
Evolutionary Dynamic Constrained Optimization: Test
Suite Construction and Algorithm Comparisons

Yong Wanga, Jian Yua, Shengxiang Yangb,∗, Shouyong Jiangc, Shuang Zhaod,∗

aSchool of Automation, Central South University, Changsha 410083, China.
bSchool of Computer Science and Informatics, De Montfort University, Leicester LE1 9BH, UK.

cSchool of Computer Science, University of Lincoln, Lincoln, LN6 7TS, UK.
dDepartment of Dermatology, Xiangya Hospital, Central South University, Changsha 410008,

China

Abstract

Many real-world applications can be modelled as dynamic constrained optimiza-
tion problems (DCOPs). Due to the fact that objective function and/or constraints
change over time, solving DCOPs is a challenging task. Although solving DCOPs
by evolutionary algorithms has attracted increasing interest in the community
of evolutionary computation, the design of benchmark test functions of DCOPs
is still insufficient. Therefore, we propose a test suite for DCOPs. A dynam-
ic unconstrained optimization benchmark with good time-varying characteristics,
called moving peaks benchmark, is chosen to be the objective function of our test
suite. In addition, we design adjustable dynamic constraints, by which the size,
number, and change severity of the feasible regions can be flexibly controlled.
Furthermore, the performance of three dynamic constrained optimization evolu-
tionary algorithms is tested on the proposed test suite, one of which is present-
ed in this paper, named dynamic constrained optimization differential evolution
(DyCODE). DyCODE includes three main phases: 1) the first phase intends to
enter the feasible region from different directions promptly via a multi-population
search strategy; 2) in the second phase, some excellent individuals chosen from
the first phase form a new population to search for the optimal solution of the cur-
rent environment; and 3) the third phase combines the memory individuals of the
first two phases with some randomly generated individuals to re-initialize the pop-
ulation for the next environment. From the experiments, one can understand the

∗Corresponding author.
Email addresses: ywang@csu.edu.cn (Yong Wang), syang@dmu.ac.uk (Shengxiang

Yang), shuangxy@csu.edu.cn (Shuang Zhao)

Preprint submitted to Swarm and Evolutionary Computation October 14, 2019

strengths and weaknesses of the three compared algorithms for solving DCOPs
in depth. Moreover, we also give some suggestions for researchers to apply these
three algorithms on different occasions.

Keywords: Dynamic constrained optimization, evolutionary algorithms,
benchmark test functions, performance comparison, constraint-handling
technique

1. Introduction

Many dynamic optimization problems have constraints, which are called dy-
namic constrained optimization problems (DCOPs) [1]. It is common to face a
considerable number of DCOPs in the real-world applications [2–7]. For DCOPs,
objective function and/or constraints change over time. In general, different DCOPs
may have different mathematical expressions. In this paper, DCOPs are formulat-
ed as follows:

maximize f(~x, t), ~x = (x1, ..., xD) ∈ S, Li < xi < Ui

subject to:

{
gj(~x, t) ≤ 0, j = 1, ..., l

hj(~x, t) = 0, j = l + 1, ...,m

(1)

where t is the discrete time instance or the environmental variable, ~x is the de-
cision vector, xi is the ith decision variable, Li and Ui are the lower and upper
bounds of xi, respectively,D is the number of decision variables, S =

∏D
i=1[Li, Ui]

is the decision space, f(~x, t) is the objective function, gj(~x, t) is the jth inequality
constraint, hj(~x, t) is the jth equality constraint, and l and (m− l) are the number
of inequality and equality constraints, respectively.

In this paper, we are interested in the occasion that both objective function
and constraints change over time simultaneously. Due to the dynamic change of
both objective function and constraints, it is very challenging to solve DCOPs.
In the early stage of dynamic constrained optimization, artificial test suite can
help researchers judge the performance of an algorithm when solving DCOPs.
Afterward, researchers can identify the advantages and disadvantages of an algor-
ithm, with the aim of improving its performance. Moreover, as pointed out by
Branke [8], artificial test suite should be easy to describe, easy to analyze, and al-
so parameter-tunable. Nevertheless, when solving DCOPs by evolutionary algo-
rithms (EAs), one of the main issues is the lack of well-established benchmark
test functions. Although researchers have made some attempts [9–13], this issue
does not attract as much attention as it deserves.

2

Based on the above consideration, we construct a new test suite for DCOPs. In
the proposed test suite, a well-known dynamic unconstrained optimization bench-
mark, called moving peaks benchmark (MPB) [8], is considered as the objective
function due to its outstanding time-varying characteristics. In addition, we con-
struct adjustable dynamic constraints. Specifically, the center of each feasible re-
gion is the same with the center of one of the peaks in the decision space, and thus
each feasible region follows the movement of one peak. We also take two different
situations into account during the design of constraints. One is the number of the
feasible regions and the other is the change severity of the feasible regions. By
combining the above two situations, we design six test instances. The advantages
of our test suite are the following: the global and local optima are known, the
size and number of the feasible regions are adjustable, the change severity of the
feasible regions is controllable, and the dimension of the decision space and the
number of constraints are scalable. Furthermore, researchers can easily control
the difficulty of our test suite by adjusting some parameters.

Subsequently, the performance of three dynamic constrained optimization EAs
(DCOEAs) is assessed based on our test suite. One of these DCOEAs is pro-
posed in this paper, called dynamic constrained optimization differential evolution
(DyCODE). DyCODE can be divided into three phases. The purpose of the first
phase is to find feasible solutions from different directions via a multi-population
search strategy. Once the proportion of feasible solutions in all the subpopulations
reaches a predefined value, some excellent individuals in each subpopulation will
be preserved into the second phase. In the second phase, these individuals are
aggregated into a new population to search for the optimal solution of the current
environment. If a change has been detected, the third phase begins. In the third
phase, DyCODE combines the memory individuals of the first two phases with
some randomly generated individuals to re-initialize a new population, with the
aim of tracking the next environment. The experimental results demonstrate that
different algorithms have different strengths and drawbacks, which reveals that
our test suite can distinguish these three algorithms and provide suggestions for
researchers to apply them on different occasions.

The rest of this paper is organized as follows. Section 2 reviews existing test
functions and the development of EAs for solving DCOPs. Section 3 introduces
the proposed test suite. Section 4 illustrates the details of three DCOEAs. Sec-
tion 5 presents a comprehensive comparison among these three DCOEAs on the
proposed test suite. Finally, Section 6 concludes the paper and points out the
future work.

3

2. Related Work

2.1. Test Functions of DCOPs
The first research on constructing test functions of DCOPs is conducted by

Liu [11] in 2008. In [11], three test functions are designed, in which objective
function and/or constraints are dependent on the time variable. In addition, the
time period is divided into several equal subperiods. In each subperiod, a DCOP
is approximated as a static constrained optimization problem. Richter [10] sug-
gested a framework to construct test functions of DCOPs. In this framework, an
n−dimensional “field of cones on a zero plane” is viewed as the objective func-
tion, which is subject to dynamic norm-based constraints. With respect to the dy-
namic norm-based constraints, only one of the four parameters (i.e., the center co-
ordinates) varies with time. Nguyen et al. [14] designed a set of 18 test functions
called G24. The main idea is to generalize a static objective function/constraint to
its dynamic version by replacing each static parameter with a time-dependent ex-
pression. Zhang et al. [13] extended nine and 13 static benchmark test functions
chosen from [15] and [16] to DCOPs, respectively. Similar to G24, these stat-
ic benchmark test functions are associated with time-varying parameters, which
change periodicity or monotonicity. Bu et al. [12] proposed two modified test sets
of DCOPs. One test set is based on MPB [8], in which the global optimum and
the size of each feasible region can be calculated accurately. The other test set is
modified from G24, in which more constraints are added to G24, thus making the
feasible region smaller.

In this paper, we consider that test functions designed for DCOPs should con-
tain the following five characteristics: 1) Scalability. The number of decision
variables and constraints should be scalable; 2) Adjustability. The shape and size
of the feasible regions can be adjusted freely; 3) Multi-modality, which can test
the search ability of a DCOEA to deal with a complex objective function with
multiple local optimal solutions; 4) Change severity of the feasible regions, such
as a slight change or a drastic change; and 5) Global and local optima known. Un-
der this condition, the performance of a DCOEA can be evaluated conveniently.
However, existing test functions do not satisfy all these five characteristics. For
example, the number of decision variables of the test functions constructed in [14]
cannot be scalable. The adjustability of the test functions designed in [11] and [13]
is not good. The test functions developed in [11] and [14] only consider unimodal
problems. Moreover, existing test functions do not consider the change severity
of the feasible regions. Despite the test functions in [13] involve different types
of DCOPs, they lack some important information, such as the global and local

4

optimal solutions, and the dynamics of the feasible regions. The current situation
motivates us to design a test suite satisfying all the above five characteristics.

2.2. EAs for Solving DCOPs
In terms of EAs for solving DCOPs, the related work can be roughly classified

into four categories, i.e., revising original static constrained optimization EAs,
repair methods, combining dynamic unconstrained optimization strategies with
constraint-handling techniques, and other methods. Next, we briefly introduce
them.

2.2.1. Revising original static constrained optimization EAs
Liu [11] proposed a dynamic constrained optimization particle swam opti-

mization to solve DCOPs. In this method, a new fitness function with a self-
adaptive inertia weight is designed. Singh et al. [17] generalized the infeasibility
driven EA [18] to solve DCOPs, in which infeasible individuals are utilized to
approach the constrained optimum from both feasible and infeasible sides of the
decisioin space. A dynamic constrained T-Cell with few parameters is proposed
by Aragn et al. [19], which is an adaptation from [20].

2.2.2. Repair methods
In 2009, Nguyen and Yao [14] combined genetic algorithm with the repair

method and presented an algorithm called repairGA. In repairGA, there are two
populations, namely, search population and reference population. It is necessary
to emphasize that the reference population entirely contains feasible solutions.
The core idea of repairGA is to use feasible solutions randomly chosen from the
reference population to repair infeasible solutions in the search population. A
modified version of the repair method with gravitational search algorithm is de-
veloped by Pal et al. [21]. In this algorithm, a feasible solution closest to an
infeasible solution is employed to repair this infeasible solution. A dynamic dif-
ferential evolution (DE) with combined variants (DDECV) is introduced in [22],
which adopts two differential evolution variants to generate new individuals. Af-
terward, a novel repair method [23], which does not require feasible solutions
as reference and is inspired by the differential mutation, is added to DDECV for
tackling DCOPs.

2.2.3. Combining dynamic unconstrained optimization strategies with constraint-
handling techniques

As mentioned in [14], four kinds of common dynamic unconstrained optimiza-
tion strategies are used to solve DCOPs, i.e., introducing diversity, maintaining

5

diversity, tracking the previous optima, and the memory-based strategy. In terms
of introducing diversity, the premise is that the change can be detected. Once
the change has been detected, an algorithm can adopt some techniques to add the
diversity of population. One of the representative is HyperM [24], which adap-
tively modifies levels of mutation to enhance the diversity of population. In con-
trast to the introducing diversity-based strategy, the maintaining diversity-based
strategy can keep the population diversity without detecting the change explicit-
ly. For instance, RIGA [25] randomly generates and immigrates some individuals
to the population at each generation. With respect to tracking the previous opti-
ma, the aim is to track the environmental optimum as it changes over time [24].
In the memory-based strategy, some useful information is exploited for the next
environment. There are two kinds of memory strategies, namely, explicit mem-
ory in which some good individuals are saved directly and abstract memory in
which some information about the current environment is saved implicitly. In
2010, based on the idea of abstract memory from [26], Richter et al. [10] con-
structed two memory matrices. When an environmental change is detected, these
two memory matrices are utilized to re-initialize the population. In most cas-
es, single dynamic unconstrained optimization strategy could not solve DCOPs
effectively. Therefore, many DCOEAs integrate several dynamic unconstrained
optimization strategies together. For example, DDECV utilizes the maintaining
diversity-based strategy to keep diversity at each generation and the memory-
based strategy to save some excellent individuals into the next environment. In
2017, inspired by the dynamic species-based particle swam optimization (DSP-
SO) [27], Bu et al. [12] designed a locating and tracking feasible regions DSPSO
(LTFR-DSPSO), which uses the above four kinds of dynamic unconstrained opti-
mization strategies to solve DCOPs.

2.2.4. Other methods
Apart from the above three categories, some other methods are designed to

solve DCOPs. Liu [28] transformed an original DCOP into a biobjective dynam-
ic optimization problem via a new dynamic entropy function. In 2011, Richter
et al. [29] considered an asynchronous change pattern of DCOPs, in which the
dynamic fitness landscape and dynamic constraints may change independently in
terms of their respective time regimes. In addition, a speciation-based method
with local search is proposed by Lu et al. [30].

6

Table 1: Default parameter settings of MPB.
Parameter Value
Number of peaks (p) 10
Change frequency (U) 5000 FEs
Height severity 7.0
Width severity 1.0
Peak shape Cone
Shift length (s) {1.0, 2.0, 3.0, 4.0, 5.0, 6.0}
Correlation coefficient (λ) 0
Decision space (S) [0, 100]D

W [1, 12]
H [30, 70]
Initial height of each peak 50

3. Test Suite Construction and Test Instances

3.1. Test Suite Construction
First of all, we make use of MPB [8], which is a well-established dynamic

unconstrained optimization benchmark generator and exhibits good time-varying
properties, as the objective function. MPB is able to generate a given number of
peaks with different heights. Therefore, MPB is a multi-modal benchmark. MPB
can be expressed as follows:

f(~x, t) = max
i=1,...,p

Hi(t)

1 +Wi(t)
∑D

j=1(xj −Xi,j(t))2
(2)

Xi,j(t) = Xi,j(t− 1) + ~Vi(t) (3)

~Vi(t) =
s

|~r + ~Vi(t− 1)|
((1− λ)~r + λ~Vi(t− 1)) (4)

where f(~x, t) is the objective function at environment t, Hi(t) and Wi(t) are the
height and width of peak i at environment t, respectively, Xi,j(t) is the jth di-
mension of the center of peak i at environment t, and p is the number of peaks.
In (2), the position of the center of peak i (i.e., ~Xi(t) = (Xi,1(t), ..., Xi,D(t))) is
shifted in a random direction defined by a vector ~Vi(t). ~Vi(t) is controlled by there
parameters, i.e., s, ~r, and λ as shown in (4). s is the shift length, which defines the
change severity of f(~x, t), ~r is a random vector, and λ is the correlated coefficient.
Apart from the movement of the position, the movements of the height and width
of peak i can be described as follows:

Hi(t) = Hi(t− 1) +Height severity ∗ σ (5)

7

0
20

40
60

80
100

0

20
40

60

80
100
0

10

20

30

40

50

x1
x2

f
(~x

;t
!

1
)

2

3

4 5

6

7

89

10

1

(a) Environment (t− 1)

0
20

40
60

80
100

0

20

40

60

80

100
0

10

20

30

40

50

60

x1
x2

f
(~x

;t
)

2

3

4 5

6

7

89

10

1

(b) Environment t

Figure 1: Fitness landscape and contours of MPB at environment (t − 1) and environment t in a
two-dimensional decision space.

Wi(t) = Wi(t− 1) +Width severity ∗ σ (6)

where σ ∈ N(0, 1),N(·, ·) is a normal distributed random number,Height severity
denotes the change severity of peak height, and Width severity denotes the
change severity of peak width. The default parameter settings of MPB are giv-
en in Table 1. As shown in Table 1, each peak is a cone. In addition, the change
frequency U means that the environment will change every U fitness evaluations
(FEs).

