
 1

Abstract: Differential evolution (DE) is an efficient and robust

evolutionary algorithm, which has been widely applied to solve

global optimization problems. As we know, crossover operator

plays a very important role on the performance of DE. However,

the commonly used crossover operators of DE are dependent

mainly on the coordinate system and are not rotation-invariant

processes. In this paper, covariance matrix learning is presented

to establish an appropriate coordinate system for the crossover

operator. By doing this, the dependence of DE on the coordinate

system has been relieved to a certain extent, and the capability

of DE to solve problems with high variable correlation has been

enhanced. Moreover, bimodal distribution parameter setting is

proposed for the control parameters of the mutation and

crossover operators in this paper, with the aim of balancing the

exploration and exploitation abilities of DE. By incorporating

the covariance matrix learning and the bimodal distribution

parameter setting into DE, this paper presents a novel DE

variant, called CoBiDE. CoBiDE has been tested on 25

benchmark test functions, as well as a variety of real-world

optimization problems taken from diverse fields including radar

system, power systems, hydrothermal scheduling, spacecraft

trajectory optimization, etc. The experimental results

demonstrate the effectiveness of CoBiDE for global numerical

and engineering optimization. Compared with other DE variants

and other state-of-the-art evolutionary algorithms, CoBiDE

shows overall better performance.

Keywords: Differential evolution, global numerical and

engineering optimization, covariance matrix learning, bimodal

distribution parameter setting

1. Introduction

Differential evolution (DE), proposed by Storn and Price

[1], [2] in 1995, has become a hotspot in the community of

evolutionary computation. Similar to other evolutionary

algorithms (EAs), DE is a population-based optimization

algorithm. In DE, each individual in the population is called a

target vector. DE produces a mutant vector by making use of

the mutation operator, which perturbs a target vector using

the difference vector of other individuals in the population.

Afterward, the crossover operator is applied to the target

vector and the mutant vector to generate a trial vector.

Finally, the trial vector competes with its target vector for

survival according to their objective function values. Due to

some advantages, e.g., simple structure, ease of

implementation, and fast convergence speed, DE has been

widely applied to some fields of science and engineering,

* Corresponding author

Email: ywang@csu.edu.cn (Y. Wang), mehxli@cityu.edu.hk (H.-X. Li), tingwen.
huang@qatar.tamu.edu (T. Huang)

such as cluster analysis [3], robot control [4], controller

design [5], and graph theory [6].

It is noteworthy that in DE, the crossover operator depends

mainly on the coordinate system and the distribution

information of the population is usually unreasonably

ignored. Moreover, the crossover operator of DE can be

considered as a discrete recombination [7], and thus, the

interactions among variables have not been systematically

studied. As a result, DE often loses its effectiveness and

advantages when solving problems with high variable

correlation.

In addition, DE is sensitive to its two main control

parameters: the scaling factor F and the crossover control

parameter CR. These two control parameters have a

significant impact on the performance of DE. Moreover,

different control parameter settings show different

characteristics [8]. For example, a larger F is effective for

global search; however, a smaller F can accelerate the

convergence. On the other hand, a larger CR results in higher

diversity of the population, since the trial vector will inherit

more information from the mutant vector. However, a smaller

CR focuses on local exploitation since the target vector will

contribute more information to the trial vector. Indeed, it is

still an open issue to choose suitable settings of F and CR to

balance the exploration and exploitation of DE during the

evolution.

Based on the above considerations, in this paper, we

present a novel DE, referred as CoBiDE, including two main

components: covariance matrix learning and bimodal

distribution parameter setting. In CoBiDE, the covariance

matrix learning establishes a coordinate system according to

the current population distribution, and then the crossover

operator is applied according to the coordinate system thus

built to generate the trial vector. Furthermore, in CoBiDE,

both F and CR are produced according to a bimodal

distribution composed of two Cauchy distributions, the aim

of which is to balance the global exploration and the local

exploitation during the evolution. CoBiDE has been tested on

25 benchmark test functions developed for the 2005 IEEE

Congress on Evolutionary Computation (IEEE CEC2005)

[9] , as well as a variety of real-world application problems

[10]. The experimental results suggest that the performance

of CoBiDE is better than that of four other DE variants and

three other state-of-the-art EAs.

The remainder of this paper is organized as follows.

Section 2 briefly introduces DE and its operators. Section 3

Yong Wang
a, b

, Han-Xiong Li
b, c, *

, Tingwen Huang
d
, and Long Li

a

a School of Information Science and Engineering, Central South University, Changsha 410083, PR China
b Department of Systems Engineering and Engineering Management, City University of Hong Kong, Hong Kong
c State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, PR China
d Texas A&M University at Qatar, Doha 5825, Qatar

Differential evolution based on covariance matrix learning and

bimodal distribution parameter setting

*Manuscript
Click here to view linked References

http://ees.elsevier.com/asoc/viewRCResults.aspx?pdf=1&docID=9113&rev=2&fileID=214317&msid={56A5AC90-B2F4-42F3-B8F7-0D990C20742C}

 2

reviews the related work and four main research directions of

DE. Then, CoBiDE is presented in Section 4. The

experimental results are given in Section 5. Section 6

concludes this paper.

2. Differential evolution (DE)

DE is a population-based heuristic search algorithm.

Similar to other EAs, DE contains three basic operators:

mutation, crossover, and selection. Firstly, DE produces an

initial population by randomly sampling several points (each

point is called a target vector) from the search space:

0 ,0 ,1,0 ,2,0 , ,0{ (, , ,), 1,2, , }i i i i DP x x x x i NP (1)

where NP denotes the population size and D denotes the

number of variables.

At each generation G, a mutant vector , ,1, ,2,(, , ,i G i G i Gv v v

, ,)i D Gv (1,2, ,i NP) is produced by the mutation operator

for each target vector ,i Gx . Afterward, the crossover operator

is implemented on the mutant vector and the target vector to

generate a trial vector , ,1, ,2, , ,(, , ,)i G i G i G i D Gu u u u (1,2, ,i

NP). The crossover operator and the mutation operator

together are called trial vector generation strategy. The

selection operator of DE is based on a one-to-one competition

between the target vector and the trial vector.

Next, the mutation, crossover, and selection operators are

introduced.

2.1. Mutation operator

The commonly used mutation operator can be formulated

as follows:

, 1, 2, 3,()i G r G r G r Gv x F x x (2)

where r1, r2, and r3 are mutually different integers randomly

chosen from [1,NP] and also different from i, and F is the

scaling factor.

2.2. Crossover operator

The crossover operator combines the mutant vector ,i Gv

with the target vector ,i Gx to generate a trial vector ,i Gu :

, ,

, ,

, ,

, (0,1)

,

i j G j rand

i j G

i j G

v if rand CR or j j
u

x otherwise

 (3)

where jrand is a random integer between 1 and D, resulting in

the trial vector being different from the target vector by at

least one dimension, randj(0,1) is a uniformly distributed

random number between 0 and 1, and CR is the crossover

control parameter.

Based on Eq. (3), it is clear that the trial vector is a vertex

of the hyper-rectangle defined by the mutant and target

vectors [11]. Moreover, since the information of the trial

vector is provided by the mutant vector or the target vector,

the crossover operator is dependent on the coordinate system.

2.3. Selection operator

The selection operator of DE adopts a one-to-one

competition between the target vector ,i Gx and the trial

vector ,i Gu . If the objective function value of the trial vector

is less than or equal to that of the target vector, then the trial

vector will survive into the next generation, otherwise, the

target vector will enter the next generation:

, , ,

, 1

,

, () ()

,

i G i G i G

i G

i G

u if f u f x
x

x otherwise

 (4)

3. The related work

During the past fifteen years, DE has attracted much

attention by the researchers [12]. The current studies of DE

mainly focus on the following four aspects: 1) improving the

trial vector generation strategy, 2) adapting the control

parameter setting, 3) hybridizing with other techniques, and

4) integrating multiple trial vector generation strategies with

multiple control parameter settings.

3.1. Improving the trial vector generation strategy

Fan and Lampinen [13] proposed a trigonometric mutation

operator and embedded it into DE to design a new method

called TDE. In TDE, a probability parameter Mt is utilized to

balance the trigonometric mutation operator and the original

mutation operator of DE. The trigonometric mutation can be

considered as a local search operator, which is able to

enhance the convergence velocity of DE. The performance of

TDE has been evaluated on two test functions and two

practical problems.

Zhang and Sanderson [14] presented an improved

current-to-best/1 operator, called current-to-pbest/1, which

can be formulated as follows:

, , , , 1, 2,() ()p

i G i G i best G i G i r G r Gv x F x x F x x , {1,2, , }i NP (5)

where ,

p

best Gx is randomly chosen from the best 100p%

individuals in the current population, and p is chosen from

[0,1]. Moreover, the previously generated offspring, which

cannot survive into the next population, have been stored into

a predefined archive. The individual 2,r Gx in Eq. (5) is

randomly chosen from the union of the archive and the

current population. As analyzed in [14], the advantages of the

current-to-pbest/1 operator are twofold: 1) the information of

multiple best individuals can balance the greediness of the

mutation and the diversity of the population, and 2) the

difference between the recently explored inferior individuals

and the current population may represent promising

directions towards the global optimum.

Das et al. [15] proposed a neighborhood-based mutation

operator, which contains two parts: global neighborhood-

based mutation and local neighborhood-based mutation. In

the method proposed by Das et al. [15], two trial vectors are

produced by the global and local neighborhood-based

mutation. Moreover, these two trial vectors are combined to

form the actual trial vector by using a weight factor. Clearly,

the main aim of the neighborhood-based mutation operator is

to balance the exploration and exploitation abilities of DE.

This mutation operator has been tested on 24 benchmark test

functions and two real-world problems and shown very

 3

competitive results.

After recognizing that the trial vector generated by the

crossover operator is just a vertex of the hyper-rectangle

defined by the mutant and target vectors, Wang et al. [11]

employed orthogonal crossover [16] to make a systematic and

rational search in the hyper-rectangle defined by the mutant

and target vectors, and proposed a generic framework to

enhance the search ability of DE. The experimental results

have demonstrated that this framework can be used to

improve the performance of different variants of DE.

3.2. Adapting the control parameter setting

Liu and Lampinen [17] designed a fuzzy adaptive DE

(FADE) based on fuzzy logic controller. In FADE, the mean

square roots of differences of the objective function values and

the population members during the successive generations are

treated as the inputs of the fuzzy logic controller, and the

outputs are the values of F and CR. The experimental results

have shown that FADE outperforms the classic DE on

problems with high dimensionality. The main weakness of

FADE lies in its complicated implementation due to fuzzy

adapting.

