algorithms. For five 

unimodal functions, CoBiDE is ranked the second, and for 

Table 5 

Experimental results of CLPSO, CMA-ES, GL-25, and CoBiDE over 25 independent runs on 25 test functions of 30 variables with 300000 FES. “Mean 
Error” and “Std Dev” indicate the average and standard deviation of the function error values obtained in 25 runs, respectively. Wilcoxon’s rank sum test at a 

0.05 significance level is performed between CoBiDE and each of CLPSO, CMA-ES, and GL-25. 

Function 
CLPSO 

Mean Error±Std Dev 
CMA-ES 

Mean Error±Std Dev 
GL-25 

Mean Error±Std Dev 
CoBiDE 

Mean Error±Std Dev 

Unimodal 
Functions 

F1 0.00E+00±0.00E+00≈ 1.58E-25±3.35E-26－ 5.60E-27±1.76E-26－ 0.00E+00±0.00E+00 

F2 8.40E+02±1.90E+02－ 1.12E-24±2.93E-25＋ 4.04E+01±6.28E+01－ 1.60E-12±2.90E-12 

F3 1.42E+07±4.19E+06－ 5.54E-21±1.69E-21＋ 2.19E+06±1.08E+06－ 7.26E+04±5.64E+04 

F4 6.99E+03±1.73E+03－ 9.15E+05±2.16E+06－ 9.07E+02±4.25E+02－ 1.16E-03±2.74E-03 

F5 3.86E+03±4.35E+02－ 2.77E-10±5.04E-11＋ 2.51E+03±1.96E+02－ 8.03E+01±1.51E+02 

Basic 

Multimodal 
Functions 

F6 4.16E+00±3.48E+00－ 4.78E-01±1.32E+00－ 2.15E+01±1.17E+00－ 4.13E-02±9.21E-02 

F7 4.51E-01±8.47E-02－ 1.82E-03±4.33E-03≈ 2.78E-02±3.62E-02－ 1.77E-03±3.73E-03 

F8 2.09E+01±4.41E-02－ 2.03E+01±5.72E-01＋ 2.09E+01±5.94E-02－ 2.07E+01±3.75E-01 

F9 0.00E+00±0.00E+00≈ 4.45E+02±7.12E+01－ 2.45E+01±7.35E+00－ 0.00E+00±0.00E+00 

F10 1.04E+02±1.53E+01－ 4.63E+01±1.16E+01≈ 1.42E+02±6.45E+01－ 4.41E+01±1.29E+01 

F11 2.60E+01±1.63E+00－ 7.11E+00±2.14E+00－ 3.27E+01±7.79E+00－ 5.62E+00±2.19E+00 

F12 1.79E+04±5.24E+03－ 1.26E+04±1.74E+04－ 6.53E+04±4.69E+04－ 2.94E+03±3.93E+03 

Expanded 

Multimodal 

Functions 

F13 2.06E+00±2.15E-01＋ 3.43E+00±7.60E-01－ 6.23E+00±4.88E+00－ 2.64E+00±1.13E+00 

F14 1.28E+01±2.48E-01－ 1.47E+01±3.31E-01－ 1.31E+01±1.84E-01－ 1.23E+01±4.90E-01 

Hybrid 
Composition 

Functions 

F15 5.77E+01±2.76E+01＋ 5.55E+02±3.32E+02－ 3.04E+02±1.99E+01＋ 4.04E+02±5.03E+01 

F16 1.74E+02±2.82E+01－ 2.98E+02±2.08E+02－ 1.32E+02±7.60E+01－ 7.38E+01±3.66E+01 

F17 2.46E+02±4.81E+01－ 4.43E+02±3.34E+02－ 1.61E+02±6.80E+01－ 7.25E+01±2.02E+01 

F18 9.13E+02±1.42E+00－ 9.04E+02±3.01E-01－ 9.07E+02±1.48E+00－ 9.03E+02±1.05E+01 

F19 9.14E+02±1.45E+00－ 9.16E+02±6.03E+01－ 9.06E+02±1.24E+00－ 9.03E+02±1.04E+01 

F20 9.14E+02±3.62E+00－ 9.04E+02±2.71E-01＋ 9.07E+02±1.35E+00－ 9.04E+02±5.95E-01 

F21 5.00E+02±3.39E-13≈ 5.00E+02±2.68E-12－ 5.00E+02±4.83E-13≈ 5.00E+02±4.62E-13 

F22 9.72E+02±1.20E+01－ 8.26E+02±1.46E+01＋ 9.28E+02±7.04E+01－ 8.62E+02±2.80E+01 

F23 5.34E+02±2.19E-04－ 5.36E+02±5.44E+00－ 5.34E+02±4.66E-04－ 5.34E+02±1.30E-04 

F24 2.00E+02±1.49E-12－ 2.12E+02±6.00E+01－ 2.00E+02±5.52E-11－ 2.00E+02±2.85E-14 

F25 2.00E+02±1.96E+00＋ 2.07E+02±6.07E+00≈ 2.17E+02±1.36E-01－ 2.10E+02±7.73E-01 

－ 19 16 23  

＋ 3 6 1  

≈ 3 3 1  

“－”, “＋”, and “≈” denote that the performance of the corresponding algorithm is worse than, better than, and similar to that of CoBiDE, respectively. 