From the above introduction, it is clear that in MPB, the position, height, and
width of each peak will change over time, and thus the optimal solution will also

8

0
20

40
60

80
100

0

20

40

60

80

100
0

10

20

30

40

50

x1
x2

f
(~x

;t
)

Constraint

The feasible region

The center of a

peak

Figure 2: Illustration of our test suite in a two-dimensional decision space.

vary with time. Fig. 1 gives an example, in which there are 10 peaks, and their
positions, heights, and widths change from environment (t− 1) to environment t.

Next, we add dynamic constraints to MPB and suggest a new test suite. The
idea is very simple. Recognizing that in MPB the number of peaks can be ad-
justed flexibly and the position of each peak changes dynamically, we choose the
center of one peak and add a constraint around this center, thus producing a fea-
sible region. In this way, it is readily to control the number and positions of the
feasible regions. Furthermore, each feasible region tracks the movement of its
corresponding peak. As a result, by designing the tracking manner, we can adjust
the change severity of the feasible regions. It is necessary to emphasize that in our
test suite, the objective function is kept the same with the original MPB. Fig. 2 de-
picts how a constraint is added to MPB in a two-dimensional decision space. As
shown in Fig. 2, first of all, we choose one peak from the 10 peaks and determine
the center of this peak. Subsequently, we add a circle around this center and the
area surrounded by the circle becomes a feasible region in the decision space.

9

maximize f(~x, t) = max
i=1,...,p

Hi(t)

1 +Wi(t)
∑D

j=1(xj −Xi,j(t))2

subject to: g1(~x, t) =
D∑
j=1

(xj −Xa1,j(t))
2 − r21(t) ≤ 0

or g2(~x, t) =
D∑
j=1

(xj −Xa2,j(t))
2 − r22(t) ≤ 0

...

or gl(~x, t) =
D∑
j=1

(xj −Xal,j(t))
2 − r2l (t) ≤ 0

(7)

The proposed test suite is given in (7), where gk(~x, t) denotes the kth constraint
at environment t, k ∈ {1, ..., l}, l is the number of constraints, Xak,j(t) is the
jth dimension of the center of peak ak at environment t, and rk(t) is the radius
of the kth feasible region at environment t. The difficulty of solving a DCOP
depends strongly on the number, locations, and sizes of the feasible regions. By
tuning some parameters, the difficulty of this test suite can be adjusted freely. For
example, the number of the feasible regions can be adjusted by l, and the location
and size of each feasible region can be adjusted byXak,j(t) and rk(t), respectively.
It is noteworthy that, for simplicity, the shape of each feasible region in our test
suite is a hype-sphere and we only consider inequality constraints in this paper.

For a decision vector ~x, the degree of constraint violation on the kth constraint
at environment t is computed as:

Gk(~x, t) = max(0,
D∑
j=1

(xj −Xak,j(t))
2 − r2k(t)) (8)

Afterward, the degree of constraint violation of ~x on all the constraints at environ-
ment t is computed as:

G(~x, t) = min
k=1,...,l

Gk(~x, t) (9)

Through the above design, the proposed test suite not only maintains the orig-
inal dynamics of MPB, but also considers the dynamics of constraints.

10

Table 2: Settings of l and ak (k = 1, ..., l) of the six test instances.
Test Instance l ak (k = 1, ..., l)

1 1 a1 = 1
2 1 a1 is the index of the highest peak
3 2 a1 = 1 and a2 = 6
4 2 a1 and a2 are the indexes of the two highest peaks
5 3 a1 = 1, a2 = 6, and a3 = 10
6 3 a1, a2, and a3 are the indexes of the three highest peaks

1 1

The feasible

region

(a) Environment (t− 1)

1 1

The feasible

region

(b) Environment t

Figure 3: Contours of test instance 1 at environment (t − 1) and environment t, the black area
represents the feasible region, and the number represents the index of peak.

11

1

5

1

5

The feasible

region

(a) Environment (t− 1)

1

5

1

5

The feasible

region

(b) Environment t

Figure 4: Contours of test instance 2 at environment (t − 1) and environment t, the black area
represents the feasible region, and the number represents the index of peak.

3.2. Test Instances
In this paper, we define two types of dynamics about constraints, namely, diff-

erent numbers of the feasible regions and different change severities of the feasible
regions.

• In the first type, the number of the feasible regions is controlled by the
number of constraints. We take three different numbers of the feasible re-
gions into account, e.g., single feasible region, two feasible regions, and
three feasible regions, by adding one, two, and three constraints to MPB,
respectively.

12

1

6

1

6

The feasible

regions

(a) Environment (t− 1)

1

6

1

6

The feasible

regions

(b) Environment t

Figure 5: Contours of test instance 3 at environment (t − 1) and environment t, the black areas
represent the feasible regions, and the numbers represent the indexes of peaks.

• The second type considers the change severity of the feasible regions. In
order to simulate a slight change, the movements of the feasible regions
always follow those of some fixed peaks, since a fixed peak of MPB may
move slightly at successive environments. Additionally, our test suite also
contains the feasible regions which track the highest peaks, aiming at sim-
ulating the circumstance that the feasible regions change drastically. It is
because different environments may result in a drastic change of the highest
peaks.

13

1

6

5

2

1

6

5

2

The feasible

regions

(a) Environment (t− 1)

1

6

5

2

1

6

5

2

The feasible

regions

(b) Environment t

Figure 6: Contours of test instance 4 at environment (t − 1) and environment t, the black areas
represent the feasible regions, and the numbers represent the indexes of peaks.

By coupling the above two types of dynamic constraints with MPB, we design
six test instances. The major difference among them is the settings of l (i.e., the
number of constraints/the feasible regions) and ak (k = 1, ..., l) (i.e., the index of
a peak). Next, we introduce these six test instances one by one and their settings
of l and ak are summarized in Table 2.

3.2.1. Test Instance 1
The first test instance has a single feasible region (l = 1), which changes

slightly in the decision space due to the tracking of a fix peak. As displayed in

14

1

6

10

1

6

10

The feasible

regions

(a) Environment (t− 1)

1

6

10

1

6

10

The feasible

regions

(b) Environment t

Figure 7: Contours of test instance 5 at environment (t − 1) and environment t, the black areas
represent the feasible regions, and the numbers represent the indexes of peaks.

Fig. 3, the feasible region tracks the first peak (a1 = 1).

3.2.2. Test Instance 2
The second test instance also has a single feasible region (l = 1), which

changes drastically in the decision space because of the tracking of the highest
peak. As shown in Fig. 4, at environment (t− 1), the index of the highest peak is
1 (i.e., a1 = 1). While, at environment t, the index of the highest peak is 5 (i.e.,
a1 = 5).

15

2

4

10

7
3

9

2

4

10

7
3

9

The feasible

regions

(a) Environment (t− 1)

2

4

10

7
3

9

7

3

9

2

4

10

The feasible

regions

(b) Environment t

Figure 8: Contours of test instance 6 at environment (t − 1) and environment t, the black areas
represent the feasible regions, and the numbers represent the indexes of peaks.

3.2.3. Test Instance 3
The third test instance has two feasible regions in the decision space (l = 2),

and they change slightly owing to the tracking of two fixed peaks. As shown in
Fig. 5, the two feasible regions track the first peak (a1 = 1) and the sixth peak
(a2 = 6), respectively.

3.2.4. Test Instance 4
The fourth test instance also has two feasible regions in the decision space

(l = 2), and they change drastically. In this case, we let the feasible regions track

16

the two highest peaks. It can be seen from Fig. 6 that at environment (t − 1), the
indexes of the two highest peaks are 1 and 6 (i.e., a1 = 1 and a2 = 6). However,
at environment t, the indexes of the two highest peaks are 2 and 5 (i.e., a1 = 2 and
a2 = 5).

3.2.5. Test Instance 5
The fifth test instance has three feasible regions in the decision space (l = 3).

They track three fixed peaks, and thus change slightly. As shown in Fig. 7, the
three feasible regions track the first peak (a1 = 1), the sixth peak (a2 = 6), and
the 10th peak (a3 = 10), respectively.

3.2.6. Test Instance 6
The sixth test instance also has three feasible regions in the decision space

(l = 3), and they change dramatically in that they track the three highest peaks.
As depicted in Fig. 8, at environment (t−1), the indexes of the three highest peaks
are 2, 4, and 10 (i.e., a1 = 2, a2 = 4, and a3 = 10); at environment t, the indexes
of the three highest peaks are 3, 7, and 9 (i.e., a1 = 3, a2 = 7, and a3 = 9).

In summary, we have designed six test instances based on our test suite. More
test instances with various features can be constructed by changing the relevant
parameter settings.

3.3. Characteristics of the Proposed Test Suite
Compared with existing test suites, the proposed test suite has the following

characteristics:

• Scalability: The number of peaks in MPB and the number of constraints are
scalable. Moreover, the number of decision variables in objective function
and constraints is also scalable.

• Adjustability: The size of each feasible region can be adjusted by the radius
rk(t). The advantages of each feasible region tracking one of peaks are two-
fold: 1) the position of each feasible region is adjusted, and 2) the global
optimum is also adjustable. Note that the global optimum may switch from
one disconnected feasible region to another disconnected feasible region
due to the random change of the peaks’ heights. Moreover, the changing
infeasible regions may lead to a new, better global optimum in a new envi-
ronment.

• Multi-modality: It is obvious that our test suite inherits the multi-modality
of MPB.

17

• Change severity of the feasible regions: In this paper, the change severity
of the feasible regions is controlled by two different tracking manners. For
example, the feasible regions track several fixed peaks or several highest
peaks to achieve a slight change or a drastic change, respectively.

• The global and local optimal solutions known: Due to the fact that the local
optimal solution of a feasible region is the center of the corresponding peak
in the decision space and that all the centers of peaks in MPB are known
a priori, all the local optimal solutions of our test suite are known. As a
result, the global optimal solution is also known, which is the best local
optimal solution.

Based on the above discussion, the proposed test suite satisfies the five important
characteristics introduced in Section 2.1.

As pointed out by Branke [8], on the one hand test functions should be com-
plex enough to simulate the real world, on the other hand they should be simple
enough to gain insights into the working principle of an algorithm. Actually, in
the proposed test suite, the scalability, adjustability, multi-modality, and change
severity of the feasible regions can imitate the complex dynamics in the real world.
In addition, the global and local optimal solutions known enable the test suite to
evaluate the performance a DCOEA easily. Therefore, the proposed test suite can
serve as a useful tool in evolutionary dynamic constrained optimization.

Compared with the test suite in [12], our test suite has the following advan-
tages:

• The test suite construction in [12] is complex. Thus, it is difficult to judge
whether an algorithm performs well in a certain situation. In contrast, our
test suite is easier to understand. It not only exhibits explicit characteristics
as introduced previously, but also can analyze the performance of an algor-
ithm in a certain situation. Thus, we can easily understand the advantages
and disadvantages of an algorithm.

• The change of objective function and the change of constraints in [12] are
independent with each other. Moreover, in some cases, both of them change
randomly. When two independent/random changes are combined, the test
suite seems uncontrollable, which cannot effectively test the performance
of an algorithm. However, in our test suite, the dynamics of constraints has
some relationship with that of objective function, which makes our test suite
controllable.

18

Algorithm 1 CPSO
1: clst = ∅;
2: Generate an initial cradle swarm C;
3: Create several subswarms from C by a hierarchical clustering method: slst[1], slst[2], ...;
4: while the stopping criterion is not satisfied do
5: for each subswarm slst[i] do
6: Implement local search on slst[i]. In the local search, the historical best position (de-

noted as gbest) of slst[i] is updated by learning from an improved particle;
7: end for
8: Check the status of each subpopulation, i.e., overlapping, convergence, and overcrowding;
9: If two subswarms overlap with each other, they are combined into a new subswarm;

10: If the number of particles of a subswarm is greater than max subsize, the redundant par-
ticles with the worst performance are removed from this subswarm one by one;

11: If a subswarm is converged, gbest of this subswarm is stored into clst. Afterward, this
subswarm is removed from slst;

12: If all subswarms are converged, max subsize particles are randomly generated and put
into C;

13: if an environmental change is detected then
14: Re-initialize C;
15: The particles in clst are used to replace the same number of the worst particles in C;
16: Split C into several subswarms by a hierarchical clustering method: slst[1], slst[2], ...;
17: clst = ∅;
18: end if
19: end while

• In real life, some problems change drastically while some problems change
slightly. Our test suite takes the change severity into consideration, yet the
test suite in [12] does not.

• In [12], the global and local optima are obtained by calculating the distances
between all peaks and all the centers of the feasible regions. With the in-
crease of the number of peaks and the feasible regions, the complexity of
obtaining such information will increase drastically. In contrast, the global
and local optima in our test suit can be obtained directly.

4. Compared Algorithms

In this section, the performance of three DCOEAs is assessed based on the
proposed six test instances. These three DCOEAs are a clustering particle swarm
optimizer (CPSO) [31], LTFR-DSPSO [12] which has been briefly introduced in
Section 2.2.3, and dynamic constrained optimization differential evolution (DyCODE)
proposed in this paper.

19

4.1. CPSO
CPSO is a state-of-the-art dynamic unconstrained optimization EA. Since CPSO

achieves excellent performance on MPB, we choose it as one of the compared
algorithms. The pseudocode of CPSO is shown in Algorithm 1.

Firstly, an initial cradle swarmC is generated from the decision space random-
ly. Then, a hierarchical clustering method is adopted to create several subswarms
from C. Subsequently, a local search is implemented on each subswarm. If a par-
ticle in a subswarm is improved, which means a particle is better than its personal
historical best position, then the information of this particle is used to update the
historical best position (denoted as gbest) of the whole subswarm. Finally, the
status (i.e., overlapping, convergence, and overcrowding) of each subswarm is
checked and an operator is executed according to the corresponding status of each
subswarm. If an environmental change is detected, a new cradle swarm will be
regenerated by making use of the useful information of the last environment.

Due to its simplicity, generality, and ease of implementation, the feasibility-
based rule proposed by Deb [32] is incorporated into CPSO, with the aim of deal-
ing with constraints and extending CPSO to solve DCOPs. The feasibility-based
rule compares pair-wise individuals as follows:

• When two feasible solutions are compared, the one with a better objective
function value is chosen;

• When a feasible solution and an infeasible solution are compared, the fea-
sible one is chosen;

• When two infeasible solutions are compared, the one with the less degree
of constraint violation is chosen.