Brest [18] proposed a DE with self-adaptive parameter

control (jDE). In jDE, the control parameters F and CR are

encoded into the chromosome and participate in the

evolution. Each individual in the population is assigned an

initial control parameter setting: Fi=0.5 and CRi=0.9

(1,2, ,i NP). During the evolution, jDE regenerates Fi and

CRi according to the uniform random distributions U(0.1,0.9)

and U(0,1) with probabilities
1 and 2 , respectively. One

of the main advantages of jDE is that its implementation is

very simple. In [18], 21 test functions have been used to

assess the performance of jDE.

In JADE proposed by Zhang and Sanderson [14], for each

target vector, the scaling factor F is generated by the Cauchy

distribution C(F,0.1), and the crossover control parameter

CR obeys the normal distribution N(CR,0.1). In addition,

JADE uses the following equations to update F and CR:

(1) ()F F L Fc c mean S (6)

(1) ()CR CR A CRc c mean S (7)

where c controls the rate of parameter adaptation, SF and SCR

are the sets of all successful scaling factor F and crossover

control parameter CR at each generation, respectively, and

meanA(·) and meanL(·) are the usual arithmetic mean and the

Lehmer mean, respectively. The above parameter adaptation

has the capability to adapt parameters to appropriate values,

and thus, improves the robustness of DE.

3.3. Hybridizing with other techniques

Noman and Iba [7] proposed a crossover-based adaptive

local search operator to enhance the convergence rate of DE.

In this method, simplex crossover [19] is applied to the best

individual and two other individuals of the population at each

generation before implementing DE. This method does not

add any additional complexity or any additional parameter.

Moreover, it exhibits a higher convergence velocity

compared with the original DE.

Opposition-based DE (ODE) is proposed by Rahnamayan

et al. [20], which employs opposition-based learning to

generate the initial population and new solutions. The

experimental results suggest that opposition-based learning is

a very effective way to speed up the convergence of DE.

Concretely, ODE is on average 44% faster than the original

DE on 58 test functions.

Sun et al. [21] combined DE with estimation of distribution

algorithm (EDA), and proposed DE/EDA. In DE/EDA, one

part of the trial vector is generated in the DE way, and the

other part of the trial vector is sampled from the constructed

probability distribution model. As a result, DE/EDA can not

only utilize the global statistical information derived from

EDA, but also use the differential information provided by

DE.

3.4. Integrating multiple trial vector generation strategies

with multiple control parameter settings

Recently, some researchers investigated the idea of

integrating multiple trial vector generation strategies with

multiple control parameter settings in DE. The main

motivation is that different strategies along with different

parameter settings may be suitable to different problems [8].

Qing et al. [8] proposed a self-adaptive DE (SaDE), in

which both trial vector generation strategies and control

parameter settings are self-adapted according to the previous

information. SaDE establishes a strategy candidate pool

which contains four trial vector generation strategies. At each

generation, one trial vector generation strategy is chosen for

one individual. In addition, SaDE assigns different control

parameter settings for different individuals. SaDE has been

used to solve a suite of 26 test functions and the experimental

results are very promising.

Mallipeddi et al. [22] proposed a DE with ensemble of

control parameter settings and trial vector generation

strategies (EPSDE). EPSDE involves a pool of distinct trial

vector generation strategies and a pool of values for each

control parameter. During the evolution, a trial vector

generation strategy and a control parameter setting are chosen

based on their success experience in the past generations to

create a trial vector. As a result, the successful combination

of strategy and parameter setting has a higher probability to

produce the trial vector. Since the strategies and the

parameter settings in a pool have distinct properties, EPSDE

exhibit distinct performance characteristics during different

stages of the evolution.

During the past fifteen years, DE researchers have obtained

some important experiences about choosing trial vector

generation strategies and control parameter settings, which

will be very useful for designing more effective DE.

Motivated by the above consideration, Wang et al. [23]

investigated whether the performance of DE can be improved

by combining several trial vector generation strategies with

several different control parameter settings, which exhibit

different characterizes, and proposed a composite DE, named

 4

CoDE. CoDE combines three trial vector generation

strategies with three control parameter settings in a random

way to produce the trial vectors. The performance of CoDE

has been evaluated on 25 benchmark test functions developed

for IEEE CEC2005 [9].

Gong et al. [24] used four trial vector generation strategies

proposed in [14] to form the strategy candidate pool and

designed two adaptive methods to choose a suitable trial

vector generation strategy for a problem at hand. In addition,

the parameter adaptation mechanism proposed by Gong et al.

[24] is similar to that proposed in [14]. The experimental

results on 20 test functions and two real-world problems have

verified that the method proposed in [24] is able to adaptively

determine a more suitable strategy for a specific problem.

4. Proposed approach

In this section, we propose a novel DE, named CoBiDE.

CoBiDE contains two main components: covariance matrix

learning and bimodal distribution parameter setting. Next, the

implementation of the above two main components will be

introduced in detail.

4.1. Covariance matrix learning

As mentioned previously, the crossover operator of DE is

dependent mainly on the coordinate system, and the

distribution information of the population, which could

reflect the landscape of the problem to a certain extent [12], is

usually ignored during the evolution. Indeed, the statistical

properties of the population (such as mean value, variance,

and covariance) can be utilized to represent the distribution of

the population. In particular, the covariance matrix composed

of variance and covariance reflects the diversity of the

population and the interactions among the variables. Hence,

systemically utilizing the covariance matrix should be very

useful for relaxing the dependence of DE on the coordinate

system and loosing the interactions among the variables.

Based on the above analysis, covariance matrix learning is

proposed in this paper, the aim of which is to establish an

Eigen coordinate system with loose variable correlation for

the crossover operator. Fig. 1 shows the differences between

the crossover operator in the original coordinate system (Fig.

1(a)) and the crossover operator in the Eigen coordinate

system (Fig. 1(b)) for a problem with variable correlation.

Suppose that the Eigen coordinate system (i.e.,
1 2ox x) is

obtained after analyzing the distribution of the population.

From Fig. 1, it is clear that crossover in the Eigen coordinate

system is more promising to find the global optimum, since

the trial vectors generated by the crossover in the Eigen

coordinate system may be more close to the global optimum

than the trial vectors created by the crossover in the original

coordinate system.

In this paper, the covariance matrix learning includes two

core techniques: Eigen decomposition of the covariance

matrix and the coordinate transformation. The purpose of the

former is to obtain Eigen vectors which can serve as the axial

orientations of the Eigen coordinate system. In addition, the

latter transforms the trial vectors into the original coordinate

system, after implementing the crossover operator according

to the Eigen coordinate system. The procedure of the

covariance matrix learning is introduced as follows.

Step 1. Compute the covariance matrix C of the top

ps NP individuals in the current population, and

apply Eigen decomposition to C as follows:
2 TC BD B (8)

where B and B
T
 are orthogonal matrices and D is

a diagonal matrix composed of Eigen values.

Note that each column of B is an Eigen vector of

the covariance matrix C.

Step 2. Update the target vector and the mutant vector in

the Eigen coordinate system by making use of

B
T
:

1

, , ,

T

i G i G i Gx B x B x (9)

2x

,i Gx

1x

,i Gv

,i Gv

,i Gx

1x

1x

2x

2x

(a) (b)

Fig. 1. Crossover in the original coordinate system (i.e.,
1 2ox x) and in the Eigen coordinate system (i.e.,

1 2ox x), where
,i Gx is a target vector in the population,

,i Gv is its mutant vector, and the square points denote the possible trial vectors.

 5

1

, , ,

T

i G i G i Gv B v B v (10)

Step 3. Apply the crossover operator to ,i Gx and ,i Gv ,

and create a trial vector ,i Gu in the Eigen

coordinate system:

, ,

, ,

, ,

, (0,1)

,

i j G j rand

i j G

i j G

v if rand CR or j j
u

x otherwise

(11)

Step 4. Transform ,i Gu into the original coordinate

system by taking advantage of B:

, ,i G i Gu Bu (12)

where ,i Gu is the trial vector in the original

coordinate system.

During the evolution, due to the randomness of the

distribution of the population, if all the individuals in the

population are used to compute the covariance matrix, the

covariance matrix will be disturbed by such randomness and,

as a result, the Eigen coordinate system constructed may not

be quite reasonable. Therefore, in Step 1, we use the ps NP

individuals with the minimum objective function values in

the population to compute the covariance matrix, where ps is

in the interval [0,1].

Remark 1. CMA-ES [25], BLXPCA [26], and BLXICA

[26] have a similar motivation to use statistical information

based on the covariance matrix. However, there are some

differences between CoBiDE and them. In CoBiDE, the

parameter ps is introduced to compute the covariance matrix

of the top ps NP individuals in the current population, while

CMA-ES adopts a weighted method to compute the

covariance matrix. In addition, all the individuals in the

population are used to compute the covariance matrix in

BLXPCA and BLXICA. On the other hand, CMA-ES,

BLXPCA, and BLXICA use Eigen values and Eigen vectors

obtained by the Eigen decomposition of the covariance

matrix simultaneously. However, because of the properties of

crossover in DE, the proposed approach only uses Eigen

vectors to construct an appropriate coordinate system, and

Eigen values are not used.

Remark 2. Recently, several methods which hybridize DE

with CMA-ES [25] have been proposed. For example, DE

performs the global exploration and CMA-ES is used as a

local search engine in [27]. In [28], CMA-ES and a hybrid

DE are executed serially. Moreover, two populations are

utilized, one for CMA-ES and the other for the hybrid DE.

LaTorre et al. [29] presented a multiple offspring sampling

framework to combine a restart CMA-ES [30] with DE. In

this framework, the average fitness increment is adopted as a

quality function to update the participation ratios of the restart

CMA-ES and DE. There are two major differences between

CoBiDE and the above three methods. Firstly, DE is not

coupled with CMA-ES in CoBiDE. Indeed, CoBiDE only

exploits the statistical information provided by the covariance

matrix of the population. Secondly, in CoBiDE the statistical

information provided by the covariance matrix is embedded

into DE to strengthen the crossover operator. However, in the

above three methods, CMA-ES is independent of DE.

4.2. Bimodal distribution parameter setting

In this subsection, bimodal distribution parameter setting is

proposed for the scaling factor F and the crossover control

parameter CR. It is necessary to emphasize that the proposed

bimodal distribution parameter setting is inspired by [14] and

[23]. In addition, like [18], the parameters F and CR are

encoded into each target vector ,i Gx , i.e., ,i GF and ,i GCR

correspond to each ,i Gx . Moreover, if the trial vector ,i Gu

can successfully enter the next population, then , 1 ,i G i GF F

and , 1 , ;i G i GCR CR otherwise, , 1i GF and , 1i GCR are

generated for the next generation according to the bimodal

distribution parameter setting.