 

Table 6 

Results of the multiple-problem Wilcoxon’s test for CLPSO, CMA-ES, GL-25, and CoBiDE at a 0.05 significance level and at a 0.1 significance level 

Algorithm R+ R- p-value α=0.05 α=0.1 

CoBiDE vs CLPSO 257.0 43.0 0.001834 Yes Yes 

CoBiDE vs CMA-ES 241.5 83.5 0.032428 Yes Yes 

CoBiDE vs GL-25 279.5 20.5 0.000193 Yes Yes 

 

Table 7 

Ranking of CLPSO, CMA-ES, GL-25, and CoBiDE according to the statistical test of the Friedman test 

Algorithm Ranking 

CoBiDE 1.62 

CMA-ES 2.6 

CLPSO 2.84 

GL-25 2.94 
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basic multimodal functions and hybrid composition 

functions, CoBiDE is more reliable than others. The superior 

performance of CoBiDE stems from two aspects: 1) the 

bimodal distribution parameter setting is capable of 

motivating the population towards promising directions, and 

2) the covariance matrix learning is able to accelerate the 

convergence by exploiting the information provided by some 

potential individuals. 

In addition, we also performed the multiple-problem 

Wilcoxon’s test [32] to check the behaviors of the above five 

algorithms. It is necessary to emphasize that the multiple- 

problem Wilcoxon’s test was accomplished in this paper by 

using the KEEL software [33]. Table 2 summarizes the 

statistical analysis results. From Table 2, we can see that 

CoBiDE provides higher R+ values than R- values in all the 

cases. According to the Wilcoxon’s test at α=0.05, the 

significant differences can be observed in two cases (i.e., 

CoBiDE vs jDE and CoBiDE vs SaDE). When α=0.1, the 

significant differences can be observed in three cases (i.e., 

CoBiDE vs jDE, CoBiDE vs SaDE, and CoBiDE vs CoDE), 

which means that CoBiDE is significantly better than jDE, 

SaDE, and CoDE on 25 test functions at α=0.1. 

To further detect the significant differences between 

CoBiDE and the four competitors, the Friedman’s test was 

carried out, in which Bonferroni-Dunn’s procedure was used 

as a post-hoc procedure. Again, the Friedman’s test was 

implemented based on the KEEL software [33]. Table 3 

summarizes the ranking of the five algorithms obtained by the 

Friedman’s test. As shown in Table 3, CoBiDE has the best 

ranking among the five algorithms on 25 test functions. 

Since all the five compared algorithms are the DE variants, 

one may be interested in the execution time of them on 

different test functions. To this end, we recorded the average 

runtime of each algorithm on each test function over 25 

independent runs in Table 4. In order to compare the average 

runtime, we used the acceleration rate (AR). For each test 

function, AR is equal to the average runtime of CoBiDE 

divided by the average runtime of another algorithm. AR>1 

and AR<1 mean that CoBiDE is faster and slower than 

another corresponding algorithm, respectively. The last row 

of Table 4 gives the average AR values. According to the 

average AR values, it is evident that JADE and jDE are faster 

than CoBiDE. In contrast, SaDE and CoDE are slower than 

CoBiDE. Moreover, based on our observation, the average 

AR values are 0.69 and 0.53 for 12 test functions (i.e., 

F1-F10, F13, and F14) when comparing CoBiDE with JADE 

and jDE respectively. For these 12 test functions, the 

computational cost of the function evaluation is relatively 

cheap, and thus, the computing of the covariance matrix leads 

to the additional burden of the runtime of CoBiDE. However, 

for the other 13 test functions (i.e., F11-F12, and F15-F25), 

the average AR values are 0.89 and 0.88 when comparing 

CoBiDE with JADE and jDE respectively. For these 13 test 

functions, since the function evaluation is time-consuming, 

the overhead of computing the covariance matrix in CoBiDE 

seems to be trivial. Under these conditions, CoBiDE, JADE, 

and jDE have the similar average runtime. It is necessary to 

point out that we directly run the codes of the other four 

algorithms provided by the developers and the programming 

techniques of the developers also have a significant effect on 

the runtime. 

The evolution of the mean function error values of the five 

algorithms in some typical test functions has been shown in 

Fig. 3 and Fig. 4. 