4.2. LTFR-DSPSO
LTFR-DSPSO is a very recent DCOEA with outstanding performance. The

framework of LTFR-DSPSO is shown in Algorithm 2.
Firstly, LTFR-DSPSO starts from an initial population pop. Meanwhile, LTFR-

DSPSO initializes three memory setsLM(t),memory, and bestMem as the emp-
ty sets. Then, pop is divided into several species via the clustering method in [27]
and the best particle in each species is selected as the species seed. After multiple
species have been created, LM(t) will be updated. Subsequently, the gradient-
based repair method is used to repair infeasible species seeds and the sequential
quadratic programming (SQP) is employed to conduct local search on feasible

20

Algorithm 2 LTFR-DSPSO
1: Initialize the population pop;
2: Initialize three memory sets LM(t), memory, and bestMem to be the empty sets;
3: while the stopping criterion is not satisfied do
4: Evaluate unevaluated individuals in pop;
5: Divide pop into several species by the clustering method in [27]. The best particle of each

species is selected as the species seed;
6: Update LM(t);
7: Locate new feasible regions by repairing infeasible species seeds and conduct local search

on feasible species seeds;
8: if an environmental change is detected then
9: Update memory and bestMem;

10: Re-evaluate the historical best position of each particle in each species;
11: pool = ∅;
12: Repair infeasible species seeds, assign each species seed as the neighborhood best of all

particles in the same species, and update the particles in each species; // tracking current
feasible regions

13: Retrieve some particles from LM(t), memory, and bestMem, denoted as X1; // track-
ing previous feasible regions

14: If t > 1, predict the future positions of some particles in LM(t), denoted as X2; //
predicting future feasible regions

15: pool = X1 ∪X2 and LM(t) = ∅;
16: Put feasible species seeds into pool and execute local search on feasible particles in

pool;
17: Remove the inactive particles from pop;
18: ET=pool ∪ pop and pop = ∅;
19: if ET.size ≤ NP then
20: pop = ET , and add some random particles into pop until pop is full;
21: else
22: Split ET into several species based on the clustering method in [27];
23: Choose some excellent particles of each species and merge them into pop;
24: if pop.size ≤ NP , add some random particles into pop until pop is full;
25: end if
26: Divide pop into several species by the clustering method in [27]. The best particle of

each species is selected as the species seed;
27: end if
28: Assign each species seed as the neighborhood best of all particles in the same species;
29: If some particles in a species are the same with their species seed, replace them with the

same number of randomly generated particles;
30: Update the particles in each species;
31: if an environmental change is detected then
32: Executes Step 9-Step 25;
33: end if
34: end while

21

species seeds. If an environmental change is detected, LTFR-DSPSO enters the
re-initialization phase; otherwise, each species seed is assigned as the neighbor-
hood best of all particles in the same species. If some particles in a species are
the same with its species seed, they are replaced with the same number of ran-
domly generated particles. In LTFR-DSPSO, all the particles in each species are
updated according to [33]. Afterward, LTFR-DSPSO again detects whether the
environment changes or not. The main characteristic of LTFR-DSPSO is the re-
initialization phase. In the re-initialization phase, an ensemble of locating and
tracking feasible regions is proposed to handle different types of dynamics in con-
straints, including tracking current feasible regions (Step 12), tracking previous
feasible regions (Step 13), and predicting future feasible regions (Step 14). Final-
ly, LTFR-DSPSO updates pop for the next environment (Steps 17-25) and divides
the updated pop into multiple species by the clustering method in [27]. The pro-
cedure iterates until the stopping criterion is satisfied.

4.3. DyCODE
Up to now, although researchers have realized the important significance of

DCOPs in the real world, the algorithms specially designed for DCOPs remain
scarce. Therefore, the third compared algorithm in this paper is our proposed
DyCODE. In DyCODE, DE serves as the search engine.

4.3.1. DE
DE, proposed by Storn and Price in 1995 [34], is a population-based stochastic

search algorithm and has been broadly applied to solve a variety of optimization
problems in diverse fields [35–40]. Das et al. [41] and Del Ser et al. [42] sum-
marized the recent research progress of DE. DE uses mutation, crossover, and
selection operators at each generation to evolve the population towards the global
optimum. Herein, we let ~xi denote the ith individual (also called the ith target
vector) of the population. Firstly, a mutant vector ~vi is generated for ~xi by the
mutation operator:

~vi = ~xr1 + F ∗ (~xr2 − ~xr3) (10)

where r1, r2 and r3 are three mutually different integers randomly selected from
{1, ..., NP}, NP is the population size, (~xr2 − ~xr3) is the differential vector,
and F is the scaling factor to amplify the differential vector. After mutation, the
crossover operator is implemented on ~xi and ~vi to produce a trial vector ~ui:

ui,j =

{
vi,j, if randj ≤ CR or j = jrand

xi,j, otherwise
(11)

22

where i = 1, ..., NP , j = 1, ..., D, jrand is a randomly chosen integer from
{1, ..., D} to ensure that ~ui always differs from ~xi, randj is a uniformly distribut-
ed random number between 0 and 1, and CR ∈ [0, 1] is the crossover control
parameter. Finally, the selection operator is performed to select the better one
from ~xi and ~ui for the next generation:

~xi =

{
~ui, if f(~ui) ≥ f(~xi)

~xi, otherwise
(12)

where f(·) is the objective function.

4.3.2. Motivation
The target of solving a dynamic optimization problem is to track the movement

of the optimal solution. When encountering a DCOP, it is necessary to deal with
the dynamics of both objective function and constraints. When the environment
changes, the new global optimum either moves along with a changing feasible
region or appears in a new feasible region. Therefore, a DCOEA should have
the ability to not only locate multiple feasible regions, but also probe the found
feasible regions until the population converges. Moreover, a DCOEA should be
capable of maintaining good diversity for the next environment. Motivated by
these considerations, we propose a three-phase DCOEA, called DyCODE. In the
first phase, DyCODE utilizes the multi-population search strategy to locate as
many feasible regions as possible. In the second phase, all subpopulations are
aggregated together and focus on the search of the optimal solution of the current
environment. Once an environmental change is detected, DyCODE begin the third
phase. The third phase makes use of the useful information of the first two phases
to re-initialize a new population.

4.3.3. Algorithmic Framework
Algorithm 3 shows the procedure of DyCODE, in which detection = 0 and

detection = 1 denote that an environmental change is undetected and detected,
respectively, FeasiRate denotes the rate of feasible individuals among the NP
individuals, SelectPro is a coefficient, |subpop{i}| and |pop| denotes the number
of individuals in subpop{i} and pop, respectively, and NS is the subpopulation
size. Next, we introduce the three phases of DyCODE.

• In the first phase (Steps 5-13 in Algorithm 3), DyCODE adopts a multi-
population search strategy to locate multiple feasible regions. Firstly, DyCODE

23

Algorithm 3 DyCODE
1: Initialize the population pop with NP individuals: ~x1, ..., ~xNP ;
2: detection = 0;
3: MemoSet = ∅;
4: while the stopping criterion is not satisfied do
5: while detection == 0 and FeasiRate < targetFeasiRate do
6: Clustering (pop,subpop);
7: for each subpop{i} do
8: Implement the mutation and crossover operators of DE in (10) and (11) on subpop{i}

to generate an offspring subpopulation offsubpop{i};
9: Select the best half of individuals in subpop{i}∪offsubpop{i}with the least degree

of constraint violation, subpop{i} = ∅, and put them into subpop{i};
10: end for
11: Update detection and FeasiRate;
12: end while
13: Save the best individual in each subpopulation into MemoSet;
14: if detection == 0 and FeasiRate >= targetFeasiRate then
15: pop = ∅;
16: For each subpopulation subpop{i}), store the best (SelectPro ∗ |subpop{i}|) individ-

uals into pop;
17: while detection == 0 do
18: Implement mutation, crossover, and selection operators of DE in (10), (11), and (12)

on pop;
19: Update detection;
20: end while
21: end if
22: Save the best individual of pop into MemoSet;
23: pop = MemoSet;
24: if |pop| < NP then
25: Randomly generate (NP − |pop|) individuals from the search space and put them into

pop;
26: end if
27: detection = 0;
28: end while

generates an initial population pop in the decision space, and then pop is
divided into several subpopulations via the clustering method introduced
in [43], which has been given in Algorithm 4. This clustering method is
simple, and one only needs to specify the size of the subpopulation. After
the clustering, DE operators are utilized to motivate subpopulations toward
the feasible regions from different directions. It is worth noting that instead
of the traditional one-to-one comparison of DE in (12), for each subpopu-
lation, the offspring and parents are mixed together, and the better half of

24

Algorithm 4 Clustering(pop, subpop)
1: Randomly generate a reference point ~r from the decision space;
2: for i = 1, ..., bNP/NSc do
3: Determine the individual in pop with the least Euclidean distance to ~r, denoted as ~s;
4: Select NS individuals with the least Euclidean distances to ~s, store them into subpop{i},

and remove them from pop;
5: end for
6: if |pop| > 0 then
7: subpop{bNP/NSc+ 1} = pop;
8: end if

them will survive to the next generation. The advantage of this comparison
is to enable each subpopulation to enter the feasible region promptly. As a
result, the number of feasible solutions will increase quickly. When the rate
of feasible solutions in pop exceeds a target value, i.e., targetFeasiRate,
pop will enter the second phase.

• In the second phase (Steps 14-22 in Algorithm 3), the best (SelectPro ∗
|subpop{i}|) individuals of each subpopulation are combined together, and
then form an updated pop. It is clear that the size of the updated pop is
less than that of the original pop. The main reason is the following. For
dynamic constrained optimization, the computing resource of each environ-
ment may be very limited. Therefore, to save the computing resource, we
only use some of the excellent individuals in each subpopulation to search
the optimal solution. Under this condition, DE operators are used to probe
the found feasible regions. When an environmental change is detected, the
second phase will terminate.

• The third phase (Steps 23-26 in Algorithm 3) is the re-initialization phase
for the next environment. The re-initialized population consists of three
parts, i.e., the best individual of each subpopulation in the first phase, the
best individual in the second phase, and some randomly generated individ-
uals. The reasons for selecting the first two parts of individuals are twofold:
1) for some DCOPs, the feasible solutions of the previous environment may
still be feasible at the next environment; and 2) the feasible regions of the
previous environment may not be far away from the feasible regions of the
next environment. In addition, with respect to the third part of individuals,
they can maintain the diversity.

Generally speaking, to solve DCOPs effectively, it is important to detect the

25

environmental change. In this paper, we use a simple method to achieve this goal
for the three compared DCOEAs. A randomly generated individual is regarded
as the detector in the decision space. The detector will be re-evaluated at each
generation. If its objective function value or the degree of constraint violation
changes, we consider that an environmental change is detected.

5. Experimental Study

5.1. Performance Metrics
Two performance metrics are utilized in this paper. The first performance

metric is the offline error [31]:

e =
1

K

K∑
k=1

(gk − bk) (13)

where bk is the best solution provided by an algorithm at the end of the kth envi-
ronment, gk is the global optimal solution of the kth environment, and K is the
total number of environments. Thus, the offline error e is the average difference
between gk and bk in all the K environments.

The second performance metric is the normalized score [44], denoted as Snorm.
The normalized score of the ith algorithm is calculated as follows:

Snorm(i) =
1

m

m∑
j=1

|emax(j)− e(i, j)|
|emax(j)− emin(j)|

, i = 1, ..., n (14)

where m is the number of test instances, n is the number of algorithms, emax(j)
and emin(j) are the largest and smallest offline error values among all algorithms
in solving the jth test instance, respectively, and e(i, j) is the offline error of algor-
ithm i on the jth test instance. From (14), the normalized score of each algorithm
is between 0 and 1. The higher the normalized score, the better the performance
of an algorithm. Moreover, it is easy to derive that the normalized scores of the
best algorithm and the worst algorithm among n compared algorithms on one test
instance are equal to 1 and 0, respectively.

5.2. Parameter Settings
The parameter settings of LTFR-DSPSO and CPSO mostly inherited from

their original papers. It is worth noting that the clustering method adopted by

26

Table 3: The mean and standard deviation of the offline error for test instance 1 with 10D, 20D
and 30D. The best and second best mean offline error values among all the algorithms in each case
are highlighted in gray and light gray, respectively.

Test Instance 1
CPSO LTFR-DSPSO DyCODE

Mean OE±Std Dev Mean OE±Std Dev Mean OE±Std Dev
10D (s=1) 3.39E-02±1.10E+00 9.67E-05±1.30E-04 4.45E-02±1.09E-01
10D (s=2) 5.50E-02±2.98E-01 6.39E-05±5.92E-05 5.71E-02±1.30E-01
10D (s=3) 4.24E-01±1.13E+00 8.98E-05±7.59E-05 2.13E-01±5.62E-01
10D (s=4) 1.12E-01±3.87E-01 1.15E-04±2.18E-04 4.09E-01±8.69E-01
10D (s=5) 2.23E-01±7.26E-01 1.64E-04±1.76E-04 5.64E-01±9.98E-01
10D (s=6) 9.86E-01±2.08E+00 1.20E-04±1.01E-04 3.84E-01±9.14E-01
20D (s=1) 1.60E+00±4.06E+00 4.86E-01±2.76E-01 2.07E-01±2.19E-01
20D (s=2) 2.59E+00±6.13E+00 4.14E-01±2.58E-01 2.97E-01±2.76E-01
20D (s=3) 5.38E+00±7.83E+00 3.83E-01±2.69E-01 6.42E-01±9.09E-01
20D (s=4) 3.92E+00±7.14E+00 5.64E-01±3.75E-01 8.33E-01±8.96E-01
20D (s=5) 2.22E+00±3.10E+00 5.66E-01±3.52E-01 1.35E+00±1.75E+00
20D (s=6) 3.61E+00±4.76E+00 6.00E-01±3.70E-01 1.36E+00±1.83E+00
30D (s=1) 2.85E+00±3.05E+00 2.63E+00±7.70E+00 2.30E+00±8.61E-01
30D (s=2) 3.50E+00±6.92E+00 2.52E+00±6.97E-01 2.59E+00±1.09E+00
30D (s=3) 6.12E+00±7.40E+00 2.18E+00±7.76E-01 3.23E+00±1.70E+00
30D (s=4) 6.95E+00±7.29E+00 2.67E+00±7.19E-01 3.41E+00±1.33E+00
30D (s=5) 6.40E+00±8.01E+00 4.17E+00±1.50E+00 4.47E+00±2.62E+00
30D (s=6) 5.12E+00±6.05E+00 4.80E+00±1.52E+00 5.23E+00±2.95E+00

LTFR-DSPSO is relatively dependent on the problem. For example, it is very dif-
ficult to decide a proper clustering radius for different types of DCOPs. Therefore,
we replaced the clustering method of LTFR-DSPSO with that of DyCODE. The
main population size and the subpopulation size of LTFR-DSPSO were the same
with DyCODE. Specifically, for LTFR-DSPSO and DyCODE, the main popula-
tion size and the subpopulation size were set to 45 and 10, respectively. In terms
of CPSO, the swarm size was set to 30, and the maximum number of particles
in a subswarm was set to 5. For DyCODE, targetFeasiRate was set to 0.2,
SelectPro was set to 0.3, and both F and CR in DE were set to 0.5.

CPSO, LTFR-DSPSO, and DyCODE were compared on the proposed six test
instances. In these six test instances, we tested three different dimensions, i.e.,
10D, 20D, and 30D. When the dimensions are equal to 10 and 20 (i.e., D = 10
and 20), the change frequency U was set to 5000. As the dimension increases, the
difficulty of test instances will increase correspondingly. Therefore, U was set to
6000 when D = 30. In this paper, we implemented 10 dynamic environments for
each test instance (i.e., K = 10). The radius rk(t) of each feasible region was set
to 6.

For a fair comparison, the feasibility-based rule [32] is adopted as the constraint-
handling technique for both CPSO and DyCODE.

27

Table 4: The mean and standard deviation of the offline error for test instance 2 with 10D, 20D
and 30D. The best and second best mean offline error values among all the algorithms in each case
are highlighted in gray and light gray, respectively.

Test Instance 2
CPSO LTFR-DSPSO DyCODE

Mean OE±Std Dev Mean OE±Std Dev Mean OE±Std Dev
10D (s=1) 1.14E+00±2.05E+00 4.98E-03±5.07E-03 2.48E-01±6.22E-01
10D (s=2) 7.38E-01±1.93E+00 3.58E-03±5.02E-03 1.01E-01±3.40E-01
10D (s=3) 2.79E+00±4.39E+00 8.10E-03±1.59E-02 1.89E-01±8.48E-01
10D (s=4) 2.13E+00±3.70E+00 2.96E-03±3.09E-03 2.62E-01±7.03E-01
10D (s=5) 1.11E+00±3.19E+00 4.47E-03±5.12E-03 3.78E-01±1.59E+00
10D (s=6) 1.82E+00±2.46E+00 5.42E-03±5.44E-03 1.59E-01±4.48E-01
20D (s=1) 6.60E+00±7.77E+00 5.83E+00±2.88E+00 1.33E+00±9.93E-01
20D (s=2) 3.67E+00±3.71E+00 6.22E+00±3.33E+00 1.08E+00±8.01E-01
20D (s=3) 7.28E+00±6.73E+00 6.85E+00±3.55E+00 1.66E+00±1.66E+00
20D (s=4) 6.89E+00±6.96E+00 6.09E+00±3.44E+00 1.95E+00±2.14E+00
20D (s=5) 6.73E+00±6.56E+00 6.26E+00±2.43E+00 1.90E+00±1.86E+00
20D (s=6) 7.83E+00±7.92E+00 7.16E+00±3.87E+00 2.32E+00±2.66E+00
30D (s=1) 1.19E+01±6.91E+00 1.61E+01±5.61E+00 1.35E+01±3.72E+00
30D (s=2) 1.22E+01±9.32E+00 1.67E+01±5.83E+00 1.36E+01±5.03E+00
30D (s=3) 1.64E+01±8.73E+00 1.79E+01±5.21E+00 1.46E+01±3.90E+00
30D (s=4) 1.32E+01±5.95E+00 1.70E+01±6.10E+00 1.31E+01±4.13E+00
30D (s=5) 1.19E+01±8.66E+00 1.83E+01±7.09E+00 1.39E+01±4.55E+00
30D (s=6) 1.32E+01±1.00E+01 2.02E+01±6.64E+00 1.56E+01±5.05E+00

Table 5: The mean and standard deviation of the offline error for test instance 3 with 10D, 20D
and 30D. The best and second best mean offline error values among all the algorithms in each case
are highlighted in gray and light gray, respectively.