The bimodal distribution for ,i GF ({1, , }i NP) is

composed of two Cauchy distributions as follows:

,

(0.65,0.1), (0,1) 0.5

(1.0,0.1),

i

i G

i

randc if rand
F

randc otherwise

 (13)

where rand(0,1) is a uniformly distributed random number

between 0 and 1, and randci(a,b) is a random number obeying

a Cauchy distribution with location parameter a and scale

parameter b. If the value of ,i GF is larger than 1.0, then is

truncated to 1.0; and if the value of ,i GF is less than 0.0, then

is regenerated according to Eq. (13).

The crossover control parameter ,i GCR ({1, , }i NP) is

generated using the bimodal distribution composed of two

Cauchy distributions as follows:

(0.1,0.1), (0,1) 0.5

(0.95,0.1),

i

i

i

randc if rand
CR

randc otherwise

 (14)

where rand(0,1) is a uniformly distributed random number

between 0 and 1, and randci(a,b) is a random number obeying

a Cauchy distribution with location parameter a and scale

parameter b. If the value of ,i GCR is larger than 1.0, then is

truncated to 1.0; and if the value of ,i GCR is less than 0.0, then

is truncated to 0.0.

The scaling factor F has the capability to control the search

range of the mutation operator. In CoBiDE, two Cauchy

distributions with the same probability (i.e., 0.5) are used for

the setting of F. It is necessary to note that, Cauchy

distribution with a higher location parameter (i.e., 1.0) tends

to produce a bigger value for F which emphasizes the global

exploration; however, Cauchy distribution with a relatively

lower location parameter (i.e., 0.65) aims at producing a

slightly smaller value for F, which focuses on the local

exploitation.

On the other hand, two Cauchy distributions with the same

probability (i.e., 0.5) are designed for the setting of CR. The

Cauchy distribution with a bigger location parameter (i.e.,

0.95) means that the trial vector may inherit more information

from the mutant vector, which encourages the diversity of the

population and the exploration. On the contrary, the Cauchy

distribution with a smaller location parameter (i.e., 0.1)

signifies that the trial vector may be quite similar to the target

vector. In this case, the search will put emphasis on the

 6

neighbor of the parent population, which can accelerate the

convergence.
Based on the above analysis, the use of Eq. (13) and Eq.

(14) is able to achieve an effective tradeoff between the

exploration and exploitation. In addition, the scale parameter

in both Eq. (13) and Eq. (14) is set to 0.1, which results in the

values of F and CR being located in the relatively small

neighborhood of the location parameter with a higher

probability.

4.3. Framework of CoBiDE

By combining the covariance matrix learning with the

bimodal distribution parameter setting, CoBiDE is presented.

The pseudocode of CoBiDE has been shown in Fig. 2.

At each generation, for each target vector ,i Gx , a mutant

vector ,i Gv is generated by making use of the mutation

operator (i.e., Eq. (2)). Afterward, if the predefined parameter

pb is larger than a random number between 0 and 1, the

crossover operator according to the covariance matrix learning

is utilized to produce a trial vector ,i Gu , otherwise, the

crossover operator according to the original coordinate system

is exploited to produce a trial vector ,i Gu . Moreover, during

the evolution, each target vector has its control parameter

setting and the control parameter setting is dynamically

adapted based on Eq. (13) and Eq. (14).

In the above procedure, we use the parameter pb to adjust

the effect of the covariance matrix learning on the

performance. The main reason is the following. Although the

covariance matrix learning is an effective way to alleviate the

dependence of DE on the coordinate system and the

interactions among the variables, it is a relatively

deterministic and greedy mechanism due to the use of some

best individuals of the population to compute the covariance

matrix, and as a result, the performance of the algorithm

might degrade for some complex problems. Note that the

crossover operator according to the original coordinate

system has no bias to any special search directions.

Consequently, the crossover operator is implemented in the

original coordinate system with a probability (1-pb) to

encourage the diversity of the population. With respect to

CoBiDE, combining these two kinds of crossover can achieve

a good tradeoff between diversity and convergence.

Input: NP: the number of individuals contained by the population

MAX_FES: maximum number of function evaluations
pb: the probability to execute DE according to the covariance matrix learning

ps: the proportion of the individuals chosen from the current population to calculate the covariance matrix

(1) G=0;

(2) Generate an initial population 0 1,0 ,0{ , , }NPP x x by randomly sampling from the search space;

(3) Evaluate the objective function values of each individual (i.e., each target vector) in P0;

(4) FES=NP; /* FES records the number of function evaluations */

(5) Generate the initial scaling factor Fi,0 and crossover control parameter CRi,0 ({1, , }i NP) for each target vector ,0ix in the population according

to Eq. (13) and Eq. (14), respectively;
(6) While FES<MAX_FES

(7)
1GP ;

(8) For i=1:NP

(9) Apply the mutation operator (i.e., Eq. (2)) to produce a mutant vector
,i Gv for the target vector

,i Gx ;

(10) End For

(11) If rand(0,1)<pb /* rand(0,1) denotes a uniformly distributed random number between 0 and 1 */

(12) For i=1:NP

(13) Implement the crossover operator according to the covariance matrix learning (i.e., Eqs. (8)-(12)), and produce a trial vector
,i Gu ;

(14) End For

(15) Else
(16) For i=1:NP

(17) Implement the crossover operator according to the original coordinate system (i.e., Eq. (3)), and produce a trial vector
,i Gu ;

(18) End For

(19) End If
(20) For i=1:NP

(21) Evaluate the objective function value of
,i Gu ;

(22) If
, ,() ()i G i Gf u f x

(23)
1GP

=
1 ,G i GP u

;

(24) Fi,G+1=Fi,G and CRi,G+1=CRi,G;

(25) Else

(26)
1GP

=
1 ,G i GP x

;

(27) Generate Fi,G+1 and CRi,G+1 according to Eq. (13) and Eq. (14) for the next generation;

(28) End If
(29) End For
(30) FES=FES+NP;

(31) G=G+1;

(32) End While

Output: the individual with the smallest objective function value in the population

Fig. 2. Pseudocode of CoBiDE

 7

5. Experimental Study

CoBiDE was tested on 25 benchmark test functions

developed for IEEE CEC2005 [9]. These 25 benchmark test

functions can be divided into four classes:

1) Unimodal functions F1-F5,

2) Basic multimodal functions F6-F12,

3) Expanded multimodal functions F13-F14, and

4) Hybrid composition functions F15-F25.

Among the above test functions, F1 and F9 are separable

functions and the others are non-separable functions. Some

test functions are rotated using orthogonal matrices to make

variables correlated with each other, and the global optima of

some test functions are shifted so as to not at the center of the

search space. Moreover, F4 and F17 are used to test the

Table 1

Experimental results of JADE, jDE, SaDE, CoDE, and CoBiDE over 25 independent runs on 25 test functions of 30 variables with 300000 FES. “Mean Error”
and “Std Dev” indicate the average and standard deviation of the function error values obtained in 25 runs, respectively. Wilcoxon’s rank sum test at a 0.05

significance level is performed between CoBiDE and each of JADE, jDE, SaDE, and CoDE. The effect size is shown in the parentheses.

Function
JADE

Mean Error±Std Dev

jDE

Mean Error±Std Dev

SaDE

Mean Error±Std Dev

CoDE

Mean Error±Std Dev

CoBiDE

Mean Error±Std Dev

Unimodal

Functions

F1 0.00E+00±0.00E+00≈ (NaN) 0.00E+00±0.00E+00≈ (NaN) 0.00E+00±0.00E+00≈ (NaN) 0.00E+00±0.00E+00≈ (NaN) 0.00E+00±0.00E+00

F2 1.07E-28±1.00E-28＋ (0.80) 1.11E-06±1.96E-06－ (-0.82) 8.26E-06±1.65E-05－ (-0.72) 1.69E-15±3.95E-15＋ (0.80) 1.60E-12±2.90E-12

F3 8.42E+03±7.26E+03＋ (1.63) 1.98E+05±1.10E+05－ (-1.46) 4.27E+05±2.08E+05－ (-2.37) 1.05E+05±6.25E+04－ (-0.56) 7.26E+04±5.64E+04

F4 1.73E-16±5.43E-16＋ (0.61) 4.40E-02±1.26E-01－ (-0.49) 1.77E+02±2.67E+02－ (-0.96) 5.81E-03±1.38E-02－ (-0.48) 1.16E-03±2.74E-03

F5 8.59E-08±5.23E-07＋ (0.77) 5.11E+02±4.40E+02－ (-1.33) 3.25E+03±5.90E+02－ (-7.51) 3.31E+02±3.44E+02－ (-0.96) 8.03E+01±1.51E+02

Basic

Multimodal

Functions

F6 1.02E+01±2.96E+01－ (-0.50) 2.35E+01±2.50E+01－ (-1.35) 5.31E+01±3.25E+01－ (-2.36) 1.60E-01±7.85E-01－ (-0.22) 4.13E-02±9.21E-02

F7 8.07E-03±7.42E-03－ (-1.09) 1.18E-02±7.78E-03－ (-1.68) 1.57E-02±1.38E-02－ (-1.40) 7.46E-03±8.55E-03－ (-0.88) 1.77E-03±3.73E-03

F8 2.09E+01±1.68E-01－ (-0.70) 2.09E+01±4.86E-02－ (-0.76) 2.09E+01±4.95E-02－ (-0.76) 2.01E+01±1.41E-01＋ (2.16) 2.07E+01±3.75E-01

F9 0.00E+00±0.00E+00≈ (NaN) 0.00E+00±0.00E+00≈ (NaN) 2.39E-01±4.33E-01－ (-0.80) 0.00E+00±0.00E+00≈ (NaN) 0.00E+00±0.00E+00

F10 2.41E+01±4.61E+00＋ (1.69) 5.54E+01±8.46E+00－ (-1.43) 4.72E+01±1.01E+01≈ (-0.62) 4.15E+01±1.16E+01≈ (-0.12) 4.41E+01±1.29E+01

F11 2.53E+01±1.65E+00－ (-10.36) 2.79E+01±1.61E+00－ (-11.83) 1.65E+01±2.42E+00－ (-4.81) 1.18E+01±3.40E+00－ (-2.21) 5.62E+00±2.19E+00

F12 6.15E+03±4.79E+03－ (-0.75) 8.63E+03±8.31E+03－ (-0.89) 3.02E+03±2.33E+03≈ (-0.02) 3.05E+03±3.80E+03≈ (-0.03) 2.94E+03±3.93E+03

Expanded

Multimodal

Functions

F13 1.49E+00±1.09E-01＋ (1.46) 1.66E+00±1.35E-01＋ (1.24) 3.94E+00±2.81E-01－ (-1.61) 1.57E+00±3.27E-01＋ (1.31) 2.64E+00±1.13E+00