5.2. Comparison with other state-of-the-art EAs 

CoBiDE was also compared with three other EAs: CLPSO 

[34], CMA-ES [25], and GL-25 [35]. CLSPO, proposed by 

Liang et al., is an improved version of particle swarm 

optimization (PSO). In CLPSO, a novel learning strategy is 

proposed, in which all other particles’ historical best 

information is used to update a particle’s velocity. CMA-ES, 

proposed by Hansen and Ostermeier, is an evolution strategy 

(ES) based on completely derandomized self-adaptation. 

GL-25, proposed by Garcia-Martinez et al., is a global and 

local real-coded genetic algorithm (GA) based on parent- 

centric crossover operators. The reasons of the selection of 

these three algorithms in comparison are twofold: 1) CLPSO, 

CMA-ES, and GL-25 represent the state-of-the-art in PSO, 

ES, and GA, respectively. According to the Google Scholar 

Citation, as of December 20, 2013, the number of citations of 

CLPSO, CMA-ES, and GL-25 is 1011, 1332, and 81 

respectively, and 2) their performance is very competitive. 

Table 5 summarizes the experimental results of CoBiDE and 

the above three algorithms. The parameter settings of 

CLPSO, CMA-ES, and CLPSO were the same as in their 

original papers and the experimental result of them were 

directly taken from [23] to make the comparison fair. 

From Table 5, it is evident that, overall, CoBiDE is the best 

among the four compared algorithms in a statistically 

significant fashion. Specifically, CoBiDE outperforms 

CLPSO on 19 test functions and is worse than CLPSO on 

three test functions. CMA-ES surpasses CoBiDE on three 

unimodal functions; however, CoBiDE is significantly better 

than CMA-ES on three other types of test functions. 

Compared with GL-25, CoBiDE shows better and worse 

performance on 23 test functions and one test function, 

respectively. 

In addition, some interesting phenomena can be observed 

according to the experimental results in Table 5. For 

separable functions (i.e., F1 and F9), the performance of 

CLPSO is significantly better than that of the other 

algorithms except for CoBiDE. Moreover, CLPSO also 

outperforms the other algorithms on F15 which is separable 

near the global optimum [9]. The superiority of CLPSO in 

separable functions is mainly due to the dimension-wise 

updating rules for velocity and position in PSO. CMA-ES 

performs quite well on some unimodal functions, which 

means the convergence speed of CMA-ES is very fast. 

Moreover, CMA-ES outperforms the other algorithms on test 

functions with high condition numbers, i.e., F3 and F22. It is 

because CMA-ES has the capability to adapt the population 

distribution according to the landscape of test functions. 

However, the performance of CMA-ES is not good when 
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solving some multimodal functions, especially for test 

functions with noise, i.e., F4 and F17. Therefore, we can 

conclude that CMA-ES is sensitive to the noise. In contrast, 

CoBiDE shows the best performance on test functions with 

noise. 

Tables 6 and 7 also present the statistical analysis results 

according to the multiple-problem Wilcoxon’s test and the 

Friedman’s test, respectively. It can be seen from Table 6 that 

CoBiDE obtains higher R+ values than R- values in all the 

cases. Furthermore, the p values of all the cases are less than 

0.05. On the other hand, the experimental results in Table 7 

indicate that CoBiDE has the best ranking among the four 

compared algorithms. In summary, the above comparison 

clearly demonstrates that CoBiDE is significantly better than 

the three competitors. 

5.3. The effectiveness of the two components in CoBiDE 

As mentioned previously, CoBiDE includes two main 

components: the covariance matrix learning and the bimodal 

distribution parameter setting. The aim of this subsection is to 

verify the effectiveness of the above two components. To this 

end, two additional experiments were executed for 25 

benchmark test functions. In the first experiment, CoBiDE 

only adopts the covariance matrix learning and the bimodal 

distribution parameter setting is not used (denoted as 

CoBiDE-1). In this case, like [18] and [20], F and CR were 

fixed to 0.5 and 0.9 during the evolution, respectively. In 

addition, in the second experiment, CoBiDE only adopts the 

bimodal distribution parameter setting and the covariance 

matrix learning is ignored (denoted as CoBiDE-2). It is 

necessary to note that for CoBiDE-2, Steps 11-15 and Step 19 

in Fig. 3 can be eliminated and only the crossover operator of 

the original DE (i.e., Eq. (3)) is employed. 

For each test function, 25 independent runs were 

implemented and the maximum number of FES was set to 

300000. The experimental results of CoBiDE-1, CoBiDE-2, 

and CoBiDE have been shown in Table 8. 