Test Instance 3
CPSO LTFR-DSPSO DyCODE

Mean OE±Std Dev Mean OE±Std Dev Mean OE±Std Dev
10D (s=1) 1.20E+00±3.20E+00 3.61E+00±4.94E+00 6.05E+00±6.36E+00
10D (s=2) 1.73E-01±9.27E-01 2.84E+00±5.48E+00 8.95E+00±8.15E+00
10D (s=3) 7.76E-01±1.78E+00 2.22E+00±3.23E+00 7.12E+00±7.22E+00
10D (s=4) 7.10E-01±1.46E+00 2.05E+00±2.38E+00 6.71E+00±5.61E+00
10D (s=5) 8.22E-01±1.54E+00 3.46E+00±6.02E+00 9.27E+00±6.51E+00
10D (s=6) 2.09E+00±3.48E+00 5.17E+00±7.53E+00 1.12E+01±8.69E+00
20D (s=1) 1.68E+00±2.40E+00 5.18E+00±3.51E+00 8.86E+00±5.85E+00
20D (s=2) 1.95E+00±2.12E+00 6.74E+00±6.62E+00 9.97E+00±1.00E+01
20D (s=3) 2.60E+00±2.19E+00 6.16E+00±5.50E+00 1.08E+01±9.07E+00
20D (s=4) 1.48E+00±1.51E+00 6.27E+00±3.92E+00 1.31E+01±1.36E+01
20D (s=5) 1.47E+00±1.50E+00 6.92E+00±5.51E+00 1.01E+01±8.92E+00
20D (s=6) 2.73E+00±3.00E+00 6.86E+00±5.17E+00 1.29E+01±1.05E+01
30D (s=1) 8.92E+00±4.36E+00 1.18E+01±6.36E+00 9.82E+00±6.57E+00
30D (s=2) 9.04E+00±4.95E+00 1.17E+01±6.61E+00 1.28E+01±9.00E+00
30D (s=3) 1.24E+01±6.03E+00 1.01E+01±7.65E+00 1.28E+01±8.71E+00
30D (s=4) 9.04E+00±3.65E+00 1.11E+01±5.79E+00 1.52E+01±1.03E+01
30D (s=5) 1.09E+01±5.92E+00 1.70E+01±8.06E+00 1.22E+01±8.71E+00
30D (s=6) 9.78E+00±4.71E+00 1.36E+01±6.14E+00 1.44E+01±1.01E+01

5.3. Experimental Analysis
We recorded the experimental results of CPSO, LTFR-DSPSO, and DyCODE

according to the two performance metrics introduced in Section 5.1. In terms of
the offline error, the experimental results are summarized in Tables 3–8, in which
“Mean Offline Error” (abbreviated as Mean OE) and “Std Dev” indicate the mean

28

Table 6: The mean and standard deviation of the offline error for test instance 4 with 10D, 20D
and 30D. The best and second best mean offline error values among all the algorithms in each case
are highlighted in gray and light gray, respectively.

Test Instance 4
CPSO LTFR-DSPSO DyCODE

Mean OE±Std Dev Mean OE±Std Dev Mean OE±Std Dev
10D (s=1) 2.66E-01±5.15E-01 7.93E-01±6.48E-01 2.74E+00±2.51E+00
10D (s=2) 1.55E-01±4.36E-01 9.58E-01±8.04E-01 2.95E+00±2.08E+00
10D (s=3) 9.35E-01±2.55E-01 7.14E-01±5.44E-01 3.80E+00±2.20E+00
10D (s=4) 8.96E-01±1.59E-01 9.89E-01±7.60E-01 4.00E+00±3.19E+00
10D (s=5) 4.52E-01±1.15E+00 1.10E+00±0.86E+00 3.83E+00±2.91E+00
10D (s=6) 7.23E-01±1.39E+00 1.40E+00±1.14E+00 5.72E+00±5.24E+00
20D (s=1) 2.98E+00±3.45E+00 7.29E+00±2.81E+00 7.72E+00±4.59E+00
20D (s=2) 2.37E+00±2.20E+00 7.37E+00±3.38E+00 7.14E+00±4.89E+00
20D (s=3) 3.46E+00±3.62E+00 8.22E+00±4.09E+00 8.94E+00±7.10E+00
20D (s=4) 2.68E+00±2.55E+00 8.21E+00±4.49E+00 8.17E+00±5.95E+00
20D (s=5) 2.43E+00±3.37E+00 9.70E+00±4.95E+00 7.09E+00±5.01E+00
20D (s=6) 3.76E+00±5.00E+00 9.59E+00±3.86E+00 1.03E+01±7.50E+00
30D (s=1) 1.53E+01±5.00E+00 1.64E+01±5.06E+00 1.51E+01±5.94E+00
30D (s=2) 1.42E+01±4.55E+00 1.66E+01±6.35E+00 1.32E+01±6.38E+00
30D (s=3) 1.56E+01±4.84E+00 1.65E+01±7.04E+00 1.53E+01±6.88E+00
30D (s=4) 1.45E+01±4.01E+00 1.66E+01±6.11E+00 1.42E+01±5.33E+00
30D (s=5) 1.49E+01±5.07E+00 2.16E+01±6.64E+00 1.76E+01±5.90E+00
30D (s=6) 1.57E+01±6.05E+00 2.09E+01±8.36E+00 1.63E+01±4.98E+00

Table 7: The mean and standard deviation of the offline error for test instance 5 with 10D, 20D
and 30D. The best and second best mean offline error values among all the algorithms in each case
are highlighted in gray and light gray, respectively.

Test Instance 5
CPSO LTFR-DSPSO DyCODE

Mean OE±Std Dev Mean OE±Std Dev Mean OE±Std Dev
10D (s=1) 4.11E-01±6.58E-01 5.55E+00±7.32E+00 1.07E+01±6.99E+00
10D (s=2) 7.12E-01±1.90E+00 7.62E+00±8.32E+00 1.29E+01±7.91E+00
10D (s=3) 4.18E-01±1.00E+00 2.91E+00±3.26E+00 1.13E+01±6.63E+00
10D (s=4) 5.23E-01±7.77E-01 7.03E+00±6.76E+00 1.61E+01±8.24E+00
10D (s=5) 5.61E-01±8.31E-01 4.96E+00±5.31E+00 1.37E+01±8.31E+00
10D (s=6) 1.54E+00±2.49E+00 8.00E+00±8.39E+00 1.36E+01±9.14E+00
20D (s=1) 4.97E+00±1.77E+00 9.82E+00±6.48E+00 1.27E+01±7.69E+00
20D (s=2) 5.32E+00±2.90E+00 7.08E+00±6.43E+00 1.31E+01±9.87E+00
20D (s=3) 6.19E+00±2.85E+00 8.04E+00±4.61E+00 1.57E+01±1.14E+01
20D (s=4) 6.32E+00±3.14E+00 1.00E+01±6.44E+00 1.20E+01±8.09E+00
20D (s=5) 5.90E+00±2.75E+00 1.11E+01±7.00E+00 1.91E+01±1.20E+01
20D (s=6) 7.77E+00±3.78E+00 1.21E+01±5.38E+00 1.60E+01±9.43E+00
30D (s=1) 2.00E+01±5.59E+00 1.36E+01±6.43E+00 1.16E+01±7.61E+00
30D (s=2) 2.28E+01±5.01E+00 1.51E+01±5.82E+00 1.45E+01±8.54E+00
30D (s=3) 2.65E+01±7.30E+00 1.35E+01±6.24E+00 1.64E+01±9.30E+00
30D (s=4) 2.53E+01±5.23E+00 1.59E+01±7.61E+00 1.47E+01±9.16E+00
30D (s=5) 2.79E+01±6.32E+00 1.91E+01±9.12E+00 1.69E+01±8.18E+00
30D (s=6) 2.52E+01±4.78E+00 1.93E+01±9.48E+00 1.43E+01±7.97E+00

and standard deviation of the offline error over 30 independent runs, respectively.
In addition, as far as the normalized score is concerned, the experimental results
are given in Tables 9–11. Note that the calculation of the normalized score is based
on the offline error. As shown in Table 1, there are six different shift lengths of s
in MPB. As a result, each test instance can generate six scenarios.

29

Table 8: The mean and standard deviation of the offline error for test instance 6 with 10D, 20D
and 30D. The best and second best mean offline error values among all the algorithms in each case
are highlighted in gray and light gray, respectively.

Test Instance 6
CPSO LTFR-DSPSO DyCODE

Mean OE±Std Dev Mean OE±Std Dev Mean OE±Std Dev
10D (s=1) 3.62E-01±6.32E-01 1.87E+00±1.49E+00 4.78E+00±3.11E+00
10D (s=2) 2.89E-01±5.74E-01 2.55E+00±1.93E+00 5.89E+00±4.25E+00
10D (s=3) 4.18E-01±4.00E-01 2.26E+00±1.47E+00 6.24E+00±3.76E+00
10D (s=4) 3.98E-01±7.54E-01 2.21E+00±1.15E+00 7.35E+00±3.52E+00
10D (s=5) 5.35E-01±1.02E+00 2.51E+00±1.78E+00 8.22E+00±4.45E+00
10D (s=6) 5.35E-01±6.52E-01 2.42E+00±1.79E+00 8.38E+00±4.76E+00
20D (s=1) 6.86E+00±2.47E+00 1.03E+01±4.45E+00 8.89E+00±5.49E+00
20D (s=2) 6.10E+00±1.63E+00 1.00E+01±4.61E+00 9.44E+00±5.21E+00
20D (s=3) 7.82E+00±2.48E+00 1.05E+01±4.42E+00 8.94E+00±6.77E+00
20D (s=4) 6.81E+00±2.49E+00 8.91E+00±3.61E+00 1.08E+01±9.34E+00
20D (s=5) 8.07E+00±2.37E+00 1.00E+01±5.28E+00 1.06E+01±6.64E+01
20D (s=6) 7.37E+00±2.89E+00 1.04E+01±6.47E+00 1.13E+01±7.16E+00
30D (s=1) 2.72E+01±5.37E+00 1.86E+01±4.15E+00 1.53E+01±4.36E+00
30D (s=2) 2.81E+01±6.29E+00 1.61E+01±7.67E+00 1.46E+01±6.31E+00
30D (s=3) 3.08E+01±6.15E+00 1.80E+01±6.36E+00 1.66E+01±7.08E+00
30D (s=4) 3.02E+01±5.91E+00 1.58E+01±5.60E+00 1.44E+01±6.65E+00
30D (s=5) 3.06E+01±6.54E+00 1.89E+01±5.08E+00 1.66E+01±5.91E+00
30D (s=6) 3.21E+01±6.11E+00 2.25E+01±8.69E+00 1.82E+01±6.42E+00

Next, we discuss the experimental results from three aspects: dimension, the
number of the feasible regions, and the change severity of the feasible regions.
The reason why these three aspects are important is the following. In the commu-
nity of evolutionary computation, it is well-recognized that the performance of an
EA is significantly influenced by the dimension of an optimization problem. In
addition, in this paper we introduce two types of dynamics about constraints in
addition to objective function. We are interested in the effect of these two types
of dynamics on the performance of a DCOEA.

5.3.1. Dimension
Generally speaking, the increase of dimension poses a great challenge on the

performance of a DCOEA. It is because the search space will rapidly enlarge with
the increase of dimension. It is clear from Tables 3–8 that the performance of all
the three compared algorithms degrades as the dimension increases.

In terms of the offline error, when D = 10, the mean offline error values
of LTFR-DSPSO are consistently less than those of CPSO and DyCODE on test
instances 1 and 2 as shown in Tables 3–8. For test instances 3–6, CPSO achieves
better performance than LTFR-DSPSO and DyCODE in all cases except for test
instance 4 with s = 3. In the case of D = 20, CPSO outperforms LTFR-DSPSO
and DyCODE on test instances 3-6, and LTFR-DSPSO and DyCODE show the
best performance on test instance 1 and test instance 2, respectively. In addition,

30

Table 9: The normalized scores of the three compared algorithms on different dimensions.
Dimension CPSO LTFR-DSPSO DyCODE

10D 0.7027 0.8010 0.1951
20D 0.6804 0.3904 0.3523
30D 0.4461 0.4836 0.7670

Table 10: The normalized scores of the three compared algorithms on different numbers of the
feasible regions.

The number of CPSO LTFR-DSPSO DyCODEthe feasible regions
Single feasible region 0.2100 0.6599 0.7549
Two feasible regions 0.9526 0.4108 0.2011

Three feasible regions 0.6667 0.6044 0.3585

Table 11: The normalized scores of the three compared algorithms on different change severities
of the feasible regions.

The change severity of CPSO LTFR-DSPSO DyCODEthe feasible regions
Slight change 0.5697 0.7070 0.3443
Drastic change 0.7468 0.3985 0.5255

in the case of D = 30, LTFR-DSPSO, CPSO, and DyCODE perform the best on
test instance 1, test instances 2-3, and test instances 4-6, respectively.

As shown in Table 9, the normalized score of CPSO decreases with the in-
crease of dimension. This phenomenon can be attributed to the fact that the
local search adopted by CPSO is related to the dimension. When a particle in
a subswarm finds a better position, the best particle in the subswarm will learn
from it on each dimension. Therefore, with the increase of dimension, this lo-
cal search will consume more FEs. When D = 10, LTFR-DSPSO achieves the
highest normalized score. However, with the increase of dimension, the normal-
ized score of LTFR-DSPSO drops significantly. It is not difficult to understand,
since the gradient-based repair and SQP in LTFR-DSPSO need more number of
evaluations for constraints and objective function, respectively, with the increase
of dimension. Furthermore, when SQP is used to conduct local search on fea-
sible solutions, its performance would degenerate as the dimension increases. It
is interesting to see that the normalized score of DyCODE increases with the in-
crease of dimension. This can be explained as follows. In the second phase, some
excellent individuals of each subpopulation are combined together to search the
optimal solution, thus achieving fast convergence of DyCODE.

31

5.3.2. The number of the feasible regions
For a DCOEA, the increase of the number of the feasible regions will cause the

following three difficulties: 1) a DCOEA should have the capability to approach
the feasible regions from various directions, 2) a DCOEA runs the risk of getting
stuck at a local feasible optimal solution if it ignores any of the feasible regions,
and 3) the optimal solution will switch from one feasible region to another feasible
region with the change of environment.