F14 1.23E+01±3.11E-01≈ (0) 1.30E+01±2.00E-01－ (-1.91) 1.26E+01±2.83E-01－ (-0.77) 1.23E+01±4.81E-01≈ (0) 1.23E+01±4.90E-01

Hybrid

Composition

Functions

F15 3.51E+02±1.28E+02＋ (0.56) 3.77E+02±8.02E+01＋ (0.41) 3.76E+02±7.83E+01≈ (0.43) 3.88E+02±6.85E+01≈ (0.27) 4.04E+02±5.03E+01

F16 1.01E+02±1.24E+02－ (-0.30) 7.94E+01±2.96E+01－ (-0.17) 8.57E+01±6.94E+01－ (-0.21) 7.37E+01±5.13E+01≈ (0.00) 7.38E+01±3.66E+01

F17 1.47E+02±1.33E+02－ (-0.80) 1.37E+02±3.80E+01－ (-2.16) 7.83E+01±3.76E+01≈ (-0.20) 6.67E+01±2.12E+01＋ (0.29) 7.25E+01±2.02E+01

F18 9.04E+02±1.03E+00≈ (-0.14) 9.04E+02±1.08E+01≈ (-0.10) 8.68E+02±6.23E+01≈ (0.80) 9.04E+02±1.04E+00－ (-0.14) 9.03E+02±1.05E+01

F19 9.04E+02±8.40E-01≈ (-0.14) 9.04E+02±1.11E+00≈ (-0.14) 8.74E+02±6.22E+01≈ (0.66) 9.04E+02±9.42E-01－ (-0.14) 9.03E+02±1.04E+01

F20 9.04E+02±8.47E-01≈ (0) 9.04E+02±1.10E+00≈ (0) 8.78E+02±6.03E+01＋ (0.62) 9.04E+02±9.01E-01－ (0) 9.04E+02±5.95E-01

F21 5.00E+02±4.67E-13≈ (0) 5.00E+02±4.80E-13≈ (0) 5.52E+02±1.82E+02－ (-0.41) 5.00E+02±4.88E-13≈ (0) 5.00E+02±4.62E-13

F22 8.66E+02±1.91E+01≈ (-0.17) 8.75E+02±1.91E+01－ (-0.55) 9.36E+02±1.83E+01－ (-3.19) 8.63E+02±2.43E+01≈ (-0.04) 8.62E+02±2.80E+01

F23 5.50E+02±8.05E+01－ (-0.29) 5.34E+02±2.77E-04－ (0) 5.34E+02±3.57E-03－ (0) 5.34E+02±4.12E-04－ (0) 5.34E+02±1.30E-04

F24 2.00E+02±2.85E-14≈ (0) 2.00E+02±2.85E-14≈ (0) 2.00E+02±6.20E-13≈ (0) 2.00E+02±2.85E-14≈ (0) 2.00E+02±2.85E-14

F25 2.11E+02±7.92E-01－ (-1.30) 2.11E+02±7.32E-01－ (-1.36) 2.14E+02±2.00E+00－ (-2.69) 2.11E+02±9.02E-01－ (-1.21) 2.10E+02±7.73E-01

－ 9 16 16 11

＋ 7 2 1 4

≈ 9 7 8 10

“－”, “＋”, and “≈” denote that the performance of the corresponding algorithm is worse than, better than, and similar to that of CoBiDE, respectively.

Table 2

Results of the multiple-problem Wilcoxon’s test for JADE, jDE, SaDE, CoDE, and CoBiDE at a 0.05 significance level and at a 0.1 significance level

Algorithm R+ R- p-value α=0.05 α=0.1

CoBiDE vs JADE 209.0 116.0 0.206006 No No

CoBiDE vs jDE 263.0 37.0 0.001183 Yes Yes

CoBiDE vs SaDE 252.5 72.5 0.014889 Yes Yes

CoBiDE vs CoDE 213.0 87.0 0.069634 No Yes

Table 3

Ranking of JADE, jDE, SaDE, CoDE, and CoBiDE according to the statistical test of the Friedman test

Algorithm Ranking

CoBiDE 2.08

CoDE 2.64

JADE 2.84

SaDE 3.64

jDE 3.8

 8

robustness of the algorithm on noise. F15-F25 are hybrid

composition functions which are composed of 10 sub-

functions. The details of these 25 benchmark test functions

have been given in [9].

In our experiments, the dimension (D) of each test function

was set to 30 and each test function was independently run 25

times with 300000 function evaluations (FES) as the

termination criterion. All the experiments are performed on a

computer with 2.4 GHz Dual-core Processor and 4.0 GB of

RAM in Windows XP. The population size NP in CoBiDE

was set to 60, pb=0.4, and ps=0.5.

In this section, the mean and standard deviation of the

function error value ()()(*xfxf

) were calculated over 25

independent runs for each test function, where x

 is the best

solution in the population when the algorithm terminates and
*x

 is the global optimal solution. Wilcoxon’s rank sum test

at a 0.05 significance level was performed to test the

statistical significance of the experimental results between

two algorithms.

5.1. Comparison with other DE variants

CoBiDE was compared with four other DE variants: JADE

[14], jDE [18], SaDE [8], and CoDE [23]. These four

algorithms have been briefly introduced in Section 3. JADE

and jDE adopt self-adaptive parameter setting, and SaDE uses

the normal distribution N(0.5,0.3) to produce the scaling

factor F and adjusts the crossover control parameter CR in a

self-adaptive way. For the above four algorithms, we used the

same parameter settings as given in their original papers. The

experimental results of CoBiDE and other four algorithms are

summarized in Table 1. It is necessary to emphasize that the

experimental results of JADE, jDE, SaDE, and CoDE were

directly taken from [23] to ensure the comparison fair.

Table 1 also records the Cohen’s d effect size [31] (within

parentheses), which is a simple measure for quantifying the

difference between two groups of data. The Cohen’s d effect

size is independent of the sample size. In general, we call a

“small” effect if an effect size is between 0.2 and 0.3, a

“medium” effect if an effect size is around 0.5, and a “large”

effect if an effect size is from 0.8 to infinity [31]. Concretely,

for F3 the effect size is equal to 1.63 when comparing JADE

with CoBiDE, which means that the performance difference

between JADE and CoBiDE is large and that JADE exhibits

performance improvement. In contrast, for F11 the effect size

is equal to -10.36 when comparing JADE with CoBiDE,

which means that the performance difference between JADE

and CoBiDE is also large and that JADE shows performance

deterioration. It is necessary to note that for some test

functions, the differences between both the mean and the

standard deviation are equal to 0 when comparing CoBiDE

with another algorithm and, as a result, the corresponding

effect size is denoted as NaN in Table 1.

The last three lines of Table 1 summarize the experimental

Table 4

Comparison of the average runtime (in seconds) of JADE, jDE, SaDE, CoDE, and CoBiDE for each test function. AR denotes the acceleration rate and the last
row of the table represents the average AR.

Function JADE jDE SaDE CoDE CoBiDE

Unimodal
Functions

F1 3.74 2.43 39.14 8.93 4.91

F2 3.77 2.82 35.65 9.53 5.64

F3 3.82 2.83 36.51 12.49 5.26

F4 3.83 3.07 32.63 9.89 5.91

F5 4.59 3.74 36.21 11.12 6.28

Basic

Multimodal
Functions

F6 3.36 2.37 34.31 9.29 5.07

F7 3.48 2.73 32.36 8.28 5.03

F8 4.14 3.52 36.36 12.33 5.94

F9 3.47 2.69 35.40 9.82 5.36

F10 4.07 3.21 35.50 9.98 5.31

F11 67.34 67.31 109.46 80.76 70.74

F12 19.56 19.23 52.92 28.66 24.40

Expanded

Multimodal

Functions

F13 4.22 3.23 33.65 10.03 6.57

F14 5.00 4.28 39.34 13.74 7.21

Hybrid

Composition
Functions

F15 152.24 155.58 245.17 179.93 171.61

F16 158.03 152.60 215.81 175.75 169.60

F17 149.77 153.18 222.27 209.18 165.98

F18 162.03 160.15 227.57 230.69 176.28

F19 163.59 155.65 212.93 193.63 180.76

F20 162.14 158.16 226.92 186.80 177.43

F21 159.13 155.38 227.15 178.51 183.83

F22 204.95 203.20 277.54 233.41 222.01

F23 158.61 157.33 242.07 183.79 180.15

F24 104.40 107.61 199.99 128.66 125.99

F25 120.10 115.51 215.87 136.15 131.38

Average AR 0.80 0.72 3.77 1.45

 9

results:

1) Unimodal functions F1-F5: JADE exhibits the best

performance on five unimodal functions among the five

algorithms. Evidently, the greedy mutation operator, i.e.,

current-to-pbest/1, results in the fast convergence speed and

high convergence precision of JADE under these conditions.

CoBiDE is outperformed by JADE on four test functions and

surpasses jDE, SaDE, and CoDE on four, four, and three test

functions, respectively. jDE and SaDE cannot show better

performance than CoBiDE on any test functions and CoDE

0 1 2 3

x 10
5

1E-40

1E-30

1E-20

1E-10

1E+00

1E+10

FES

A
v
e

ra
g

e
 F

u
n

c
ti
o

n
 E

rr
o

r
V

a
lu

e

JADE

jDE

SaDE

CoDE

CoBiDE

0 1 2 3

x 10
5

1E-30

1E-20

1E-10

1E+00

1E+10

FES

A
v
e

ra
g

e
 F

u
n

c
ti
o

n
 E

rr
o

r
V

a
lu

e

JADE

jDE

SaDE

CoDE

CoBiDE

(a) F1 (b) F2

0 1 2 3

x 10
5

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10

FES

A
v
e

ra
g

e
 F

u
n

c
ti
o

n
 E

rr
o

r
V

a
lu

e

JADE

jDE

SaDE

CoDE

CoBiDE

0 1 2 3

x 10
5

1E-20

1E-15

1E-10

1E-05

1E+00

1E+05

1E+10

FES

A
v
e

ra
g

e
 F

u
n

c
ti
o

n
 E

rr
o

r
V

a
lu

e

JADE

jDE

SaDE

CoDE

CoBiDE

(c) F3 (d) F4

0 1 2 3

x 10
5

1E-08

1E-06

1E-04

1E-02

1E+00

1E+02

1E+04

1E+06

FES

A
v
e

ra
g

e
 F

u
n

c
ti
o

n
 E

rr
o

r
V

a
lu

e

JADE

jDE

SaDE

CoDE

CoBiDE

0 1 2 3

x 10
5

1E-02

1E+00

1E+02

1E+04

1E+06

1E+08

1E+10

1E+12

FES

A
v
e

ra
g

e
 F

u
n

c
ti
o

n
 E

rr
o

r
V

a
lu

e

JADE

jDE

SaDE

CoDE

CoBiDE

(e) F5 (f) F6

0 1 2 3

x 10
5

1E-04

1E-02

1E+00

1E+02

1E+04

1E+06

FES

A
v
e

ra
g

e
 F

u
n

c
ti
o

n
 E

rr
o

r
V

a
lu

e

JADE

jDE

SaDE

CoDE

CoBiDE

0 1 2 3

x 10
5

20

20.5

21

21.5

FES

A
v
e

ra
g

e
 F

u
n

c
ti
o

n
 E

rr
o

r
V

a
lu

e

JADE

jDE

SaDE

CoDE

CoBiDE

(g) F7 (h) F8

Fig. 3. Evolution of the mean function error values derived from JADE, jDE, SaDE, CoDE, and CoBiDE versus the number of FES on F1, F2, F3, F4, F5, F6, F7,

and F8.