From Table 8, CoBiDE surpasses CoBiDE-1 on 18 test 

functions. We attribute the above phenomenon to the fact that 

the fixed parameter setting could not adjust the search 

behavior to suit different landscapes, and that the bimodal 

distribution parameter setting is more effective to balance the 

exploration and exploitation during the evolution. In addition, 

CoBiDE-1 outperforms CoBiDE on three test functions (i.e., 

Table 8 

Experimental results of CoBiDE-1, CoBiDE-2, and CoBiDE over 25 independent runs on 25 test functions of 30 variables with 300000 FES. “Mean Error” and 
“Std Dev” indicate the average and standard deviation of the function error values obtained in 25 runs, respectively. Wilcoxon’s rank sum test at a 0.05 

significance level is performed between CoBiDE and each of CoBiDE-1 and CoBiDE-2. 

Function 
CoBiDE-1 

Mean Error±Std Dev 
CoBiDE-2 

Mean Error±Std Dev 
CoBiDE 

Mean Error±Std Dev 

Unimodal 
Functions 

F1 1.54E-28±1.35E-28－ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 

F2 3.95E-12±5.32E-12≈ 2.07E-06±3.69E-06－ 1.60E-12±2.90E-12 

F3 3.25E+05±1.84E+05－ 2.46E+05±1.45E+05－ 7.26E+04±5.64E+04 

F4 5.43E-04±1.28E-03＋ 6.39E-02±6.77E-02－ 1.16E-03±2.74E-03 

F5 7.58E+02±5.56E+02－ 1.29E+02±2.67E+02－ 8.03E+01±1.51E+02 

Basic 

Multimodal 
Functions 

F6 4.09E+01±3.60E+01－ 1.66E+00±1.02E+00－ 4.13E-02±9.21E-02 

F7 2.05E-02±1.79E-02－ 3.64E-03±6.78E-03－ 1.77E-03±3.73E-03 

F8 2.10E+01±3.81E-02－ 2.07E+01±3.74E-01≈ 2.07E+01±3.75E-01 

F9 1.56E+01±7.56E+00－ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 

F10 1.38E+02±5.78E+01－ 4.70E+01±1.34E+01≈ 4.41E+01±1.29E+01 

F11 1.62E+01±1.24E+01－ 7.82E+00±2.95E+00－ 5.62E+00±2.19E+00 

F12 4.35E+03±4.16E+03－ 3.45E+03±3.14E+03≈ 2.94E+03±3.93E+03 

Expanded 

Multimodal 

Functions 

F13 1.14E+01±4.47E+00＋ 2.74E+00±1.00E+00≈ 2.64E+00±1.13E+00 

F14 1.31E+01±2.46E-01－ 1.25E+01±5.39E-01－ 1.23E+01±4.90E-01 

Hybrid 
Composition 

Functions 

F15 3.82E+02±1.12E+02≈ 3.76E+02±8.31E+01≈ 4.04E+02±5.03E+01 

F16 1.16E+02±7.27E+01－ 1.03E+02±9.07E+01－ 7.38E+01±3.66E+01 

F17 2.41E+02±5.64E+01－ 7.90E+01±1.90E+01－ 7.25E+01±2.02E+01 

F18 9.06E+02±1.45E+00－ 9.04E+02±2.76E-01－ 9.03E+02±1.05E+01 

F19 9.01E+02±2.10E+01＋ 9.04E+02±2.62E-01－ 9.03E+02±1.04E+01 

F20 9.05E+02±1.38E+00－ 9.04E+02±2.55E-01≈ 9.04E+02±5.95E-01 

F21 5.24E+02±8.31E+01－ 5.00E+02±8.84E-14≈ 5.00E+02±4.62E-13 

F22 8.84E+02±1.65E+01－ 8.56E+02±2.75E+01≈ 8.62E+02±2.80E+01 

F23 5.50E+02±8.05E+01－ 5.34E+02±3.53E-04≈ 5.34E+02±1.30E-04 

F24 2.00E+02±2.90E-14≈ 2.00E+02±1.03E-12－ 2.00E+02±2.85E-14 

F25 2.10E+02±5.84E-01≈ 2.10E+02±4.61E-01≈ 2.10E+02±7.73E-01 

－ 18 13  

＋ 3 0  

≈ 4 12  

“－”, “＋”, and “≈” denote that the performance of the corresponding algorithm is worse than, better than, and similar to that of CoBiDE, respectively. 
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F4, F13, and F19). According to our further experiments, we 

found out that the parameter setting of F=0.5 and CR=0.9 

provides best or near-best performance for these three test 

functions, which means that the above parameter setting 

happens to be very suitable for these three test functions. 