Table 10 reports the normalized scores of the three compared algorithms on
different numbers of the feasible regions. Specifically, for DCOPs with a single
feasible region, the normalized score of DyCODE is the highest. However, the
performance of DyCODE is worse than that of the two competitors for DCOPs
with two and three feasible regions. The above phenomenon can be explained as
follows. DyCODE combines some high-quality individuals of each subpopula-
tion together in the second phase, which is beneficial to find the optimal solution
in a single feasible region. Nevertheless, as the number of the feasible regions
increases, it is very likely for DyCODE to converge into a local optimal solu-
tion in one of the feasible regions. In the case of two and three feasible regions,
CPSO achieves the best performance. Based on our observation, compared with
a single feasible region, multiple feasible regions enable multiple subswarms of
CPSO to evolve independently for a longer period before the overlapping, con-
verges, and overcrowding are identified. Thus, the probability that CPSO locates
the feasible region containing the global optimal solution increases. It seems that
LTFR-DSPSO is insensitive to the number of the feasible regions.

5.3.3. Change severity of the feasible regions
According to the offline error in Tables 3–8, in terms of the slight change,

LTFR-DSPSO and CPSO perform the best on test instance 1 and test instance 3,
respectively. In contrast, with respect to the drastic change, DyCODE and CPSO
provide the best performance on test instance 2 and test instance 4, respectively.
For test instance 5 and test instance 6, CPSO beats the two competitors when
D = 10 and 20, and DyCODE surpasses the two competitors when D = 30.

Table 11 records the normalized scores of the three compared algorithms on
different change severities of the feasible regions. When the feasible regions
change slightly, the normalized score of LTFR-DSPSO is the highest. The rea-
son may be that LTFR-DSPSO re-initializes the population by two strategies, i.e.,
tracking previous feasible regions and predicting future feasible regions. When
the feasible regions change slightly, the feasible regions of the previous environ-
ment may not be distant from those of the next environment. Thus, these two stra-

32

Table 12: The mean and standard deviation of the offline error for test instance 1 with 10 peaks
and 15 peaks. We also tested three different dimensions: 10D, 20D, and 30D. The best and second
best mean offline error values among all the algorithms in each case are highlighted in gray and
light gray, respectively.

10 peaks 15 peaks
Test Instance 1 CPSO LTFR-DSPSO DyCODE CPSO LTFR-DSPSO DyCODE

Mean OE±Std Dev Mean OE±Std Dev Mean OE±Std Dev Mean OE±Std Dev Mean OE±Std Dev Mean OE±Std Dev
10D (s=1) 3.39E-01±1.10E+00 9.67E-05±1.30E-04 4.45E-02±1.09E-01 1.10E+00±2.23E+00 7.71E-05±7.42E-05 3.21E-02±7.96E-02
10D (s=2) 5.49E-02±2.98E-01 6.39E-05±5.92E-05 5.71E-02±1.38E-01 8.32E-01±2.95E+00 6.70E-05±5.52E-05 2.00E-01±5.34E-01
10D (s=3) 4.24E-01±1.13E+00 8.98E-05±7.59E-05 2.13E-01±5.62E-01 5.76E-01±1.58E+00 7.66E-05±7.05E-05 2.16E-01±6.80E-01
10D (s=4) 1.12E-01±3.87E-01 1.15E-04±2.18E-04 4.09E-01±8.69E-01 9.16E-01±2.14E+00 1.17E-04±1.64E-04 5.38E-01±1.03E+00
10D (s=5) 2.23E-01±7.26E-01 1.64E-04±1.76E-04 5.64E-01±9.98E-01 4.67E-01±1.12E+00 3.68E-04±1.30E-03 3.98E-01±1.08E+00
10D (s=6) 9.86E-01±2.08E+00 1.21E-04±1.01E-04 3.84E-01±9.14E-01 5.77E-03±2.35E-02 9.57E-05±6.46E-05 4.14E-01±8.50E-01
20D (s=1) 1.60E+00±4.06E+00 4.86E-01±2.76E-01 2.07E-01±2.19E-01 2.36E+00±4.04E+00 4.07E-01±2.95E-01 4.90E-01±8.83E-01
20D (s=2) 2.59E+00±6.13E+00 4.14E-01±2.58E-01 2.97E-01±2.76E-01 2.08E+00±3.65E+00 4.99E-01±4.25E-01 7.82E-01±1.21E+00
20D (s=3) 5.38E+00±7.83E+00 3.83E-01±2.69E-01 6.42E-01±9.09E-01 2.69E+00±6.03E+00 5.50E-01±5.06E-01 7.07E-01±8.94E-01
20D (s=4) 3.92E+00±7.14E+00 5.64E-01±3.75E-01 8.33E-01±8.96E-01 5.31E+00±6.98E+00 5.22E-01±3.59E-01 1.38E+00±1.52E+00
20D (s=5) 2.22E+00±3.10E+00 5.66E-01±3.52E-01 1.35E+00±1.75E+00 5.59E+00±8.27E+00 5.55E-01±3.44E-01 1.41E+00±1.73E+00
20D (s=6) 3.61E+00±4.76E+00 6.00E-01±3.70E-01 1.36E+00±1.83E+00 4.14E+00±5.55E+00 7.18E-01±5.61E-01 1.45E+00±1.71E+00
30D (s=1) 2.85E+00±3.05E+00 2.63E+00±7.70E-01 2.30E+00±8.61E-01 4.05E+00±6.95E+00 2.72E+00±7.07E-01 2.14E+00±8.05E-01
30D (s=2) 3.50E+00±6.92E+00 2.52E+00±6.97E-01 2.59E+00±1.09E+00 5.05E+00±6.32E+00 2.96E+00±8.45E-01 2.95E+00±1.23E+00
30D (s=3) 6.12E+00±7.40E+00 2.18E+00±7.76E-01 3.23E+00±1.70E+00 4.50E+00±7.05E+00 2.31E+00±6.12E-01 2.19E+00±1.65E+00
30D (s=4) 6.95E+00±7.29E+00 2.67E+00±7.19E-01 3.41E+00±1.33E+00 4.84E+00±5.50E+00 2.90E+00±1.21E+00 3.92E+00±2.05E+00
30D (s=5) 6.40E+00±8.01E+00 4.17E+00±1.50E+00 4.47E+00±2.62E+00 9.85E+00±9.53E+00 4.37E+00±1.73E+00 4.26E+00±2.11E+00
30D (s=6) 5.12E+00±6.05E+00 4.80E+00±1.52E+00 5.23E+00±2.95E+00 6.26E+00±8.28E+00 4.72E+00±1.87E+00 4.42E+00±2.40E+00

tegies are effective. However, these two strategies may fail when a drastic change
occurs. When the feasible regions change drastically, CPSO has the highest nor-
malized score. It is because CPSO continuously detects whether a subswarm is
overlapping, converges and overcrowding. Moreover, if all subswarms are con-
verged, some individuals are randomly generated from the decision space, which
enhances the diversity of the population. In addition, DyCODE is insensitive to
the change severity of the feasible regions.

In general, when the feasible regions change dramatically, the test instances
are more difficult to be solved. However, it is interesting to note that compared
with the slight change, the three compared algorithms perform better under the
drastic change for test instances 3–6 with D = 10. Based on our observation,
even the feasible regions dramatically change, the index of the highest peak may
not change in the successive environments. Thus, an algorithm only needs to
track the feasible region associated with the same highest peak in different envi-
ronments. However, in a slight change situation with multiple feasible regions,
the optimal solution may jump among different feasible regions; thus, an algor-
ithm needs to track multiple feasible regions. Therefore, sometimes a DCOP with
a drastic change may be simpler than a DCOP with a slight change. As a result,
the three compared algorithms under the drastic change obtain better performance
than under the slight change in some cases.

33

Table 13: The mean and standard deviation of the offline error for test instance 2 with 10 peaks
and 15 peaks. We also tested three different dimensions: 10D, 20D, and 30D. The best and second
best mean offline error values among all the algorithms in each case are highlighted in gray and
light gray, respectively.

10 peaks 15 peaks
Test Instance 2 CPSO LTFR-DSPSO DyCODE CPSO LTFR-DSPSO DyCODE

Mean OE±Std Dev Mean OE±Std Dev Mean OE±Std Dev Mean OE±Std Dev Mean OE±Std Dev Mean OE±Std Dev
10D (s=1) 1.14E+00±2.05E+00 4.98E-03±5.07E-03 2.48E-01±6.22E-01 1.99E+00±2.60E+00 5.53E-03±6.31E-03 3.41E-01±1.11E+00
10D (s=2) 7.38E-01±1.93E+00 3.58E-03±5.02E-03 1.01E-01±3.40E-01 1.89E+00±3.14E+00 5.50E-03±5.70E-03 2.44E-01±8.73E-01
10D (s=3) 2.79E+00±4.39E+00 8.10E-03±1.59E-02 1.89E-01±8.48E-01 2.83E+00±5.23E+00 4.74E-03±5.28E-03 1.59E-01±4.55E-01
10D (s=4) 2.13E+00±3.70E+00 2.96E-03±3.09E-03 2.62E-01±7.03E-01 1.09E+00±1.95E+00 1.06E-02±9.89E-03 4.09E-01±1.18E+00
10D (s=5) 1.11E+00±3.19E+00 4.47E-03±5.12E-03 3.78E-01±1.59E+00 1.41E+00±2.74E+00 8.02E-03±1.10E-02 4.04E-01±1.41E+00
10D (s=6) 1.82E+00±2.46E+00 5.42E-03±5.44E-03 1.59E-01±4.48E-01 1.40E+00±2.71E+00 3.92E-03±4.30E-03 3.99E-01±1.09E+00
20D (s=1) 6.60E+00±7.77E+00 5.83E+00±2.88E+00 1.33E+00±9.93E-01 8.29E+00±7.47E+00 7.72E+00±3.23E+00 1.03E+00±9.02E-01
20D (s=2) 3.67E+00±3.71E+00 6.22E+00±3.33E+00 1.08E+00±8.01E-01 1.08E+01±8.72E+00 8.51E+00±3.78E+00 1.79E+00±2.34E+00
20D (s=3) 7.28E+00±6.73E+00 6.85E+00±3.55E+00 1.66E+00±1.66E+00 8.90E+00±7.25E+00 7.85E+00±3.80E+00 2.20E+00±1.63E+00
20D (s=4) 6.89E+00±6.96E+00 6.09E+00±3.44E+00 1.95E+00±2.14E+00 7.29E+00±7.76E+00 8.24E+00±4.56E+00 1.74E+00±1.14E+00
20D (s=5) 6.73E+00±6.56E+00 6.26E+00±2.43E+00 1.90E+00±1.86E+00 1.25E+01±1.03E+01 9.27E+00±4.45E+00 1.81E+00±1.36E+00
20D (s=6) 7.83E+00±7.92E+00 7.16E+00±3.87E+00 2.32E+00±2.66E+00 9.62E+00±7.14E+00 8.51E+00±3.39E+00 1.78E+00±1.43E+00
30D (s=1) 1.18E+01±6.91E+00 1.61E+01±5.61E+00 1.35E+01±3.72E+00 1.44E+01±9.64E+00 1.72E+01±5.71E+00 1.37E+01±4.08E+00
30D (s=2) 1.22E+01±9.32E+00 1.67E+01±5.83E+00 1.36E+01±5.03E+00 1.28E+01±9.30E+00 1.74E+01±5.94E+00 1.47E+01±5.30E+00
30D (s=3) 1.64E+01±8.73E+00 1.79E+01±5.21E+00 1.46E+01±3.90E+00 1.39E+01±8.43E+00 2.01E+01±6.05E+00 1.62E+01±5.53E+00
30D (s=4) 1.32E+01±5.95E+00 1.70E+01±6.10E+00 1.31E+01±4.13E+00 1.23E+01±8.70E+00 2.02E+01±5.33E+00 1.54E+01±3.88E+00
30D (s=5) 1.19E+01±8.66E+00 1.83E+01±7.09E+00 1.39E+01±4.55E+00 1.46E+01±9.90E+00 2.20E+01±7.43E+00 1.81E+01±5.19E+00
30D (s=6) 1.32E+01±1.00E+01 2.02E+01±6.64E+00 1.56E+01±5.05E+00 1.20E+01±8.68E+00 2.25E+01±6.74E+00 1.59E+01±4.29E+00

Table 14: The mean and standard deviation of the offline error for test instance 3 with 10 peaks
and 15 peaks. We also tested three different dimensions: 10D, 20D, and 30D. The best and second
best mean offline error values among all the algorithms in each case are highlighted in gray and
light gray, respectively.

10 peaks 15 peaks
Test Instance 3 CPSO LTFR-DSPSO DyCODE CPSO LTFR-DSPSO DyCODE

Mean OE±Std Dev Mean OE±Std Dev Mean OE±Std Dev Mean OE±Std Dev Mean OE±Std Dev Mean OE±Std Dev
10D (s=1) 1.20E+00±3.20E+00 3.61E+00±4.94E+00 6.05E+00±6.36E+00 5.11E-01±1.36E+00 4.01E+00±4.63E+00 7.41E+00±6.46E+00
10D (s=2) 1.73E-01±9.27E-01 2.84E+00±5.48E+00 8.95E+00±8.15E+00 1.24E+00±2.21E+00 3.95E+00±5.47E+00 7.31E+00±5.25E+00
10D (s=3) 7.76E-01±1.78E+00 2.22E+00±3.23E+00 7.12E+00±7.22E+00 1.97E-01±5.91E-01 2.50E+00±3.58E+00 1.03E+01±8.47E+00
10D (s=4) 7.10E-01±1.46E+00 2.05E+00±2.38E+00 6.71E+00±5.61E+00 7.58E-01±1.15E+00 3.73E+00±4.88E+00 8.06E+00±6.40E+00
10D (s=5) 8.22E-01±1.54E+00 3.46E+00±6.02E+00 9.27E+00±6.51E+00 5.63E-01±1.22E+00 4.36E+00±6.13E+00 8.46E+00±6.89E+00
10D (s=6) 2.09E+00±3.48E+00 5.17E+00±7.53E+00 1.12E+01±8.69E+00 6.01E-01±1.05E+00 2.62E+00±3.98E+00 9.71E+00±7.28E+00
20D (s=1) 1.68E+00±2.40E+00 5.18E+00±3.51E+00 8.86E+00±5.85E+00 2.14E+00±2.70E+00 6.69E+00±5.29E+00 1.29E+01±9.28E+00
20D (s=2) 1.95E+00±2.12E+00 6.74E+00±6.62E+00 9.97E+00±1.00E+01 1.96E+00±2.91E+00 3.53E+00±3.04E+00 8.77E+00±8.08E+00
20D (s=3) 2.60E+00±2.19E+00 6.16E+00±5.50E+00 1.08E+01±9.07E+00 2.29E+00±2.50E+00 5.51E+00±5.39E+00 1.24E+01±1.08E+01
20D (s=4) 1.48E+00±1.51E+00 6.27E+00±3.92E+00 1.31E+01±1.36E+01 2.85E+00±4.38E+00 6.65E+00±6.75E+00 8.99E+00±7.88E+00
20D (s=5) 1.47E+00±1.50E+00 6.92E+00±5.51E+00 1.06E+01±8.92E+00 3.25E+00±4.73E+00 7.07E+00±5.35E+00 9.02E+00±9.26E+00
20D (s=6) 2.73E+00±3.00E+00 6.86E+00±5.17E+00 1.29E+01±1.05E+01 1.99E+00±2.60E+00 5.48E+00±4.78E+00 1.39E+01±1.30E+01
30D (s=1) 8.92E+00±4.36E+00 1.18E+01±6.36E+00 9.82E+00±6.57E+00 7.44E+00±3.68E+00 9.48E+00±6.66E+00 7.03E+00±4.75E+00
30D (s=2) 9.04E+00±4.95E+00 1.17E+01±6.61E+00 1.28E+01±9.00E+00 1.06E+01±4.23E+00 8.73E+00±4.54E+00 9.90E+00±8.06E+00
30D (s=3) 1.24E+01±6.03E+00 1.01E+01±7.65E+00 1.28E+01±8.71E+00 9.75E+00±5.79E+00 1.02E+01±5.94E+00 1.20E+01±7.93E+00
30D (s=4) 9.04E+00±3.65E+00 1.11E+01±5.79E+00 1.52E+01±1.03E+01 1.05E+01±5.76E+00 1.11E+01±5.65E+00 1.28E+01±9.57E+00
30D (s=5) 1.09E+01±5.92E+00 1.47E+01±8.06E+00 1.22E+01±8.71E+00 1.17E+01±5.39E+00 1.61E+01±8.77E+00 1.22E+01±7.48E+00
30D (s=6) 9.78E+00±4.71E+00 1.36E+01±6.14E+00 1.44E+01±1.01E+01 9.81E+00±4.02E+00 1.64E+01±8.24E+00 1.37E+01±9.93E+00

5.3.4. Effect of the number of peaks
In the previous experiments, the number of peaks was fixed to 10 as shown

in Table 1. One may be interested in the effect of the number of peaks on the
performance of the three compared algorithms, i.e., CPSO, LTFR-DSPSO, and
DyCODE. To this end, we run CPSO, LTFR-DSPSO, and DyCODE on our test

34

Table 15: The mean and standard deviation of the offline error for test instance 4 with 10 peaks
and 15 peaks. We also tested three different dimensions: 10D, 20D, and 30D. The best and second
best mean offline error values among all the algorithms in each case are highlighted in gray and
light gray, respectively.