 10

performs better than CoBiDE on only one test function.

Therefore, the performance of CoBiDE is the second best in

terms of these five unimodal functions.

2) Basic multimodal functions F6-F12: Clearly, CoBiDE

has the best performance on this kind of test functions.

CoBiDE has an edge over JADE, jDE, SaDE, and CoDE on

five, six, five, and three test functions, respectively. JADE

and CoDE are statistically better than CoBiDE on one test

function, and jDE and SaDE cannot outperform CoBiDE on

any test functions. The outstanding performance of CoBiDE

0 1 2 3

x 10
5

1E-20

1E-15

1E-10

1E-05

1E+00

1E+05

FES

A
v
e

ra
g

e
 F

u
n

c
ti
o

n
 E

rr
o

r
V

a
lu

e

JADE

jDE

SaDE

CoDE

CoBiDE

0 1 2 3

x 10
5

1E+01

1E+02

1E+03

1E+04

FES

A
v
e

ra
g

e
 F

u
n

c
ti
o

n
 E

rr
o

r
V

a
lu

e

JADE

jDE

SaDE

CoDE

CoBiDE

(a) F9 (b) F10

0 1 2 3

x 10
5

0

10

20

30

40

50

60

FES

A
v
e

ra
g

e
 F

u
n

c
ti
o

n
 E

rr
o

r
V

a
lu

e

JADE

jDE

SaDE

CoDE

CoBiDE

0 1 2 3

x 10
5

1E+03

1E+04

1E+05

1E+06

1E+07

FES

A
v
e

ra
g

e
 F

u
n

c
ti
o

n
 E

rr
o

r
V

a
lu

e

JADE

jDE

SaDE

CoDE

CoBiDE

(c) F11 (d) F12

0 1 2 3

x 10
5

1E+00

1E+01

1E+02

1E+03

1E+04

FES

A
v
e

ra
g

e
 F

u
n

c
ti
o

n
 E

rr
o

r
V

a
lu

e

JADE

jDE

SaDE

CoDE

CoBiDE

0 1 2 3

x 10
5

12

13

14

15

FES

A
v
e

ra
g

e
 F

u
n

c
ti
o

n
 E

rr
o

r
V

a
lu

e

JADE

jDE

SaDE

CoDE

CoBiDE

(e) F13 (f) F14

0 1 2 3

x 10
5

1E+01

1E+02

1E+03

1E+04

FES

A
v
e

ra
g

e
 F

u
n

c
ti
o

n
 E

rr
o

r
V

a
lu

e

JADE

jDE

SaDE

CoDE

CoBiDE

0 1 2 3

x 10
5

1E+01

1E+02

1E+03

1E+04

FES

A
v
e

ra
g

e
 F

u
n

c
ti
o

n
 E

rr
o

r
V

a
lu

e

JADE

jDE

SaDE

CoDE

CoBiDE

(g) F16 (h) F17

Fig. 4. Evolution of the mean function error values derived from JADE, jDE, SaDE, CoDE, and CoBiDE versus the number of FES on F9, F10, F11, F12, F13, F14,

F16, and F17.

 11

can be attributed to its capability to balance the exploration

and exploitation.

3) Expanded multimodal functions F13-F14: The mean

function error values of all the algorithms are of the same

order of magnitude on F13 and F14. JADE and CoDE are

statistically better than CoBiDE. CoBiDE exhibits the similar

performance with jDE. In addition, CoBiDE outperforms

SaDE on these two test functions.

4) Hybrid composition functions F15-F25: The solution of

these 11 test functions is much more difficult than that of

other test functions. For these 11 test functions, the results

provided by the five algorithms are far way from the global

optima. However, from Table 1, we can still observe that the

performance of CoBiDE is superior to that of the other four

algorithms according to the Wilcoxon’s rank sum test.

According to the last three lines of Table 1, overall

CoBiDE is the best among the five algorithms. For five

unimodal functions, CoBiDE is ranked the second, and for

Table 5

Experimental results of CLPSO, CMA-ES, GL-25, and CoBiDE over 25 independent runs on 25 test functions of 30 variables with 300000 FES. “Mean
Error” and “Std Dev” indicate the average and standard deviation of the function error values obtained in 25 runs, respectively. Wilcoxon’s rank sum test at a

0.05 significance level is performed between CoBiDE and each of CLPSO, CMA-ES, and GL-25.

Function
CLPSO

Mean Error±Std Dev
CMA-ES

Mean Error±Std Dev
GL-25

Mean Error±Std Dev
CoBiDE

Mean Error±Std Dev

Unimodal
Functions

F1 0.00E+00±0.00E+00≈ 1.58E-25±3.35E-26－ 5.60E-27±1.76E-26－ 0.00E+00±0.00E+00

F2 8.40E+02±1.90E+02－ 1.12E-24±2.93E-25＋ 4.04E+01±6.28E+01－ 1.60E-12±2.90E-12

F3 1.42E+07±4.19E+06－ 5.54E-21±1.69E-21＋ 2.19E+06±1.08E+06－ 7.26E+04±5.64E+04

F4 6.99E+03±1.73E+03－ 9.15E+05±2.16E+06－ 9.07E+02±4.25E+02－ 1.16E-03±2.74E-03

F5 3.86E+03±4.35E+02－ 2.77E-10±5.04E-11＋ 2.51E+03±1.96E+02－ 8.03E+01±1.51E+02

Basic

Multimodal
Functions

F6 4.16E+00±3.48E+00－ 4.78E-01±1.32E+00－ 2.15E+01±1.17E+00－ 4.13E-02±9.21E-02

F7 4.51E-01±8.47E-02－ 1.82E-03±4.33E-03≈ 2.78E-02±3.62E-02－ 1.77E-03±3.73E-03

F8 2.09E+01±4.41E-02－ 2.03E+01±5.72E-01＋ 2.09E+01±5.94E-02－ 2.07E+01±3.75E-01

F9 0.00E+00±0.00E+00≈ 4.45E+02±7.12E+01－ 2.45E+01±7.35E+00－ 0.00E+00±0.00E+00

F10 1.04E+02±1.53E+01－ 4.63E+01±1.16E+01≈ 1.42E+02±6.45E+01－ 4.41E+01±1.29E+01

F11 2.60E+01±1.63E+00－ 7.11E+00±2.14E+00－ 3.27E+01±7.79E+00－ 5.62E+00±2.19E+00

F12 1.79E+04±5.24E+03－ 1.26E+04±1.74E+04－ 6.53E+04±4.69E+04－ 2.94E+03±3.93E+03

Expanded

Multimodal

Functions

F13 2.06E+00±2.15E-01＋ 3.43E+00±7.60E-01－ 6.23E+00±4.88E+00－ 2.64E+00±1.13E+00

F14 1.28E+01±2.48E-01－ 1.47E+01±3.31E-01－ 1.31E+01±1.84E-01－ 1.23E+01±4.90E-01

Hybrid
Composition

Functions

F15 5.77E+01±2.76E+01＋ 5.55E+02±3.32E+02－ 3.04E+02±1.99E+01＋ 4.04E+02±5.03E+01

F16 1.74E+02±2.82E+01－ 2.98E+02±2.08E+02－ 1.32E+02±7.60E+01－ 7.38E+01±3.66E+01

F17 2.46E+02±4.81E+01－ 4.43E+02±3.34E+02－ 1.61E+02±6.80E+01－ 7.25E+01±2.02E+01

F18 9.13E+02±1.42E+00－ 9.04E+02±3.01E-01－ 9.07E+02±1.48E+00－ 9.03E+02±1.05E+01

F19 9.14E+02±1.45E+00－ 9.16E+02±6.03E+01－ 9.06E+02±1.24E+00－ 9.03E+02±1.04E+01

F20 9.14E+02±3.62E+00－ 9.04E+02±2.71E-01＋ 9.07E+02±1.35E+00－ 9.04E+02±5.95E-01

F21 5.00E+02±3.39E-13≈ 5.00E+02±2.68E-12－ 5.00E+02±4.83E-13≈ 5.00E+02±4.62E-13

F22 9.72E+02±1.20E+01－ 8.26E+02±1.46E+01＋ 9.28E+02±7.04E+01－ 8.62E+02±2.80E+01

F23 5.34E+02±2.19E-04－ 5.36E+02±5.44E+00－ 5.34E+02±4.66E-04－ 5.34E+02±1.30E-04

F24 2.00E+02±1.49E-12－ 2.12E+02±6.00E+01－ 2.00E+02±5.52E-11－ 2.00E+02±2.85E-14

F25 2.00E+02±1.96E+00＋ 2.07E+02±6.07E+00≈ 2.17E+02±1.36E-01－ 2.10E+02±7.73E-01

－ 19 16 23

＋ 3 6 1

≈ 3 3 1

“－”, “＋”, and “≈” denote that the performance of the corresponding algorithm is worse than, better than, and similar to that of CoBiDE, respectively.

Table 6

Results of the multiple-problem Wilcoxon’s test for CLPSO, CMA-ES, GL-25, and CoBiDE at a 0.05 significance level and at a 0.1 significance level

Algorithm R+ R- p-value α=0.05 α=0.1

CoBiDE vs CLPSO 257.0 43.0 0.001834 Yes Yes

CoBiDE vs CMA-ES 241.5 83.5 0.032428 Yes Yes

CoBiDE vs GL-25 279.5 20.5 0.000193 Yes Yes

Table 7

Ranking of CLPSO, CMA-ES, GL-25, and CoBiDE according to the statistical test of the Friedman test

Algorithm Ranking

CoBiDE 1.62

CMA-ES 2.6

CLPSO 2.84

GL-25 2.94

 12

basic multimodal functions and hybrid composition

functions, CoBiDE is more reliable than others. The superior

performance of CoBiDE stems from two aspects: 1) the

bimodal distribution parameter setting is capable of

motivating the population towards promising directions, and

2) the covariance matrix learning is able to accelerate the

convergence by exploiting the information provided by some

potential individuals.