In addition, compared with CoBiDE, CoBiDE-2 shows 

worse performance on 13 test functions, and cannot show 

better performance on any test functions. It is not difficult to 

understand, since the covariance matrix learning is not 

dependent on the coordinate system when implementing the 

crossover operator. As a result, it has the capability to adapt 

the search according to different landscapes. Moreover, once 

some potential regions have been located, it can accelerate 

the convergence speed and enhance the convergence accuracy 

of the population for different kinds of test functions, due to 

the use of the population information to construct more 

suitable coordinate system. It is also interesting to note that 

for 12 test functions (F1, F8-F10, F12-F13, F15, F20-F23, 
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(a) F3                                              (b) F4 
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(c) F6                                            (d) F9 
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(e) F10                                             (f) F13 
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(g) F14 

Fig. 5. The average function error values of CoBiDE with different combinations of pb and ps 
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and F25), the performance differences between CoBiDE and 

CoBiDE-2 are marginal. These 12 test functions can be 

divided into two categories: F1 and F9 belong to the first 

category, and the remaining 10 test functions belong to the 

second category. For F1 and F9, both CoBiDE and 

CoBiDE-2 can consistently reach the global optimum, and 

thus, the performance differences between CoBiDE and 

CoBiDE-2 are not significant. In addition, since CoBiDE 

might be easily trapped into a local optimum and the 

covariance matrix learning cannot help the population jump 

out of the local optimum, the insignificant performance 

differences occur for CoBiDE and CoBiDE-2 on the 

remaining 10 test functions. 

From Table 8, we can conclude that the above two 

components can benefit each other to enhance the 

performance of DE. Indeed, the bimodal distribution 

parameter setting achieves high reliability and the covariance 

matrix learning results in fast convergence. 

5.4. Sensitivity in relation to the parameters pb and ps 

CoBiDE contains two parameters pb and ps. The former 

controls the computational resource assigned to the 

covariance matrix learning and the latter controls the number 

of individuals for computing the covariance matrix. 

In order to investigate the sensitivity of the above two 

parameters, we tested CoBiDE with different pb: 0, 0.1, 0.2, 

0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1, and different ps: 0, 0.1, 

0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. Seven test 

functions (i.e., F3, F4, F6, F9, F10, F13, and F14) were selected 

to test the performance of CoBiDE with different 

combinations of pb and ps. These test functions involve 

shifted problems, problems with noise, rotated problems, and 

high conditioned problems. The dimension was set to 30 for 

all the test functions and the maximum number of FES was 

set to 300000. Fig. 5 shows the average function error values 

of CoBiDE with different combinations of pb and ps. 

Generally speaking, a larger value of pb may discourage 

the diversity of the population, however, if the value of pb is 

too small, the covariance matrix learning cannot play its role 

in solving problems with high variable correlation. On the 

other hand, if ps is set to a larger value, the randomness of the 

population may cause side effect on the computation of the 

covariance matrix. However, if the value of ps is too small, 

the chosen individuals cannot reflect the statistical 

information of the population. Therefore, moderate values 

should be chosen for these two parameters in order to achieve 

competitive performance. 

From Fig. 5, we can observe that, actually, CoBiDE is not 

sensitive to these two parameters, and that pb and ps can be 

chosen from a relatively large range to achieve competitive 

Table 9 

Experimental results of JADE, jDE, SaDE, CoDE, and CoBiDE over 25 independent runs on eight real-world engineering optimization problems with 150000 
FES. “Mean Value” and “Std Dev” indicate the average and standard deviation of the objective function values obtained in 25 runs, respectively. Wilcoxon’s 

rank sum test at a 0.05 significance level is performed between CoBiDE and each of JADE, jDE, SaDE, and CoDE. 