10 peaks 15 peaks
Test Instance 4 CPSO LTFR-DSPSO DyCODE CPSO LTFR-DSPSO DyCODE

Mean OE±Std Dev Mean OE±Std Dev Mean OE±Std Dev Mean OE±Std Dev Mean OE±Std Dev Mean OE±Std Dev
10D (s=1) 2.66E-01±5.15E-01 7.93E-01±6.48E-01 2.74E+00±2.51E+00 7.54E-01±1.48E+00 7.79E-01±7.50E-01 3.56E+00±3.09E+00
10D (s=2) 1.55E-01±4.36E-01 9.58E-01±8.04E-01 2.95E+00±2.08E+00 4.52E-01±1.25E+00 9.06E-01±7.72E-01 3.37E+00±2.42E+00
10D (s=3) 9.35E-01±2.55E+00 7.14E-01±5.44E-01 3.80E+00±2.21E+00 4.32E-01±1.09E+00 8.56E-01±5.91E-01 4.19E+00±3.91E+00
10D (s=4) 8.96E-01±1.59E+00 9.89E-01±7.60E-01 4.00E+00±3.19E+00 6.87E-01±1.71E+00 9.32E-01±6.21E-01 4.35E+00±2.86E+00
10D (s=5) 4.52E-01±1.15E+00 1.10E+00±8.61E-01 3.84E+00±2.91E+00 4.10E-01±9.28E-01 7.77E-01±7.09E-01 3.04E+00±2.54E+00
10D (s=6) 7.23E-01±1.39E+00 1.40E+00±1.14E+00 5.72E+00±5.24E+00 6.98E-01±1.30E+00 8.43E-01±8.08E-01 4.96E+00±3.94E+00
20D (s=1) 2.98E+00±3.45E+00 7.29E+00±2.81E+00 7.72E+00±4.59E+00 2.93E+00±3.03E+00 8.53E+00±3.49E+00 6.43E+00±4.32E+00
20D (s=2) 2.37E+00±2.20E+00 7.37E+00±3.38E+00 7.14E+00±4.89E+00 2.35E+00±2.28E+00 9.86E+00±4.22E+00 6.77E+00±4.43E+00
20D (s=3) 3.46E+00±3.62E+00 8.22E+00±4.09E+00 8.94E+00±7.10E+00 2.74E+00±2.87E+00 8.78E+00±4.36E+00 6.26E+00±3.91E+00
20D (s=4) 2.68E+00±2.55E+00 8.21E+00±4.49E+00 8.17E+00±5.95E+00 2.17E+00±2.24E+00 9.53E+00±4.99E+00 8.25E+00±6.21E+00
20D (s=5) 2.43E+00±3.37E+00 9.70E+00±4.95E+00 7.09E+00±5.01E+00 3.25E+00±3.79E+00 9.62E+00±3.86E+00 6.78E+00±5.21E+00
20D (s=6) 3.76E+00±5.00E+00 9.59E+00±3.86E+00 1.03E+01±7.50E+00 2.94E+00±2.11E+00 9.92E+00±4.83E+00 8.47E+00±4.94E+00
30D (s=1) 1.53E+01±5.00E+00 1.64E+01±5.06E+00 1.51E+01±5.94E+00 1.46E+01±5.42E+00 1.98E+01±5.73E+00 1.44E+01±6.89E+00
30D (s=2) 1.42E+01±4.55E+00 1.66E+01±6.35E+00 1.32E+01±6.38E+00 1.52E+01±4.79E+00 1.78E+01±6.25E+00 1.45E+01±6.19E+00
30D (s=3) 1.56E+01±4.84E+00 1.65E+01±7.04E+00 1.53E+01±6.88E+00 1.57E+01±5.38E+00 2.10E+01±6.92E+00 1.91E+01±7.06E+00
30D (s=4) 1.45E+01±4.01E+00 1.66E+01±6.11E+00 1.42E+01±5.33E+00 1.69E+01±5.60E+00 2.00E+01±6.29E+00 1.82E+01±5.82E+00
30D (s=5) 1.49E+01±5.07E+00 2.16E+01±6.64E+00 1.76E+01±5.90E+00 1.68E+01±5.06E+00 2.18E+01±7.39E+00 1.54E+01±6.93E+00
30D (s=6) 1.57E+01±6.05E+00 2.09E+01±8.36E+00 1.63E+01±4.98E+00 1.58E+01±5.24E+00 2.39E+01±8.61E+00 1.57E+01±5.64E+00

Table 16: The mean and standard deviation of the offline error for test instance 5 with 10 peaks
and 15 peaks. We also tested three different dimensions: 10D, 20D, and 30D. The best and second
best mean offline error values among all the algorithms in each case are highlighted in gray and
light gray, respectively.

10 peaks 15 peaks
Test Instance 5 CPSO LTFR-DSPSO DyCODE CPSO LTFR-DSPSO DyCODE

Mean OE±Std Dev Mean OE±Std Dev Mean OE±Std Dev Mean OE±Std Dev Mean OE±Std Dev Mean OE±Std Dev
10D (s=1) 4.11E-01±6.58E-01 5.55E+00±7.32E+00 1.07E+01±6.99E+00 1.29E+00±2.25E+00 7.78E+00±8.47E+00 1.11E+01±7.66E+00
10D (s=2) 7.12E-01±1.90E+00 7.62E+00±8.32E+00 1.29E+01±7.91E+00 7.21E-01±1.30E+00 5.27E+00±5.42E+00 1.34E+01±9.44E+00
10D (s=3) 4.18E-01±9.96E-01 2.91E+00±3.26E+00 1.13E+01±6.63E+00 6.54E-01±1.21E+00 4.68E+00±5.96E+00 1.23E+01±8.71E+00
10D (s=4) 5.23E-01±7.77E-01 7.03E+00±6.76E+00 1.61E+01±8.24E+00 7.32E-01±1.16E+00 7.25E+00±6.54E+00 1.36E+01±8.33E+00
10D (s=5) 5.61E-01±8.31E-01 4.96E+00±5.31E+00 1.37E+01±8.31E+00 5.14E-01±1.33E+00 5.34E+00±6.63E+00 1.07E+01±6.54E+00
10D (s=6) 1.54E+00±2.49E+00 8.00E+00±8.39E+00 1.36E+01±9.14E+00 1.10E+00±2.25E+00 6.73E+00±6.54E+00 1.41E+01±8.47E+00
20D (s=1) 4.97E+00±1.77E+00 9.82E+00±6.48E+00 1.27E+01±7.69E+00 6.86E+00±3.80E+00 1.27E+01±7.10E+00 1.50E+01±1.10E+01
20D (s=2) 5.32E+00±2.90E+00 7.08E+00±6.43E+00 1.31E+01±9.87E+00 6.46E+00±3.87E+00 9.16E+00±6.72E+00 1.63E+01±1.04E+01
20D (s=3) 6.19E+00±2.85E+00 8.04E+00±4.61E+00 1.57E+01±1.14E+01 6.16E+00±2.75E+00 8.83E+00±6.01E+00 1.71E+01±1.01E+01
20D (s=4) 6.32E+00±3.14E+00 1.00E+01±6.44E+00 1.20E+01±8.09E+00 7.17E+00±4.06E+00 9.73E+00±6.20E+00 1.56E+01±1.01E+01
20D (s=5) 5.90E+00±2.75E+00 1.11E+01±7.00E+00 1.91E+01±1.20E+01 7.48E+00±3.68E+00 1.18E+01±9.43E+00 1.89E+01±1.24E+01
20D (s=6) 7.77E+00±3.78E+00 1.21E+01±5.38E+00 1.60E+01±9.43E+00 6.46E+00±2.91E+00 1.08E+01±6.37E+00 1.60E+01±9.83E+00
30D (s=1) 2.00E+01±5.59E+00 1.36E+01±6.43E+00 1.16E+01±7.61E+00 2.02E+01±6.00E+00 1.08E+01±6.16E+00 1.02E+01±9.62E+00
30D (s=2) 2.28E+01±5.01E+00 1.51E+01±5.82E+00 1.45E+01±8.54E+00 2.45E+01±7.08E+00 1.21E+01±7.49E+00 1.13E+01±7.41E+00
30D (s=3) 2.65E+01±7.31E+00 1.35E+01±6.24E+00 1.64E+01±9.30E+00 2.54E+01±7.70E+00 1.43E+01±8.36E+00 1.54E+01±9.51E+00
30D (s=4) 2.53E+01±5.23E+00 1.59E+01±7.61E+00 1.47E+01±9.16E+00 2.63E+01±5.08E+00 1.40E+01±6.48E+00 1.69E+01±7.53E+00
30D (s=5) 2.79E+01±6.32E+00 1.91E+01±9.12E+00 1.69E+01±8.18E+00 2.64E+01±5.61E+00 2.02E+01±9.67E+00 1.87E+01±8.95E+00
30D (s=6) 2.52E+01±4.78E+00 1.93E+01±9.48E+00 1.43E+01±7.97E+00 2.72E+01±4.78E+00 2.19E+01±7.92E+00 2.05E+01±1.08E+01

suite with 15 peaks. To have a fair comparison, other parameter settings were
consistent with those suggested in Section 5.2.

Tables 12–17 summarize the mean and standard deviation (abbreviated as
“Mean OE” and “Std Dev”) of the offline error obtained by the three compared
algorithms on the six test instances with 10 and 15 peaks over 30 independent

35

Table 17: The mean and standard deviation of the offline error for test instance 6 with 10 peaks
and 15 peaks. We also tested three different dimensions: 10D, 20D, and 30D. The best and second
best mean offline error values among all the algorithms in each case are highlighted in gray and
light gray, respectively.

10 peaks 15 peaks
Test Instance 6 CPSO LTFR-DSPSO DyCODE CPSO LTFR-DSPSO DyCODE

Mean OE±Std Dev Mean OE±Std Dev Mean OE±Std Dev Mean OE±Std Dev Mean OE±Std Dev Mean OE±Std Dev
10D (s=1) 3.62E-01±6.32E-01 1.87E+00±1.49E+00 4.78E+00±3.11E+00 3.15E-01±5.61E-01 1.63E+00±1.08E+00 5.77E+00±4.67E+00
10D (s=2) 2.89E-01±5.74E-01 2.55E+00±1.93E+00 5.89E+00±4.25E+00 3.67E-01±6.14E-01 1.59E+00±1.07E+00 4.30E+00±2.80E+00
10D (s=3) 4.18E-01±4.00E-01 2.26E+00±1.47E+00 6.24E+00±3.76E+00 4.33E-01±7.48E-01 1.78E+00±9.09E-01 5.93E+00±2.95E+00
10D (s=4) 3.98E-01±7.54E-01 2.21E+00±1.15E+00 7.35E+00±3.52E+00 2.92E-01±5.99E-01 2.20E+00±1.41E+00 7.38E+00±5.25E+00
10D (s=5) 5.35E-01±1.02E+00 2.51E+00±1.78E+00 8.22E+00±4.45E+00 2.87E-01±3.46E-01 1.67E+00±1.17E+00 7.77E+00±5.13E+00
10D (s=6) 5.35E-01±6.52E-01 2.42E+00±1.79E+00 8.38E+00±4.76E+00 5.83E-01±1.11E+00 1.82E+00±1.17E+00 7.13E+00±3.44E+00
20D (s=1) 6.86E+00±2.47E+00 1.03E+01±4.45E+00 8.89E+00±5.49E+00 6.50E+00±2.39E+00 1.08E+01±5.05E+00 7.36E+00±5.84E+00
20D (s=2) 6.10E+00±1.63E+00 1.00E+01±4.61E+00 9.44E+00±5.21E+00 7.42E+00±2.96E+00 1.06E+01±3.88E+00 8.65E+00±8.01E+00
20D (s=3) 7.82E+00±2.48E+00 1.05E+01±4.42E+00 8.94E+00±6.77E+00 7.31E+00±3.23E+00 1.02E+01±3.96E+00 9.09E+00±5.94E+00
20D (s=4) 6.81E+00±2.49E+00 8.91E+00±3.61E+00 1.08E+01±9.34E+00 7.19E+00±2.47E+00 1.02E+01±5.42E+00 9.27E+00±6.64E+00
20D (s=5) 8.07E+00±2.37E+00 1.00E+01±5.28E+00 1.06E+01±6.64E+00 7.24E+00±2.76E+00 1.31E+01±5.02E+00 9.20E+00±6.10E+00
20D (s=6) 7.37E+00±2.89E+00 1.04E+01±6.47E+00 1.13E+01±7.16E+00 8.21E+00±2.30E+00 1.21E+01±5.69E+00 1.13E+01±8.13E+00
30D (s=1) 2.72E+01±5.37E+00 1.86E+01±4.15E+00 1.53E+01±4.36E+00 2.52E+01±5.14E+00 1.86E+01±5.19E+00 1.74E+01±6.81E+00
30D (s=2) 2.81E+01±6.29E+00 1.61E+01±7.67E+00 1.46E+01±6.31E+00 3.04E+01±5.39E+00 1.81E+01±6.91E+00 1.74E+01±6.47E+00
30D (s=3) 3.08E+01±6.15E+00 1.80E+01±6.36E+00 1.65E+01±7.08E+00 3.17E+01±5.88E+00 2.04E+01±7.99E+00 1.86E+01±6.42E+00
30D (s=4) 3.02E+01±5.91E+00 1.58E+01±5.59E+00 1.44E+01±6.65E+00 2.91E+01±6.23E+00 2.10E+01±6.92E+00 1.88E+01±6.75E+00
30D (s=5) 3.06E+01±6.54E+00 1.89E+01±5.08E+00 1.66E+01±5.91E+00 3.17E+01±5.93E+00 2.16E+01±7.70E+00 1.66E+01±4.73E+00
30D (s=6) 3.21E+01±6.11E+00 2.25E+01±8.69E+00 1.82E+01±6.42E+00 3.29E+01±7.18E+00 2.53E+01±7.50E+00 1.87E+01±6.08E+00

Table 18: The normalized scores of the three compared algorithms on different dimensions.
Dimension 10 peaks 15 peaks

CPSO LTFR-DSPSO DyCODE CPSO LTFR-DSPSO DyCODE
10D 0.7027 0.8010 0.1951 0.6940 0.8048 0.2120
20D 0.6804 0.3904 0.3523 0.6707 0.3895 0.4486
30D 0.4461 0.4836 0.7670 0.4496 0.5023 0.7986

Table 19: The normalized scores of the three compared algorithms on different numbers of the
feasible regions.