In addition, we also performed the multiple-problem

Wilcoxon’s test [32] to check the behaviors of the above five

algorithms. It is necessary to emphasize that the multiple-

problem Wilcoxon’s test was accomplished in this paper by

using the KEEL software [33]. Table 2 summarizes the

statistical analysis results. From Table 2, we can see that

CoBiDE provides higher R+ values than R- values in all the

cases. According to the Wilcoxon’s test at α=0.05, the

significant differences can be observed in two cases (i.e.,

CoBiDE vs jDE and CoBiDE vs SaDE). When α=0.1, the

significant differences can be observed in three cases (i.e.,

CoBiDE vs jDE, CoBiDE vs SaDE, and CoBiDE vs CoDE),

which means that CoBiDE is significantly better than jDE,

SaDE, and CoDE on 25 test functions at α=0.1.

To further detect the significant differences between

CoBiDE and the four competitors, the Friedman’s test was

carried out, in which Bonferroni-Dunn’s procedure was used

as a post-hoc procedure. Again, the Friedman’s test was

implemented based on the KEEL software [33]. Table 3

summarizes the ranking of the five algorithms obtained by the

Friedman’s test. As shown in Table 3, CoBiDE has the best

ranking among the five algorithms on 25 test functions.

Since all the five compared algorithms are the DE variants,

one may be interested in the execution time of them on

different test functions. To this end, we recorded the average

runtime of each algorithm on each test function over 25

independent runs in Table 4. In order to compare the average

runtime, we used the acceleration rate (AR). For each test

function, AR is equal to the average runtime of CoBiDE

divided by the average runtime of another algorithm. AR>1

and AR<1 mean that CoBiDE is faster and slower than

another corresponding algorithm, respectively. The last row

of Table 4 gives the average AR values. According to the

average AR values, it is evident that JADE and jDE are faster

than CoBiDE. In contrast, SaDE and CoDE are slower than

CoBiDE. Moreover, based on our observation, the average

AR values are 0.69 and 0.53 for 12 test functions (i.e.,

F1-F10, F13, and F14) when comparing CoBiDE with JADE

and jDE respectively. For these 12 test functions, the

computational cost of the function evaluation is relatively

cheap, and thus, the computing of the covariance matrix leads

to the additional burden of the runtime of CoBiDE. However,

for the other 13 test functions (i.e., F11-F12, and F15-F25),

the average AR values are 0.89 and 0.88 when comparing

CoBiDE with JADE and jDE respectively. For these 13 test

functions, since the function evaluation is time-consuming,

the overhead of computing the covariance matrix in CoBiDE

seems to be trivial. Under these conditions, CoBiDE, JADE,

and jDE have the similar average runtime. It is necessary to

point out that we directly run the codes of the other four

algorithms provided by the developers and the programming

techniques of the developers also have a significant effect on

the runtime.

The evolution of the mean function error values of the five

algorithms in some typical test functions has been shown in

Fig. 3 and Fig. 4.

5.2. Comparison with other state-of-the-art EAs

CoBiDE was also compared with three other EAs: CLPSO

[34], CMA-ES [25], and GL-25 [35]. CLSPO, proposed by

Liang et al., is an improved version of particle swarm

optimization (PSO). In CLPSO, a novel learning strategy is

proposed, in which all other particles’ historical best

information is used to update a particle’s velocity. CMA-ES,

proposed by Hansen and Ostermeier, is an evolution strategy

(ES) based on completely derandomized self-adaptation.

GL-25, proposed by Garcia-Martinez et al., is a global and

local real-coded genetic algorithm (GA) based on parent-

centric crossover operators. The reasons of the selection of

these three algorithms in comparison are twofold: 1) CLPSO,

CMA-ES, and GL-25 represent the state-of-the-art in PSO,

ES, and GA, respectively. According to the Google Scholar

Citation, as of December 20, 2013, the number of citations of

CLPSO, CMA-ES, and GL-25 is 1011, 1332, and 81

respectively, and 2) their performance is very competitive.

Table 5 summarizes the experimental results of CoBiDE and

the above three algorithms. The parameter settings of

CLPSO, CMA-ES, and CLPSO were the same as in their

original papers and the experimental result of them were

directly taken from [23] to make the comparison fair.

From Table 5, it is evident that, overall, CoBiDE is the best

among the four compared algorithms in a statistically

significant fashion. Specifically, CoBiDE outperforms

CLPSO on 19 test functions and is worse than CLPSO on

three test functions. CMA-ES surpasses CoBiDE on three

unimodal functions; however, CoBiDE is significantly better

than CMA-ES on three other types of test functions.

Compared with GL-25, CoBiDE shows better and worse

performance on 23 test functions and one test function,

respectively.

In addition, some interesting phenomena can be observed

according to the experimental results in Table 5. For

separable functions (i.e., F1 and F9), the performance of

CLPSO is significantly better than that of the other

algorithms except for CoBiDE. Moreover, CLPSO also

outperforms the other algorithms on F15 which is separable

near the global optimum [9]. The superiority of CLPSO in

separable functions is mainly due to the dimension-wise

updating rules for velocity and position in PSO. CMA-ES

performs quite well on some unimodal functions, which

means the convergence speed of CMA-ES is very fast.

Moreover, CMA-ES outperforms the other algorithms on test

functions with high condition numbers, i.e., F3 and F22. It is

because CMA-ES has the capability to adapt the population

distribution according to the landscape of test functions.

However, the performance of CMA-ES is not good when

 13

solving some multimodal functions, especially for test

functions with noise, i.e., F4 and F17. Therefore, we can

conclude that CMA-ES is sensitive to the noise. In contrast,

CoBiDE shows the best performance on test functions with

noise.

Tables 6 and 7 also present the statistical analysis results

according to the multiple-problem Wilcoxon’s test and the

Friedman’s test, respectively. It can be seen from Table 6 that

CoBiDE obtains higher R+ values than R- values in all the

cases. Furthermore, the p values of all the cases are less than

0.05. On the other hand, the experimental results in Table 7

indicate that CoBiDE has the best ranking among the four

compared algorithms. In summary, the above comparison

clearly demonstrates that CoBiDE is significantly better than

the three competitors.

5.3. The effectiveness of the two components in CoBiDE

As mentioned previously, CoBiDE includes two main

components: the covariance matrix learning and the bimodal

distribution parameter setting. The aim of this subsection is to

verify the effectiveness of the above two components. To this

end, two additional experiments were executed for 25

benchmark test functions. In the first experiment, CoBiDE

only adopts the covariance matrix learning and the bimodal

distribution parameter setting is not used (denoted as

CoBiDE-1). In this case, like [18] and [20], F and CR were

fixed to 0.5 and 0.9 during the evolution, respectively. In

addition, in the second experiment, CoBiDE only adopts the

bimodal distribution parameter setting and the covariance

matrix learning is ignored (denoted as CoBiDE-2). It is

necessary to note that for CoBiDE-2, Steps 11-15 and Step 19

in Fig. 3 can be eliminated and only the crossover operator of

the original DE (i.e., Eq. (3)) is employed.

For each test function, 25 independent runs were

implemented and the maximum number of FES was set to

300000. The experimental results of CoBiDE-1, CoBiDE-2,

and CoBiDE have been shown in Table 8.

From Table 8, CoBiDE surpasses CoBiDE-1 on 18 test

functions. We attribute the above phenomenon to the fact that

the fixed parameter setting could not adjust the search

behavior to suit different landscapes, and that the bimodal

distribution parameter setting is more effective to balance the

exploration and exploitation during the evolution. In addition,

CoBiDE-1 outperforms CoBiDE on three test functions (i.e.,

Table 8

Experimental results of CoBiDE-1, CoBiDE-2, and CoBiDE over 25 independent runs on 25 test functions of 30 variables with 300000 FES. “Mean Error” and
“Std Dev” indicate the average and standard deviation of the function error values obtained in 25 runs, respectively. Wilcoxon’s rank sum test at a 0.05

significance level is performed between CoBiDE and each of CoBiDE-1 and CoBiDE-2.

Function
CoBiDE-1

Mean Error±Std Dev
CoBiDE-2

Mean Error±Std Dev
CoBiDE

Mean Error±Std Dev

Unimodal
Functions

F1 1.54E-28±1.35E-28－ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00

F2 3.95E-12±5.32E-12≈ 2.07E-06±3.69E-06－ 1.60E-12±2.90E-12

F3 3.25E+05±1.84E+05－ 2.46E+05±1.45E+05－ 7.26E+04±5.64E+04

F4 5.43E-04±1.28E-03＋ 6.39E-02±6.77E-02－ 1.16E-03±2.74E-03

F5 7.58E+02±5.56E+02－ 1.29E+02±2.67E+02－ 8.03E+01±1.51E+02

Basic

Multimodal
Functions

F6 4.09E+01±3.60E+01－ 1.66E+00±1.02E+00－ 4.13E-02±9.21E-02

F7 2.05E-02±1.79E-02－ 3.64E-03±6.78E-03－ 1.77E-03±3.73E-03

F8 2.10E+01±3.81E-02－ 2.07E+01±3.74E-01≈ 2.07E+01±3.75E-01

F9 1.56E+01±7.56E+00－ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00

F10 1.38E+02±5.78E+01－ 4.70E+01±1.34E+01≈ 4.41E+01±1.29E+01

F11 1.62E+01±1.24E+01－ 7.82E+00±2.95E+00－ 5.62E+00±2.19E+00

F12 4.35E+03±4.16E+03－ 3.45E+03±3.14E+03≈ 2.94E+03±3.93E+03

Expanded

Multimodal

Functions

F13 1.14E+01±4.47E+00＋ 2.74E+00±1.00E+00≈ 2.64E+00±1.13E+00

F14 1.31E+01±2.46E-01－ 1.25E+01±5.39E-01－ 1.23E+01±4.90E-01

Hybrid
Composition

Functions

F15 3.82E+02±1.12E+02≈ 3.76E+02±8.31E+01≈ 4.04E+02±5.03E+01

F16 1.16E+02±7.27E+01－ 1.03E+02±9.07E+01－ 7.38E+01±3.66E+01

F17 2.41E+02±5.64E+01－ 7.90E+01±1.90E+01－ 7.25E+01±2.02E+01

F18 9.06E+02±1.45E+00－ 9.04E+02±2.76E-01－ 9.03E+02±1.05E+01

F19 9.01E+02±2.10E+01＋ 9.04E+02±2.62E-01－ 9.03E+02±1.04E+01

F20 9.05E+02±1.38E+00－ 9.04E+02±2.55E-01≈ 9.04E+02±5.95E-01

F21 5.24E+02±8.31E+01－ 5.00E+02±8.84E-14≈ 5.00E+02±4.62E-13

F22 8.84E+02±1.65E+01－ 8.56E+02±2.75E+01≈ 8.62E+02±2.80E+01

F23 5.50E+02±8.05E+01－ 5.34E+02±3.53E-04≈ 5.34E+02±1.30E-04

F24 2.00E+02±2.90E-14≈ 2.00E+02±1.03E-12－ 2.00E+02±2.85E-14

F25 2.10E+02±5.84E-01≈ 2.10E+02±4.61E-01≈ 2.10E+02±7.73E-01

－ 18 13

＋ 3 0

≈ 4 12

“－”, “＋”, and “≈” denote that the performance of the corresponding algorithm is worse than, better than, and similar to that of CoBiDE, respectively.