Problem 
JADE 

Mean Value±Std Dev 
jDE 

Mean Value±Std Dev 
SaDE 

Mean Value±Std Dev 
CoDE 

Mean Value±Std Dev 
CoBiDE 

Mean Value±Std Dev 

P1 4.63E-01±8.04E-01－ 3.49E-01±6.80E-01－ 0.00E+00±0.00E+00≈ 4.06E-01±2.03E+00－ 0.00E+00±0.00E+00 

P2 1.17E+00±1.00E-01－ 1.35E+00±7.59E-02－ 1.09E+00±2.39E-01－ 6.82E-01±1.09E-01－ 5.97E-01±1.01E-01 

P3 2.04E+03±4.89E+02－ 2.04E+03±4.50E+02－ 6.48E+03±7.69E+03－ 1.95E+03±4.97E+02≈ 1.74E+03±3.49E+02 

P4 5.24E+04±4.92E+02≈ 5.78E+04±3.74E+03－ 5.61E+04±1.51E+04≈ 5.22E+04±4.99E+02≈ 5.23E+04±6.27E+02 

P5 1.32E+05±5.09E+03≈ 1.32E+05±2.44E+03－ 1.32E+05±1.66E+03－ 1.42E+05±2.43E+03－ 1.28E+05±1.21E+03 

P6 9.40E+05±3.47E+03≈ 9.74E+05±2.30E+04－ 9.76E+05±1.26E+05－ 9.50E+05±4.37E+04－ 9.39E+05±1.97E+03 

P7 1.01E+06±1.74E+05≈ 1.37E+06±1.40+05－ 1.37E+06±2.02E+05－ 1.11E+06±6.68E+04－ 9.52E+05±2.37E+04 

P8 1.74E+01±2.12E+00－ 1.88E+01±1.48E+00－ 1.56E+01±1.85E+00－ 1.39E+01±2.21E+00≈ 1.43E+01±1.75E+00 

－ 4 8 6 5  

＋ 0 0 0 0  

≈ 4 0 2 3  

“－”, “＋”, and “≈” denote that the performance of the corresponding algorithm is worse than, better than, and similar to that of CoBiDE, respectively. 

 

Table 10 

Results of the multiple-problem Wilcoxon’s test for JADE, jDE, SaDE, CoDE, and CoBiDE at a 0.05 significance level and at a 0.1 significance level 

Algorithm R+ R- p-value α=0.05 α=0.1 

CoBiDE vs JADE 36.0 0.0 0.007812 Yes Yes 

CoBiDE vs jDE 36.0 0.0 0.007812 Yes Yes 

CoBiDE vs SaDE 28.0 0.0 0.015626 Yes Yes 

CoBiDE vs CoDE 30.0 6.0 0.10938 No No 

 

Table 11 

Ranking of JADE, jDE, SaDE, CoDE, and CoBiDE according to the statistical test of the Friedman test 

Algorithm Ranking 

CoBiDE 1.3125 

CoDE 2.625 

JADE 3.3125 

SaDE 3.625 

jDE 4.125 
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performance for CoBiDE. In general, the value of pb is 

recommended in the interval [0.2,0.7] and the value of ps is 

recommended in the interval [0.3,0.7]. 

5.5. Real-world application problems 

Besides the above 25 benchmark test functions, eight 

real-world engineering optimization problems chosen from 

different fields including radar system, power systems, 

hydrothermal scheduling, spacecraft trajectory optimization, 

etc, were used to evaluate the performance of CoBiDE in this 

subsection. These eight real-world engineering optimization 

problems (denoted as P1-P8 in this paper) are problems T01, 

T06, T08, T10.1, T11.4, T12.1, T12.2, and T13 collected for 

the 2011 IEEE Congress on Evolutionary Computation (IEEE 

CEC2011) [10], respectively, which exhibit different 

complex characteristics and are very difficult to solve. For 

each problem, 25 independently runs were implemented with 

150000 FES as the termination criterion. The parameter 

settings of CoBiDE were the same with those for the 25 

benchmark test functions, i.e., NP=60, pb=0.4, and ps=0.5. In 

addition, the parameter settings of JADE, jDE, SaDE, and 

CoDE were the same as in their original papers. 

Table 9 summarizes the mean and standard deviation of the 

objective function values over 25 independent runs for each 

problem. In order to have statistically sound conclusions, 

Wilcoxon’s rank sum test at a 0.05 significance level was 

conducted on the experimental results. From the experimental 

results shown in Table 9, we can see that JADE, jDE, SaDE, 

and CoDE cannot outperform CoBiDE on any problems, and 

that CoBiDE surpasses JADE, jDE, SaDE, and CoDE on four, 

eight, six, and five problems, respectively, which indicates 

that overall, CoBiDE performs significantly better than the 

four competitors on eight complex real-world engineering 

optimization problems. 

By making use of the KEEL software [33], the multiple- 

problem Wilcoxon’s test and the Friedman’s test have been 

implemented. The experimental results have been 

summarized in Tables 10 and 11. As shown in Table 10, 

CoBiDE shows higher R+ values than R- values in all the 

cases. Moreover, the p values less than 0.05 and 0.1 in three 

cases (i.e., CoBiDE vs JADE, CoBiDE vs jDE, and CoBiDE 

vs SaDE). In addition, CoBiDE has the best ranking 

according to Table 11. 

Therefore, the above experimental results verify the 

potential of CoBiDE in the real-world applications. 

6. Conclusion 

During the past fifteen years, differential evolution (DE) 

which is an efficient and robust evolutionary algorithm has 

become a hotspot in the community of evolutionary 

computation. In order to improve the performance of DE, 

CoBiDE, a DE variant based on covariance matrix learning 

and bimodal distribution parameter setting, is presented in 

this paper. 

In CoBiDE, Eigen decomposition is applied to the 

covariance matrix computed according to the current 

population, the purpose of which is to establish an Eigen 

coordinate system for the crossover operator. The covariance 

matrix learning relaxes the dependence of DE on the 

coordinate system to a certain degree and improves the 

performance on problems with high variable correlation. 