The number of 10 peaks 15 peaks
the feasible regions CPSO LTFR-DSPSO DyCODE CPSO LTFR-DSPSO DyCODE

Single feasible region 0.2100 0.6599 0.7549 0.1926 0.6776 0.7843
Two feasible regions 0.9526 0.4108 0.2011 0.9550 0.4208 0.2682

Three feasible regions 0.6667 0.6044 0.3585 0.6666 0.5982 0.4068

Table 20: The normalized scores of the three compared algorithms on different change severities
of the feasible regions.

The change severity of 10 peaks 15 peaks
the feasible regions CPSO LTFR-DSPSO DyCODE CPSO LTFR-DSPSO DyCODE

Slight change 0.5697 0.7070 0.3443 0.5521 0.7306 0.4053
Drastic change 0.7468 0.3985 0.5255 0.6574 0.4005 0.5676

runs. In addition, Tables 18–20 provide the normalized score derived from the
three compared algorithms in terms of the dimension, the number of the feasible
regions, and the change severity of the feasible regions. Note that, the experi-

36

0
20

40
60

80
100

0

20

40

60

80

100
0

10

20

30

40

50

x1
x2

f
(~x

;t
)

Constraint

The feasible region

The center of a

peak

Figure 9: Illustration of our test suite with the optimal solution on the boundary of the feasible
region in a two-dimensional decision space.

mental results of the three compared algorithms with 10 peaks were directly taken
from Tables 3–11.

As shown in Tables 12–17, CPSO, LTFR-DSPSO, and DyCODE provide simi-
lar offline error values on all the six test instances with 10 and 15 peaks, no matter
what dimension and the value of s are. Moreover, Tables 18–20 also show similar
normalized scores of CPSO, LTFR-DSPSO, and DyCODE for 10 and 15 peaks,
regardless of the dimension, the number of the feasible regions, and the change
severity of the feasible regions. The above experimental results signify that the
number of peaks does not have a significant effect on the performance of the three
compared algorithms. It is because we did not change the construction of the
feasible regions.

5.3.5. Effect of the optimal solution on the boundary of the feasible region
In many practical situations, the optimum solution is on the boundary of the

feasible region. In fact, it is easy to generalize our test suite to have this charac-

37

teristic by revising constraints as follows:

maximize f(~x, t) = max
i=1,...,p

Hi(t)

1 +Wi(t)
∑D

j=1(xj −Xi,j(t))2

subject to: g1(~x, t) =
D∑
j=1

(xj −
√
D/D ∗ r1(t)−Xa1,j(t))

2 − r21(t) ≤ 0

or g2(~x, t) =
D∑
j=1

(xj −
√
D/D ∗ r2(t)−Xa2,j(t))

2 − r22(t) ≤ 0

...

or gl(~x, t) =
D∑
j=1

(xj −
√
D/D ∗ rl(t)−Xal,j(t))

2 − r2l (t) ≤ 0

(15)
where gk(~x, t) denotes the kth constraint at environment t, k ∈ {1, ..., l}, l is
the number of constraints, Xak,j(t) is the jth dimension of the center of peak
ak at environment t, rk(t) is the radius of the kth feasible region at environment
t, and D is the dimension. Fig. 9 illustrates the principle of (15). Compared
with the original test suite, the center of each feasible region in (15) is moved
by
√
D/D ∗ rk(t) in each dimension. As a result, the local optimum of each

feasible region is located on its boundary, and the best local optimum is the global
optimum which is also located on the boundary of a certain feasible region.

To evaluate the influence of the optimal solution on the boundary of the feasi-
ble region, the performance of CPSO, LTFR-DSPSO and DyCODE on (15) with
10D is compared with that on the original test suite with 10D in which the opti-
mal solution is in the center of the feasible region. For a fair comparison, all the
three compared algorithms were implemented with the same parameter settings as
suggested in Section 5.2.

Table 21 records the mean and standard deviation (abbreviated as “Mean OE”
and “Std Dev”) of the offline error provided by the three compared algorithms.
Note that, the experimental results of the three compared algorithms on the orig-
inal test suite were directly taken from Tables 3–8. It is clear from Table 21 that
the performance of all the three compared algorithms degrades significantly un-
der the condition that the optimal solution moves from the center of the feasible
region to the boundary of the feasible region. The reason is explained as follows.
For searching for the optimal solution on the boundary of the feasible region, an
effective way is to recombine feasible solutions with infeasible solutions close to

38

Table 21: The mean and standard deviation of the offline error for six test instances with the
optimal solution in the center of the feasible region and with the optimal solution on the boundary
of the feasible region. The experiments were implemented on 10D. The best and second best mean
offline error values among all the algorithms in each case are highlighted in gray and light gray,
respectively.

The Optimal Solution in the Center of the Feasible Region The Optimal Solution on the Boundary of the Feasible Region
Test Instance Shift Length CPSO (10D) LTFR-DSPSO (10D) DyCODE (10D) CPSO (10D) LTFR-DSPSO (10D) DyCODE (10D)

Mean OE±Std Dev Mean OE±Std Dev Mean OE±Std Dev Mean OE±Std Dev Mean OE±Std Dev Mean OE±Std Dev

Instance 1

(s=1) 3.39E-01±1.10E+00 9.67E-05±1.30E-04 4.45E-02±1.09E-01 1.46E+00±3.59E+00 1.63E+00±1.71E+00 2.64E-01±8.49E-01
(s=2) 5.49E-02±2.98E-01 6.39E-05±5.92E-05 5.71E-02±1.38E-01 9.56E-01±2.13E+00 8.90E-01±6.54E-01 5.07E-01±1.14E+00
(s=3) 4.24E-01±1.13E+00 8.98E-05±7.59E-05 2.13E-01±5.62E-01 1.21E+00±3.46E+00 1.51E+00±1.51E+00 7.22E-01±1.27E+00
(s=4) 1.12E-01±3.87E-01 1.15E-04±2.18E-04 4.09E-01±8.69E-01 6.87E-01±2.72E+00 1.64E+00±1.20E+00 1.03E+00±1.65E+00
(s=5) 2.23E-01±7.26E-01 1.64E-04±1.76E-04 5.64E-01±9.98E-01 1.69E+00±4.21E+00 1.76E+00±1.31E+00 1.03E+00±1.65E+00
(s=6) 9.86E-01±2.08E+00 1.21E-04±1.01E-04 3.84E-01±9.14E-01 4.87E+00±9.73E+00 2.22E+00±1.69E+00 1.45E+00±2.56E+00

Instance 2

(s=1) 1.14E+00±2.05E+00 4.98E-03±5.07E-03 2.48E-01±6.22E-01 3.68E+00±4.52E+00 2.81E-01±1.78E-01 1.02E+00±1.80E+00
(s=2) 7.38E-01±1.93E+00 3.58E-03±5.02E-03 1.01E-01±3.40E-01 2.73E+00±3.78E+00 2.76E-01±1.63E-01 2.53E+00±2.79E+00
(s=3) 2.79E+00±4.39E+00 8.10E-03±1.59E-02 1.89E-01±8.48E-01 5.60E+00±6.90E+00 4.16E-01±5.29E-01 1.76E+00±1.78E+00
(s=4) 2.13E+00±3.70E+00 2.96E-03±3.09E-03 2.62E-01±7.03E-01 5.55E+00±5.35E+00 3.40E-01±2.00E-01 2.65E+00±2.93E+00
(s=5) 1.11E+00±3.19E+00 4.47E-03±5.12E-03 3.78E-01±1.59E+00 4.08E+00±4.76E+00 3.14E-01±2.66E-01 2.21E+00±2.60E+00
(s=6) 1.82E+00±2.46E+00 5.42E-03±5.44E-03 1.59E-01±4.48E-01 7.02E+00±7.22E+00 4.23E-01±3.78E-01 2.32E+00±3.52E+00

Instance 3

(s=1) 1.20E+00±3.20E+00 3.61E+00±4.94E+00 6.05E+00±6.36E+00 1.21E+00±2.41E+00 4.88E+00±3.61E+00 7.38E+00±6.78E+00
(s=2) 1.73E-01±9.27E-01 2.84E+00±5.48E+00 8.95E+00±8.15E+00 1.10E+00±2.45E+00 6.06E+00±4.47E+00 1.09E+01±7.52E+00
(s=3) 7.76E-01±1.78E+00 2.22E+00±3.23E+00 7.12E+00±7.22E+00 1.36E+00±2.56E+00 5.33E+00±4.31E+00 8.19E+00±6.02E+00
(s=4) 7.10E-01±1.46E+00 2.05E+00±2.38E+00 6.71E+00±5.61E+00 6.01E-01±1.10E+00 5.54E+00±3.00E+00 1.03E+01±6.22E+00
(s=5) 8.22E-01±1.54E+00 3.46E+00±6.02E+00 9.27E+00±6.51E+00 1.47E+00±2.66E+00 5.57E+00±5.14E+00 9.00E+00±6.38E+00
(s=6) 2.09E+00±3.48E+00 5.17E+00±7.53E+00 1.12E+01±8.69E+00 3.41E+00±5.53E+00 8.69E+00±6.57E+00 1.24E+01±8.42E+00

Instance 4

(s=1) 2.66E-01±5.15E-01 7.93E-01±6.48E-01 2.74E+00±2.51E+00 5.18E-01±8.46E-01 3.01E+00±2.07E+00 6.57E+00±4.74E+00
(s=2) 1.55E-01±4.36E-01 9.58E-01±8.04E-01 2.95E+00±2.08E+00 7.81E-01±1.84E+00 2.63E+00±1.82E+00 8.04E+00±4.39E+00
(s=3) 9.35E-01±2.55E+00 7.14E-01±5.44E-01 3.80E+00±2.21E+00 1.82E+00±2.84E+00 3.29E+00±1.68E+00 8.00E+00±4.41E+00
(s=4) 8.96E-01±1.59E+00 9.89E-01±7.60E-01 4.00E+00±3.19E+00 1.36E+00±2.86E+00 3.94E+00±2.72E+00 6.06E+00±3.97E+00
(s=5) 4.52E-01±1.15E+00 1.10E+00±8.61E-01 3.84E+00±2.91E+00 1.33E+00±2.19E+00 3.95E+00±2.05E+00 7.38E+00±4.67E+00
(s=6) 7.23E-01±1.39E+00 1.40E+00±1.14E+00 5.72E+00±5.24E+00 1.46E+00±2.67E+00 3.84E+00±2.23E+00 9.12E+00±5.98E+00

Instance 5

(s=1) 4.11E-01±6.58E-01 5.55E+00±7.32E+00 1.07E+01±6.99E+00 6.64E-01±1.22E+00 1.04E+01±6.94E+00 1.39E+01±7.53E+00
(s=2) 7.12E-01±1.90E+00 7.62E+00±8.32E+00 1.29E+01±7.91E+00 1.21E+00±3.36E+00 1.00E+01±6.18E+00 1.66E+01±8.21E+00
(s=3) 4.18E-01±9.96E-01 2.91E+00±3.26E+00 1.13E+01±6.63E+00 1.05E+00±2.20E+00 6.91E+00±3.43E+00 1.66E+01±9.97E+00
(s=4) 5.23E-01±7.77E-01 7.03E+00±6.76E+00 1.61E+01±8.24E+00 1.01E+00±1.57E+00 9.82E+00±3.55E+00 1.59E+01±8.30E+00
(s=5) 5.61E-01±8.31E-01 4.96E+00±5.31E+00 1.37E+01±8.31E+00 1.24E+00±1.72E+00 9.58E+00±6.10E+00 1.27E+01±7.99E+00
(s=6) 1.54E+00±2.49E+00 8.00E+00±8.39E+00 1.36E+01±9.14E+00 3.02E+00±4.59E+00 1.18E+01±4.78E+00 1.69E+01±7.38E+00

Instance 6

(s=1) 3.62E-01±6.32E-01 1.87E+00±1.49E+00 4.78E+00±3.11E+00 4.59E-01±6.50E-01 5.23E+00±2.87E+00 9.34E+00±5.80E+00
(s=2) 2.89E-01±5.74E-01 2.55E+00±1.93E+00 5.89E+00±4.25E+00 6.41E-01±8.39E-01 5.01E+00±2.75E+00 1.05E+01±5.36E+00
(s=3) 4.18E-01±4.00E-01 2.26E+00±1.47E+00 6.24E+00±3.76E+00 1.31E+00±2.16E+00 5.92E+00±2.74E+00 1.09E+01±5.64E+00
(s=4) 3.98E-01±7.54E-01 2.21E+00±1.15E+00 7.35E+00±3.52E+00 1.10E+00±1.83E+00 5.16E+00±2.25E+00 9.32E+00±4.60E+00
(s=5) 5.35E-01±1.02E+00 2.51E+00±1.78E+00 8.22E+00±4.45E+00 9.66E-01±1.48E+00 5.29E+00±2.83E+00 1.05E+01±6.66E+00
(s=6) 5.35E-01±6.52E-01 2.42E+00±1.79E+00 8.38E+00±4.76E+00 1.39E+00±1.55E+00 5.94E+00±3.26E+00 1.27E+01±7.16E+00

the boundary of the feasible region. However, in this paper, the feasibility rule
was employed as the constraint-handling technique. It prefers feasible solutions
to infeasible solutions. Thus, infeasible solutions are always deleted during the
evolution. As a result, it is difficult for the three compared algorithms to obtain
the global optimum.

5.3.6. The number of feasible regions changes in different environments
In complex real-world environments, the number of feasible regions may change

in different environments. In fact, it is easy to generalize our test suite to have this
characteristic by revising some relevant parameter settings. Next, we introduce
two additional test instances and their settings of l and ak are summarized in Ta-
ble 22.

39

Table 22: Settings of l and ak (k = 1, ..., l) of test instance 7, test instance 8, and test instance 9.
Test Instance l ak (k = 1, ..., l)

Test Instance 7 1, 2, 3
a1 = 1, t = 1, ..., 10.
a1 = 1 and a2 = 6, t = 11, ..., 20.
a1 = 1, a2 = 6, and a3 = 10, t = 21, ..., 30.

Test Instance 8 1, 2, 3
a1 is the index of the highest peak, t = 1, ..., 10.
a1 and a2 are the indexes of the two highest peaks, t = 11, ..., 20.
a1, a2, and a3 are the indexes of the three highest peaks, t = 21, ..., 30.

Test Instance 9 1

a1 = 1, t = 1.
a1 = 2, t = 2.

...
a1 = 10, t = 10.

Test instance 7 has three different kinds of feasible regions, which change
slightly in the decision space due to the tracking of some fixed peaks. In the first
ten environments, the feasible region tracks a fix peak (a1 = 1); in the second ten
environments, the feasible regions track two fix peaks (a1 = 1 and a2 = 6); and
in the third ten environments, the feasible regions track three fix peaks (a1 = 1,
a2 = 6, and a3 = 10).

Test instance 8 also has three different kinds of feasible regions, which change
drastically in the decision space due to the tracking of the highest peaks. In the
first ten environments, the feasible region tracks the highest peak (a1 is the index
of the highest peak); in the second ten environments, the feasible regions track the
two highest peaks (a1 and a2 are the indexes of the two highest peaks); and in the
third ten environments, the feasible regions track the three highest peaks (a1, a2,
and a3 are the indexes of the three highest peaks).

Table 23 records the mean and standard deviation (abbreviated as “Mean OE”
and “Std Dev”) of the offline error provided by the three compared algorithms.
It is clear from Table 23 that the performance of CPSO is better than that of the
two competitors for DCOPs with different kinds of feasible regions. The above
phenomenon can be explained as follows. Test instance 7 and test instance 8
somehow like a special case of the test instance with multiple feasible regions. As
explained in Section 5.3.2, in the case of multiple feasible regions, CPSO achieves
the best performance.