 14

F4, F13, and F19). According to our further experiments, we

found out that the parameter setting of F=0.5 and CR=0.9

provides best or near-best performance for these three test

functions, which means that the above parameter setting

happens to be very suitable for these three test functions.

In addition, compared with CoBiDE, CoBiDE-2 shows

worse performance on 13 test functions, and cannot show

better performance on any test functions. It is not difficult to

understand, since the covariance matrix learning is not

dependent on the coordinate system when implementing the

crossover operator. As a result, it has the capability to adapt

the search according to different landscapes. Moreover, once

some potential regions have been located, it can accelerate

the convergence speed and enhance the convergence accuracy

of the population for different kinds of test functions, due to

the use of the population information to construct more

suitable coordinate system. It is also interesting to note that

for 12 test functions (F1, F8-F10, F12-F13, F15, F20-F23,

0 0.1
0.2 0.3 0.4

0.5 0.6 0.7
0.8 0.9

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

1E+04

1E+05

1E+06

1E+07

pspb

A
v
e

ra
g

e
 F

u
n

c
ti
o

n
 E

rr
o

r
V

a
lu

e

0 0.1
0.2 0.3 0.4

0.5 0.6 0.7
0.8 0.9

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

1E-06

1E-04

1E-02

1E+00

1E+02

1E+04

pspb

A
v
e

ra
g

e
 F

u
n

c
ti
o

n
 E

rr
o

r
V

a
lu

e

(a) F3 (b) F4

0 0.1
0.2 0.3 0.4

0.5 0.6 0.7
0.8 0.9

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

1E-10

1E-05

1E+00

1E+05

1E+10

pspb

A
v
e

ra
g

e
 F

u
n

c
ti
o

n
 E

rr
o

r
V

a
lu

e

0 0.1
0.2 0.3 0.4

0.5 0.6 0.7
0.8 0.9

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0

20

40

60

80

100

pspb
A

v
e

ra
g

e
 F

u
n

c
ti
o

n
 E

rr
o

r
V

a
lu

e

(c) F6 (d) F9

0 0.1
0.2 0.3 0.4

0.5 0.6 0.7
0.8 0.9

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

20

40

60

80

100

120

pspb

A
v
e

ra
g

e
 F

u
n

c
ti
o

n
 E

rr
o

r
V

a
lu

e

0 0.1
0.2 0.3 0.4

0.5 0.6 0.7
0.8 0.9

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

2

3

4

5

6

pspb

A
v
e

ra
g

e
 F

u
n

c
ti
o

n
 E

rr
o

r
V

a
lu

e

(e) F10 (f) F13

0 0.1
0.2 0.3 0.4

0.5 0.6 0.7
0.8 0.9

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

12

12.1

12.2

12.3

12.4

12.5

12.6

pspb

A
v
e

ra
g

e
 F

u
n

c
ti
o

n
 E

rr
o

r
V

a
lu

e

(g) F14

Fig. 5. The average function error values of CoBiDE with different combinations of pb and ps

 15

and F25), the performance differences between CoBiDE and

CoBiDE-2 are marginal. These 12 test functions can be

divided into two categories: F1 and F9 belong to the first

category, and the remaining 10 test functions belong to the

second category. For F1 and F9, both CoBiDE and

CoBiDE-2 can consistently reach the global optimum, and

thus, the performance differences between CoBiDE and

CoBiDE-2 are not significant. In addition, since CoBiDE

might be easily trapped into a local optimum and the

covariance matrix learning cannot help the population jump

out of the local optimum, the insignificant performance

differences occur for CoBiDE and CoBiDE-2 on the

remaining 10 test functions.

From Table 8, we can conclude that the above two

components can benefit each other to enhance the

performance of DE. Indeed, the bimodal distribution

parameter setting achieves high reliability and the covariance

matrix learning results in fast convergence.

5.4. Sensitivity in relation to the parameters pb and ps

CoBiDE contains two parameters pb and ps. The former

controls the computational resource assigned to the

covariance matrix learning and the latter controls the number

of individuals for computing the covariance matrix.

In order to investigate the sensitivity of the above two

parameters, we tested CoBiDE with different pb: 0, 0.1, 0.2,

0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1, and different ps: 0, 0.1,

0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. Seven test

functions (i.e., F3, F4, F6, F9, F10, F13, and F14) were selected

to test the performance of CoBiDE with different

combinations of pb and ps. These test functions involve

shifted problems, problems with noise, rotated problems, and

high conditioned problems. The dimension was set to 30 for

all the test functions and the maximum number of FES was

set to 300000. Fig. 5 shows the average function error values

of CoBiDE with different combinations of pb and ps.

Generally speaking, a larger value of pb may discourage

the diversity of the population, however, if the value of pb is

too small, the covariance matrix learning cannot play its role

in solving problems with high variable correlation. On the

other hand, if ps is set to a larger value, the randomness of the

population may cause side effect on the computation of the

covariance matrix. However, if the value of ps is too small,

the chosen individuals cannot reflect the statistical

information of the population. Therefore, moderate values

should be chosen for these two parameters in order to achieve

competitive performance.

From Fig. 5, we can observe that, actually, CoBiDE is not

sensitive to these two parameters, and that pb and ps can be

chosen from a relatively large range to achieve competitive

Table 9

Experimental results of JADE, jDE, SaDE, CoDE, and CoBiDE over 25 independent runs on eight real-world engineering optimization problems with 150000
FES. “Mean Value” and “Std Dev” indicate the average and standard deviation of the objective function values obtained in 25 runs, respectively. Wilcoxon’s

rank sum test at a 0.05 significance level is performed between CoBiDE and each of JADE, jDE, SaDE, and CoDE.

Problem
JADE

Mean Value±Std Dev
jDE

Mean Value±Std Dev
SaDE

Mean Value±Std Dev
CoDE

Mean Value±Std Dev
CoBiDE

Mean Value±Std Dev

P1 4.63E-01±8.04E-01－ 3.49E-01±6.80E-01－ 0.00E+00±0.00E+00≈ 4.06E-01±2.03E+00－ 0.00E+00±0.00E+00

P2 1.17E+00±1.00E-01－ 1.35E+00±7.59E-02－ 1.09E+00±2.39E-01－ 6.82E-01±1.09E-01－ 5.97E-01±1.01E-01

P3 2.04E+03±4.89E+02－ 2.04E+03±4.50E+02－ 6.48E+03±7.69E+03－ 1.95E+03±4.97E+02≈ 1.74E+03±3.49E+02

P4 5.24E+04±4.92E+02≈ 5.78E+04±3.74E+03－ 5.61E+04±1.51E+04≈ 5.22E+04±4.99E+02≈ 5.23E+04±6.27E+02

P5 1.32E+05±5.09E+03≈ 1.32E+05±2.44E+03－ 1.32E+05±1.66E+03－ 1.42E+05±2.43E+03－ 1.28E+05±1.21E+03

P6 9.40E+05±3.47E+03≈ 9.74E+05±2.30E+04－ 9.76E+05±1.26E+05－ 9.50E+05±4.37E+04－ 9.39E+05±1.97E+03

P7 1.01E+06±1.74E+05≈ 1.37E+06±1.40+05－ 1.37E+06±2.02E+05－ 1.11E+06±6.68E+04－ 9.52E+05±2.37E+04

P8 1.74E+01±2.12E+00－ 1.88E+01±1.48E+00－ 1.56E+01±1.85E+00－ 1.39E+01±2.21E+00≈ 1.43E+01±1.75E+00

－ 4 8 6 5

＋ 0 0 0 0

≈ 4 0 2 3

“－”, “＋”, and “≈” denote that the performance of the corresponding algorithm is worse than, better than, and similar to that of CoBiDE, respectively.

Table 10

Results of the multiple-problem Wilcoxon’s test for JADE, jDE, SaDE, CoDE, and CoBiDE at a 0.05 significance level and at a 0.1 significance level

Algorithm R+ R- p-value α=0.05 α=0.1

CoBiDE vs JADE 36.0 0.0 0.007812 Yes Yes

CoBiDE vs jDE 36.0 0.0 0.007812 Yes Yes

CoBiDE vs SaDE 28.0 0.0 0.015626 Yes Yes

CoBiDE vs CoDE 30.0 6.0 0.10938 No No

Table 11

Ranking of JADE, jDE, SaDE, CoDE, and CoBiDE according to the statistical test of the Friedman test

Algorithm Ranking

CoBiDE 1.3125

CoDE 2.625

JADE 3.3125

SaDE 3.625

jDE 4.125

 16

performance for CoBiDE. In general, the value of pb is

recommended in the interval [0.2,0.7] and the value of ps is

recommended in the interval [0.3,0.7].

5.5. Real-world application problems

Besides the above 25 benchmark test functions, eight

real-world engineering optimization problems chosen from

different fields including radar system, power systems,

hydrothermal scheduling, spacecraft trajectory optimization,

etc, were used to evaluate the performance of CoBiDE in this

subsection. These eight real-world engineering optimization

problems (denoted as P1-P8 in this paper) are problems T01,

T06, T08, T10.1, T11.4, T12.1, T12.2, and T13 collected for

the 2011 IEEE Congress on Evolutionary Computation (IEEE

CEC2011) [10], respectively, which exhibit different

complex characteristics and are very difficult to solve. For

each problem, 25 independently runs were implemented with

150000 FES as the termination criterion. The parameter

settings of CoBiDE were the same with those for the 25

benchmark test functions, i.e., NP=60, pb=0.4, and ps=0.5. In

addition, the parameter settings of JADE, jDE, SaDE, and

CoDE were the same as in their original papers.