Moreover, the bimodal distribution parameter setting is 

introduced for the scaling factor F and the crossover control 

parameter CR. The bimodal distribution for both F and CR is 

composed of two Cauchy distributions. CoBiDE has been 

tested on 25 benchmark test functions developed for IEEE 

CEC2005 and eight complex real-world engineering 

optimization problems collected for IEEE CEC2011. The 

experimental results suggest that the performance of CoBiDE 

is better than that of four other DE variants and three other 

state-of-the-art EAs. The experimental results also verify that 

both the covariance matrix learning and the bimodal 

distribution parameter setting are critical for CoBiDE. 

Finally, the parameter sensitivity of CoBiDE has been studied 

experimentally. 

The Matlab source code of CoBiDE can be obtained from 

the first author upon request. 

Acknowledgments 

The authors sincerely thank the anonymous reviewers for 

their constructive and helpful comments and suggestions. 

This research was supported in part by the National Natural 

Science Foundation of China under Grant 61273314, 

51175519 and 61175064, in part by the Hong Kong Scholars 

Program, in part by the China Postdoctoral Science 

Foundation under Grant 2013M530359, in part by RGC of 

Hong Kong (CityU: 116212), and in part by the Program for 

New Century Excellent Talents in University under Grant 

NCET-13-0596. This research was made possible by NPRP 

grant # 4-1162-1-181 from the Qatar National Research Fund 

(a member of Qatar Foundation). The statements made herein 

are solely the responsibility of the author[s]. 

References 

[1] R. Storn, K. Price, Differential evolution—A simple and efficient 

adaptive scheme for global optimization over continuous spaces, 

Berkeley, CA, Tech. Rep. TR-95-012, 1995. 
[2] R. Storn, K.V. Price, Differential evolution—A simple and efficient 

heuristic for global optimization over continuous spaces, Journal of 

Global Optimization 11 (4) (1997) 341-359. 
[3] S. Das, A. Abraham, A. Konar, Automatic clustering using an 

improved differential evolution algorithm, IEEE Transactions on 

Systems, Man, and Cybernetics, Part A 38 (1) (2008) 218-236. 
[4] F. Neri, E. Mininno, Memetic compact differential evolution for 

Cartesian robot control, IEEE Computational Intelligence Magazine 5 

(2) (2010) 54-65. 
[5] L. Wang, L.P. Li, Fixed-structure H∞ controller synthesis based on 

differential evolution with level comparison, IEEE Transactions on 

Evolutionary Computation 15 (1) (2011) 341-359. 
[6] G.W. Greenwood, Using differential evolution for a subclass of graph 

theory problems, IEEE Transactions on Evolutionary Computation 13 

(5) (2009) 1190-1192. 
[7] N. Noman, H. Iba, Accelerating differential evolution using an 

adaptive local search, IEEE Transactions on Evolutionary 

Computation 12 (1) (2008) 107-125. 



 17 

[8] A.K. Qin, V.L. Huang, P.N. Suganthan, Differential evolution 

algorithm with strategy adaptation for global numerical optimization, 
IEEE Transactions on Evolutionary Computation 13 (2) (2009) 

398-417. 

[9] P.N. Suganthan, N. Hansen, J.J. Liang, K. Deb, Y.-P. Chen, A. Auger, 
S. Tiwari, Problem definitions and evaluation criteria for the CEC 

2005 special session on real-parameter optimization, Nanyang 

Technol. Univ., Singapore, Tech. Rep. KanGAL #2005005, May 
2005, IIT Kanpur, India. 

[10] S. Das, P.N. Suganthan, Problem definitions and evaluation criteria 

for CEC 2011 competition on testing evolutionary algorithms on real 
world optimization problems, Technical Report, Jadavpur University 

and Nanyang Technological University, 2010. 

[11] Y. Wang, Z. Cai, Q. Zhang, Enhancing the search ability of 
differential evolution through orthogonal crossover, Information 

Sciences 185 (1) (2012) 153-177. 

[12] S. Das, P.N. Suganthan, Differential evolution: A survey of the 
state-of-the-art, IEEE Transactions on Evolutionary Computation 15 

(1) (2011) 4-31. 

[13] H.Y. Fan, J. Lampinen, A trigonometric mutation operator to 
differential evolution, Journal of Global Optimization 27 (1) (2003) 

105-129. 

[14] J. Zhang, A.C. Sanderson, JADE: adaptive differential evolution with 
optional external archive, IEEE Transactions on Evolutionary 

Computation 13 (5) (2009) 945-958. 