Table 9 summarizes the mean and standard deviation of the

objective function values over 25 independent runs for each

problem. In order to have statistically sound conclusions,

Wilcoxon’s rank sum test at a 0.05 significance level was

conducted on the experimental results. From the experimental

results shown in Table 9, we can see that JADE, jDE, SaDE,

and CoDE cannot outperform CoBiDE on any problems, and

that CoBiDE surpasses JADE, jDE, SaDE, and CoDE on four,

eight, six, and five problems, respectively, which indicates

that overall, CoBiDE performs significantly better than the

four competitors on eight complex real-world engineering

optimization problems.

By making use of the KEEL software [33], the multiple-

problem Wilcoxon’s test and the Friedman’s test have been

implemented. The experimental results have been

summarized in Tables 10 and 11. As shown in Table 10,

CoBiDE shows higher R+ values than R- values in all the

cases. Moreover, the p values less than 0.05 and 0.1 in three

cases (i.e., CoBiDE vs JADE, CoBiDE vs jDE, and CoBiDE

vs SaDE). In addition, CoBiDE has the best ranking

according to Table 11.

Therefore, the above experimental results verify the

potential of CoBiDE in the real-world applications.

6. Conclusion

During the past fifteen years, differential evolution (DE)

which is an efficient and robust evolutionary algorithm has

become a hotspot in the community of evolutionary

computation. In order to improve the performance of DE,

CoBiDE, a DE variant based on covariance matrix learning

and bimodal distribution parameter setting, is presented in

this paper.

In CoBiDE, Eigen decomposition is applied to the

covariance matrix computed according to the current

population, the purpose of which is to establish an Eigen

coordinate system for the crossover operator. The covariance

matrix learning relaxes the dependence of DE on the

coordinate system to a certain degree and improves the

performance on problems with high variable correlation.

Moreover, the bimodal distribution parameter setting is

introduced for the scaling factor F and the crossover control

parameter CR. The bimodal distribution for both F and CR is

composed of two Cauchy distributions. CoBiDE has been

tested on 25 benchmark test functions developed for IEEE

CEC2005 and eight complex real-world engineering

optimization problems collected for IEEE CEC2011. The

experimental results suggest that the performance of CoBiDE

is better than that of four other DE variants and three other

state-of-the-art EAs. The experimental results also verify that

both the covariance matrix learning and the bimodal

distribution parameter setting are critical for CoBiDE.

Finally, the parameter sensitivity of CoBiDE has been studied

experimentally.

The Matlab source code of CoBiDE can be obtained from

the first author upon request.

Acknowledgments

The authors sincerely thank the anonymous reviewers for

their constructive and helpful comments and suggestions.

This research was supported in part by the National Natural

Science Foundation of China under Grant 61273314,

51175519 and 61175064, in part by the Hong Kong Scholars

Program, in part by the China Postdoctoral Science

Foundation under Grant 2013M530359, in part by RGC of

Hong Kong (CityU: 116212), and in part by the Program for

New Century Excellent Talents in University under Grant

NCET-13-0596. This research was made possible by NPRP

grant # 4-1162-1-181 from the Qatar National Research Fund

(a member of Qatar Foundation). The statements made herein

are solely the responsibility of the author[s].

References

[1] R. Storn, K. Price, Differential evolution—A simple and efficient

adaptive scheme for global optimization over continuous spaces,

Berkeley, CA, Tech. Rep. TR-95-012, 1995.
[2] R. Storn, K.V. Price, Differential evolution—A simple and efficient

heuristic for global optimization over continuous spaces, Journal of

Global Optimization 11 (4) (1997) 341-359.
[3] S. Das, A. Abraham, A. Konar, Automatic clustering using an

improved differential evolution algorithm, IEEE Transactions on

Systems, Man, and Cybernetics, Part A 38 (1) (2008) 218-236.
[4] F. Neri, E. Mininno, Memetic compact differential evolution for

Cartesian robot control, IEEE Computational Intelligence Magazine 5

(2) (2010) 54-65.
[5] L. Wang, L.P. Li, Fixed-structure H∞ controller synthesis based on

differential evolution with level comparison, IEEE Transactions on

Evolutionary Computation 15 (1) (2011) 341-359.
[6] G.W. Greenwood, Using differential evolution for a subclass of graph

theory problems, IEEE Transactions on Evolutionary Computation 13

(5) (2009) 1190-1192.
[7] N. Noman, H. Iba, Accelerating differential evolution using an

adaptive local search, IEEE Transactions on Evolutionary

Computation 12 (1) (2008) 107-125.

 17

[8] A.K. Qin, V.L. Huang, P.N. Suganthan, Differential evolution

algorithm with strategy adaptation for global numerical optimization,
IEEE Transactions on Evolutionary Computation 13 (2) (2009)

398-417.

[9] P.N. Suganthan, N. Hansen, J.J. Liang, K. Deb, Y.-P. Chen, A. Auger,
S. Tiwari, Problem definitions and evaluation criteria for the CEC

2005 special session on real-parameter optimization, Nanyang

Technol. Univ., Singapore, Tech. Rep. KanGAL #2005005, May
2005, IIT Kanpur, India.

[10] S. Das, P.N. Suganthan, Problem definitions and evaluation criteria

for CEC 2011 competition on testing evolutionary algorithms on real
world optimization problems, Technical Report, Jadavpur University

and Nanyang Technological University, 2010.

[11] Y. Wang, Z. Cai, Q. Zhang, Enhancing the search ability of
differential evolution through orthogonal crossover, Information

Sciences 185 (1) (2012) 153-177.

[12] S. Das, P.N. Suganthan, Differential evolution: A survey of the
state-of-the-art, IEEE Transactions on Evolutionary Computation 15

(1) (2011) 4-31.

[13] H.Y. Fan, J. Lampinen, A trigonometric mutation operator to
differential evolution, Journal of Global Optimization 27 (1) (2003)

105-129.

[14] J. Zhang, A.C. Sanderson, JADE: adaptive differential evolution with
optional external archive, IEEE Transactions on Evolutionary

Computation 13 (5) (2009) 945-958.

[15] S. Das, A. Abraham, U.K. Chakraborty, A. Konar, Differential
evolution using a neighborhood-based mutation operator, IEEE

Transactions on Evolutionary Computation 13 (3) (2009) 526-553.
[16] Y.W. Leung, Y. Wang, An orthogonal genetic algorithm with

quantization for global numerical optimization, IEEE Transactions on

Evolutionary Computation 5 (1) (2001) 41-53.
[17] J. Liu, J. Lampinen, A fuzzy adaptive differential evolution algorithm,

Soft Computing-A Fusion of Foundations, Methodologies and

Applications 9 (6) (2005) 448-462.
[18] J. Brest, S. Greiner, B. Boskovic, M. Mernik, V. Zumer, Self-adapting

control parameters in differential evolution: A comparative study on

numerical benchmark problems, IEEE Transactions on Evolutionary
Computation 10 (6) (2006) 646-657.

[19] S. Tsutsui, M. Yamamura, T. Higuchi, Multi-parent recombination

with simplex crossover in real coded genetic algorithms, in
Proceedings of the Genetic and Evolutionary Conference, 1999, pp.

657-664.

[20] S. Rahnamayan, H.R. Tizhoosh, M.M.A. Salama, Opposition-based
differential evolution, IEEE Transactions on Evolutionary

Computation 12 (1) (2008) 64-79.

[21] J. Sun, Q. Zhang, E.P.K. Tsang, DE/EDA: A new evolutionary
algorithm for global optimization, Information Sciences 169 (3-4)

(2005) 249-262.

[22] R. Mallipeddi, P.N. Suganthan, Q.K. Pan, M.F. Tasgetiren,

Differential evolution algorithm with ensemble of parameters and
mutation strategies, Applied Soft Computing 11 (2) (2011) 1679-

1696.

[23] Y. Wang, Z. Cai, Q. Zhang, Differential evolution with composite
trial vector generation strategies and control parameters, IEEE

Transactions on Evolutionary Computation 15 (1) (2011) 55-66.

[24] W. Gong, Z. Cai, C.X. Ling, H. Li, Enhanced differential evolution
with adaptive strategies for numerical optimization, IEEE

Transactions on Systems, Man, and Cybernetics, Part B 41 (2) (2011)

397-413.
[25] N. Hansen, A. Ostermeier, Completely derandomized self-adaptation

in evolution strategies, Evolutionary Computation 9 (2) (2001)

159-195.
[26] M. Takahashi, H. Kita, A crossover operator using independent

component analysis for real-coded genetic algorithms, in Proceedings

of IEEE Congress on Evolutionary Computation, 2001, pp. 643-649.
[27] K. Walczak, Hybrid differential evolution with covariance matrix

adaptation for digital filter design, in 2011 IEEE Symposium on

Differential Evolution (SDE), 2011, pp. 1-7.
[28] J.H. Kämpf, D. Robinson, A hybrid CMA-ES and HDE optimisation

algorithm with application to solar energy potential, Applied Soft

Computing, 9 (2) (2009) 738-745.
[29] A. LaTorre, S. Muelas, J. Peña, Evaluating the multiple offspring

sampling framework on complex continuous optimization functions,

Memetic Computing, 2013, in press. DOI 10.1007/s12293-013-0120-
8

[30] A. Auger, N. Hansen, A restart CMA evolution strategy with
increasing population size, in Proceedings of the IEEE Congress on

Evolutionary Computation, 2005, pp.1769-1776.

[31] J. Cohen, Statistical power analysis for the behavioral sciences (the
second edition). Hillsdale, NJ: Lawrence Earlbaum Associates, 1988.

[32] S. García, D. Molina, M. Lozano, F. Herrera, A study on the use of

non-parametric tests for analyzing the evolutionary algorithms’
behaviour: A case study on the CEC’2005 special session on real

parameter optimization, Journal of Heuristics, 15 (6) (2009) 617-644.

[33] J. Alcalá-Fdez, L. Sánchez, S. García, M.J. del Jesus, S. Ventura, J.M.
Garrell, J. Otero, C. Romero, J. Bacardit, V.M. Rivas, J.C. Fernández,

F. Herrera, KEEL: A software tool to assess evolutionary algorithms

to data mining problems. Soft Computing 13 (3) (2009) 307-318.
[34] J.J. Liang, A.K. Qin, P.N. Suganthan, S. Baskar, Comprehensive

learning particle swarm optimizer for global optimization of

multimodal functions, IEEE Transactions on Evolutionary
Computation 10 (3) (2006) 281-295.

[35] C. Garcia-Martinez, M. Lozano, F. Herrera, D. Molina, A.M.

Sanchez, Global and local real-coded genetic algorithms based on
parent- centric crossover operators, European Journal of Operational

Research 185 (3) (2008) 1088-1113.

http://www.sciencedirect.com/science/journal/15684946
http://www.sciencedirect.com/science/journal/15684946
http://www.sciencedirect.com/science/journal/15684946/9/2