[15] S. Das, A. Abraham, U.K. Chakraborty, A. Konar, Differential 
evolution using a neighborhood-based mutation operator, IEEE 

Transactions on Evolutionary Computation 13 (3) (2009) 526-553. 
[16] Y.W. Leung, Y. Wang, An orthogonal genetic algorithm with 

quantization for global numerical optimization, IEEE Transactions on 

Evolutionary Computation 5 (1) (2001) 41-53. 
[17] J. Liu, J. Lampinen, A fuzzy adaptive differential evolution algorithm, 

Soft Computing-A Fusion of Foundations, Methodologies and 

Applications 9 (6) (2005) 448-462. 
[18] J. Brest, S. Greiner, B. Boskovic, M. Mernik, V. Zumer, Self-adapting 

control parameters in differential evolution: A comparative study on 

numerical benchmark problems, IEEE Transactions on Evolutionary 
Computation 10 (6) (2006) 646-657. 

[19] S. Tsutsui, M. Yamamura, T. Higuchi, Multi-parent recombination 

with simplex crossover in real coded genetic algorithms, in 
Proceedings of the Genetic and Evolutionary Conference, 1999, pp. 

657-664. 

[20] S. Rahnamayan, H.R. Tizhoosh, M.M.A. Salama, Opposition-based 
differential evolution, IEEE Transactions on Evolutionary 

Computation 12 (1) (2008) 64-79. 

[21] J. Sun, Q. Zhang, E.P.K. Tsang, DE/EDA: A new evolutionary 
algorithm for global optimization, Information Sciences 169 (3-4) 

(2005) 249-262. 

[22] R. Mallipeddi, P.N. Suganthan, Q.K. Pan, M.F. Tasgetiren, 

Differential evolution algorithm with ensemble of parameters and 
mutation strategies, Applied Soft Computing 11 (2) (2011) 1679- 

1696. 

[23] Y. Wang, Z. Cai, Q. Zhang, Differential evolution with composite 
trial vector generation strategies and control parameters, IEEE 

Transactions on Evolutionary Computation 15 (1) (2011) 55-66. 

[24] W. Gong, Z. Cai, C.X. Ling, H. Li, Enhanced differential evolution 
with adaptive strategies for numerical optimization, IEEE 

Transactions on Systems, Man, and Cybernetics, Part B 41 (2) (2011) 

397-413. 
[25] N. Hansen, A. Ostermeier, Completely derandomized self-adaptation 

in evolution strategies, Evolutionary Computation 9 (2) (2001) 

159-195. 
[26] M. Takahashi, H. Kita, A crossover operator using independent 

component analysis for real-coded genetic algorithms, in Proceedings 

of IEEE Congress on Evolutionary Computation, 2001, pp. 643-649. 
[27] K. Walczak, Hybrid differential evolution with covariance matrix 

adaptation for digital filter design, in 2011 IEEE Symposium on 

Differential Evolution (SDE), 2011, pp. 1-7. 
[28] J.H. Kämpf, D. Robinson, A hybrid CMA-ES and HDE optimisation 

algorithm with application to solar energy potential, Applied Soft 

Computing, 9 (2) (2009) 738-745. 
[29] A. LaTorre, S. Muelas, J. Peña, Evaluating the multiple offspring 

sampling framework on complex continuous optimization functions, 

Memetic Computing, 2013, in press. DOI 10.1007/s12293-013-0120- 
8 

[30] A. Auger, N. Hansen, A restart CMA evolution strategy with 
increasing population size, in Proceedings of the IEEE Congress on 

Evolutionary Computation, 2005, pp.1769-1776. 

[31] J. Cohen, Statistical power analysis for the behavioral sciences (the 
second edition). Hillsdale, NJ: Lawrence Earlbaum Associates, 1988. 

[32] S. García, D. Molina, M. Lozano, F. Herrera, A study on the use of 

non-parametric tests for analyzing the evolutionary algorithms’ 
behaviour: A case study on the CEC’2005 special session on real 

parameter optimization, Journal of Heuristics, 15 (6) (2009) 617-644. 

[33] J. Alcalá-Fdez, L. Sánchez, S. García, M.J. del Jesus, S. Ventura, J.M. 
Garrell, J. Otero, C. Romero, J. Bacardit, V.M. Rivas, J.C. Fernández, 

F. Herrera, KEEL: A software tool to assess evolutionary algorithms 

to data mining problems. Soft Computing 13 (3) (2009) 307-318. 
[34] J.J. Liang, A.K. Qin, P.N. Suganthan, S. Baskar, Comprehensive 

learning particle swarm optimizer for global optimization of 

multimodal functions, IEEE Transactions on Evolutionary 
Computation 10 (3) (2006) 281-295. 

[35] C. Garcia-Martinez, M. Lozano, F. Herrera, D. Molina, A.M. 

Sanchez, Global and local real-coded genetic algorithms based on 
parent- centric crossover operators, European Journal of Operational 

Research 185 (3) (2008) 1088-1113. 

 

http://www.sciencedirect.com/science/journal/15684946
http://www.sciencedirect.com/science/journal/15684946
http://www.sciencedirect.com/science/journal/15684946/9/2