5.3.7. Static objective function with dynamic constraints
In some real-world environments, it may exist static objective function with

dynamic constraints. Similarly, it is simple to generalize our test suite to have this
characteristic by revising some relevant parameter settings. Next, we introduce

40

Table 23: The mean and standard deviation of the offline error for test instance 7 and test instance
8. The experiments were implemented on 10D. The best and second best mean offline error values
among all the algorithms in each case are highlighted in gray and light gray, respectively.

Test Instance Shift Length CPSO (10D) LTFR-DSPSO (10D) DyCODE (10D)
Mean OE±Std Dev Mean OE±Std Dev Mean OE±Std Dev

Test Instance 7

s=1 3.10E-01±7.07E-01 6.62 E+00±6.54 E+00 7.47 E+00±6.33 E+00
s=2 9.24E-01±1.38E+00 5.49 E+00±4.50 E+00 8.44 E+00±5.30 E+00
s=3 1.11E+00±1.56E+00 6.14 E+00±4.50 E+00 7.88 E+00±4.88 E+00
s=4 1.07E+00±1.09E+00 6.74 E+00±5.43 E+00 9.87 E+00±5.18 E+00
s=5 9.13 E-01±1.39E+00 4.33 E+00±4.17 E+00 8.64 E+00±4.70 E+00
s=6 9.28E-01±1.44E+00 6.09 E+00±5.37 E+00 9.66 E+00±4.72 E+00

Test Instance 8

s=1 5.15E-01±8.51E-01 1.34 E+00±6.79 E-01 2.70 E+00±1.55 E+00
s=2 9.70E-01±1.42E+00 1.69 E+00±8.81 E-01 3.51 E+00±1.85 E+00
s=3 6.05E-01±7.67E-01 1.14 E+00±6.59 E-01 3.94 E+00±2.16 E+00
s=4 1.31 E+00±1.32E-01 1.70 E+00±1.00 E+00 3.64 E+00±2.04 E+00
s=5 5.33E-01±1.05E-01 1.79 E+00±1.23 E+00 4.63 E+00±2.94 E+00
s=6 6.96E-01±8.23E-01 1.66 E+00±1.05 E+00 4.02 E+00±2.00 E+00

Table 24: The mean and standard deviation of the offline error for test instance 9. The experiments
were implemented on 10D. The best and second best mean offline error values among all the
algorithms in each case are highlighted in gray and light gray, respectively.

Test Instance Shift Length CPSO (10D) LTFR-DSPSO (10D) DyCODE (10D)
Mean OE±Std Dev Mean OE±Std Dev Mean OE±Std Dev

Test Instance 9

s=1 1.28E+00±1.77E+00 2.84E-02±2.00E-02 1.70E-02±5.78E-01
s=2 1.65E+00±2.14E+00 2.75E-02±1.85E-02 2.83E-02±8.08E-01
s=3 1.84E+00±2.32E+00 3.18E-02±1.88E-02 1.30E-01±4.18E-01
s=4 1.84E+00±2.53E+00 2.66E-02±1.74E-02 1.87E-01±4.53E-01
s=5 1.69E+00±2.36E+00 2.72E-02±1.61E-02 3.97E-02±1.58E-01
s=6 1.61E+00±2.39E+00 2.33E-02±1.21E-02 4.02E-02±9.95E-01

another test instance and its settings of l and ak are summarized in Table 22.
Test instance 9 has a single feasible region, the objective function of which is

static. In the first environment, the feasible region tracks the first peak (a1 = 1);
in the second environment, the feasible region tracks the second peak (a1 = 2); in
the third environment, the feasible region tracks the third peak (a1 = 3), and so
fourth.

The mean and standard deviation (abbreviated as “Mean OE” and “Std Dev”)
of the offline error provided by the three compared algorithms are summarized
in Table 24. From Table 24, LTFR-DSPSO outperforms the two competitors for
DCOPs with static objective function and dynamic constraints. This phenomenon
can be attributed to the fact that test instance 9 somehow likes a mixture of feasi-
ble regions with slight changes and a single feasible region. As explained in Sec-
tion 5.3.2 and Section 5.3.3, in the case of feasible regions with slight changes,
LTFR-DSPSO performs better than the two competitors, and in the case of a single
feasible region, LTFR-DSPSO has good performance.

Remark 1: From all the above experimental analysis, we can give the follow-

41

ing comments:

• In the case of D = 10, LTFR-DSPSO performs the best; in the case of
D = 20, CPSO is superior to the other two algorithms; and in the case of
D = 30, DyCODE has the best performance.

• When the feasible regions change slightly, LTFR-DSPSO outperforms the
two competitors, and CPSO ranks the first when the feasible regions change
drastically.

• DyCODE achieves the best performance on DCOPs with single feasible re-
gion and CPSO performs the best on DCOPs with multiple feasible regions.

• The three compared algorithms are insensitive to the change of the shift
length s. With the increase of s, the performance of the three compared
algorithms drops slightly.

6. Conclusion

In the evolutionary computation research community, dynamic constrained
optimization is still in its infant stage. Therefore, it is urgent to design a standard
test suite to advance the development of this area. A standard test suite can not
only attract more researchers to pay more attention to this area, but also be used
to design powerful algorithms to solve DCOPs. Through extensive investigations,
we found that existing test functions of DCOPs could not exhibit multi-facet prop-
erties to test the performance of a DCOEA. Moreover, the algorithm comparisons
in the area remain scarce. Based on the above consideration, this paper construct-
ed a test suite for dynamic constrained optimization, which contains the following
five characteristics, i.e., scalability, adjustability, multi-modality, different change
severities of feasible regions, and the global and local optima known. We also
designed six test instances on the basis of the proposed test suite.

Thereafter, the performance of three DCOEAs was evaluated and compared
on the six test instances. One of these DCOEAs is DyCODE proposed in this pa-
per. The experimental results demonstrated that none of them is able to efficiently
solve these six test instances, and that different algorithms show their strengths
and weaknesses on different types of test instances. For DCOPs with single fea-
sible region, DyCODE performs the best. For DCOPs with multiple feasible re-
gions, CPSO achieves the best performance. LTFR-DSPSO outperforms the other
two competitors when the feasible regions change slightly. When the feasible re-
gions change drastically, CPSO obtains the best performance. With the increase

42

of dimension, the performance of CPSO and LTFR-DSPSO drops faster than that
of DyCODE for the reason that they have some strategies related to the dimension.

The future work will be carried out from the following four aspects:

• In this paper, the constraints of our test suite are still relatively simple, and
we only consider convex constraints. In the future, it is necessary to design
concave, nonlinear, and mixed constraints.

• To ensure a fair comparison among three DCOEAs, the feasibility-based
rule [32] is adopted in CPSO and DyCODE. We will try other kinds of
constraint-handling techniques, such as stochastic ranking [45], the ε cos-
trained method [46], multiobjective optimization-based methods [47], etc.

• Through the experimental comparisons, we ascertain which kind of strategy
suits which type of DCOPs. Inspired by [48], we will hybridize CPSO,
LTFR-DSPSO, and DyCODE based on their contributions to design more
excellent and stable algorithms in the future.

• There are a lot of DCOPs in engineering fields, such as adaptive walking
of humanoid robots [49], dynamic controller design [50], vehicle routing
problems [51], ship scheduling problems [2], and so on. In the future, we
intend to carry out the real-world applications of dynamic constrained opti-
mization.

Acknowledgment

The authors would like to thank Prof. Changhe Li and Dr. Chenyang Bu for
kindly providing the source codes of CPSO and LTFR-DSPSO, respectively.

This work was supported in part by the Innovation-Driven Plan in Central
South University under Grant 2018CX010, in part by the National Natural Sci-
ence Foundation of China under Grant 61673397, in part by the Hunan Provincial
Natural Science Fund for Distinguished Young Scholars (Grant No. 2016JJ1018),
and in part by the Beijing Advanced Innovation Center for Intelligent Robots and
Systems under Grant 2018IRS06.

[1] T.T. Nguyen. Continuous dynamic optimisation using evolutionary algo-
rithms. PhD thesis, University of Birmingham, 2011.

43

[2] K. Mertens, T. Holvoet, and Y. Berbers. The DynCOAA algorithm for dy-
namic constraint optimization problems. In Proceedings of the Fifth Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems,
pages 1421–1423. ACM, 2006.

[3] N. Jin, M. Termansen, K. Hubacek, J. Holden, and M. Kirkby. Adap-
tive farming strategies for dynamic economic environment. In 2007 IEEE
Congress on Evolutionary Computation, pages 1213–1220. IEEE, 2007.

[4] J.A.D Atkin, E.K. Burke, J.S Greenwood, and D. Reeson. On-line decision
support for take-off runway scheduling with uncertain taxi times at london
heathrow airport. Journal of Scheduling, 11(5):323, 2008.

[5] J.J. Pantrigo, A. Sánchez, A.S. Montemayor, and A. Duarte. Multi-
dimensional visual tracking using scatter search particle filter. Pattern
Recognition Letters, 29(8):1160–1174, 2008.

[6] C. Sonntag, W. Su, O. Stursberg, and S. Engell. Optimized start-up control
of an industrial-scale evaporation system with hybrid dynamics. Control
Engineering Practice, 16(8):976–990, 2008.

[7] P. Mitra and G.K. Venayagamoorthy. Real time implementation of an artifi-
cial immune system based controller for a dstatcom in an electric ship power
system. In 2008 IEEE Industry Applications Society Annual Meeting, pages
1–8. IEEE, 2008.

[8] J. Branke. Memory enhanced evolutionary algorithms for changing opti-
mization problems. In Proceedings of the 1999 Congress on Evolutionary
Computation, volume 3, pages 1875–1882. IEEE, 1999.

[9] T.T. Nguyen and X. Yao. Benchmarking and solving dynamic constrained
problems. In 2009 IEEE Congress on Evolutionary Computation, pages
690–697. IEEE, 2009.

[10] H. Richter. Memory design for constrained dynamic optimization problems.
Applications of Evolutionary Computation, pages 552–561, 2010.

[11] C.A. Liu. New dynamic constrained optimization PSO algorithm. In Fourth
International Conference on Natural Computation, ICNC’08, volume 7,
pages 650–653. IEEE, 2008.

44

[12] C. Bu, W. Luo, and L. Yue. Continuous dynamic constrained optimization
with ensemble of locating and tracking feasible regions strategies. IEEE
Transactions on Evolutionary Computation, 21(1):14–33, 2017.

[13] Z. Zhang, S. Yue, M. Liao, and F. Long. Danger theory based artificial
immune system solving dynamic constrained single-objective optimization.
Soft Computing, 18(1):185–206, 2014.

[14] T. T. Nguyen and X. Yao. Continuous dynamic constrained optimizationłthe
challenges. IEEE Transactions on Evolutionary Computation, 16(6):769–
786, 2012.

[15] J.J. Liang, T.P. Runarsson, E. Mezura-Montes, M. Clerc, P.N. Suganthan,
C.A. Coello Coello, and K. Deb. Problem definitions and evaluation criteria
for the CEC 2006 special session on constrained real-parameter optimiza-
tion. Journal of Applied Mechanics, 41(8), 2006.

[16] R. Mallipeddi and P.N. Suganthan. Problem definitions and evaluation crite-
ria for the cec 2010 competition on constrained real-parameter optimization.
Nanyang Technological University, Singapore, 24, 2010.

[17] H.K. Singh, A. Isaacs, T.T. Nguyen, T. Ray, and X. Yao. Performance of
infeasibility driven evolutionary algorithm (IDEA) on constrained dynamic
single objective optimization problems. In 2009 IEEE Congress on Evolu-
tionary Computation, pages 3127–3134. IEEE, 2009.

[18] K. Alam, T. Ray, and S.G. Anavatti. Practical application of an evolution-
ary algorithm for the design and construction of a six-inch submarine. In
2014 IEEE Congress on Evolutionary Computation (CEC), pages 2825–
2832. IEEE, 2014.

[19] V.S. Aragón, S.C. Esquivel, and C.A. Coello Coello. Artificial immune sys-
tem for solving dynamic constrained optimization problems. In Metaheuris-
tics for Dynamic Optimization, pages 225–263. Springer, 2013.

[20] V.S. Aragón, S.C. Esquivel, and C.A. Coello Coello. Artificial immune sys-
tem for solving global optimization problems. Inteligencia Artificial. Revista
Iberoamericana de Inteligencia Artificial, 14(46), 2010.

[21] K. Pal, C. Saha, S. Das, and C.A. Coello Coello. Dynamic constrained
optimization with offspring repair based gravitational search algorithm. In

45

2013 IEEE congress on Evolutionary computation, pages 2414–2421. IEEE,
2013.

[22] M.Y. Ameca-Alducin, E. Mezura-Montes, and N. Cruz-Ramirez. Differen-
tial evolution with combined variants for dynamic constrained optimization.
In 2014 IEEE congress on Evolutionary computation, pages 975–982. IEEE,
2014.

[23] M.Y. Ameca-Alducin, E. Mezura-Montes, and N. Cruz-Ramı́rez. A repair
method for differential evolution with combined variants to solve dynamic
constrained optimization problems. In Proceedings of the 2015 Annual Con-
ference on Genetic and Evolutionary Computation, pages 241–248. ACM,
2015.

[24] H.G. Cobb. An investigation into the use of hypermutation as an adaptive
operator in genetic algorithms having continuous, time-dependent nonsta-
tionary environments. Technical report, NAVAL RESEARCH LAB WASH-
INGTON DC, 1990.

[25] J.J. Grefenstette. Genetic algorithms for changing environments. In In-
ternational Conference on Parallel Problem Solving from Nature (PPSN),
volume 2, pages 137–144, 1992.

[26] H. Richter and S. Yang. Memory based on abstraction for dynamic fitness
functions. Applications of Evolutionary Computing, pages 596–605, 2008.

[27] D. Parrott and X. Li. Locating and tracking multiple dynamic optima by a
particle swarm model using speciation. IEEE Transactions on Evolutionary
Computation, 10(4):440–458, 2006.

[28] C.A. Liu. New method for solving a class of dynamic nonlinear constrained
optimization problems. In the Sixth International Conference on Natural
Computation (ICNC), volume 5, pages 2400–2402. IEEE, 2010.

[29] H. Richter and F. Dietel. Solving dynamic constrained optimization pro-
blems with asynchronous change pattern. In European Conference on the
Applications of Evolutionary Computation, pages 334–343. Springer, 2011.

[30] X. Lu, K. Tang, and X. Yao. Speciated evolutionary algorithm for dynamic
constrained optimisation. In International Conference on Parallel Problem
Solving from Nature, pages 203–213. Springer, 2016.

46

[31] S. Yang and C. Li. A clustering particle swarm optimizer for locating and
tracking multiple optima in dynamic environments. IEEE Transactions on
Evolutionary Computation, 14(6):959–974, 2010.

[32] K. Deb. An efficient constraint handling method for genetic algorithms.
Computer Methods in Applied Mechanics and Engineering, 186(2):311–
338, 2000.

[33] M. Clerc and J. Kennedy. The particle swarm-explosion, stability, and con-
vergence in a multidimensional complex space. IEEE Transactions on Evo-
lutionary Computation, 6(1):58–73, 2002.

[34] R. Storn and K. Price. Differential evolution—a simple and efficient heuris-
tic for global optimization over continuous spaces. Journal of Global Opti-
mization, 11(4):341–359, 1997.

[35] S. Das and P.N. Suganthan. Differential evolution: A survey of the state-
of-the-art. IEEE Transactions on Evolutionary Computation, 15(1):4–31,
2011.

[36] Y. Wang, H. Liu, H. Long, Z. Zhang, and S. Yang. Differential evolution
with a new encoding mechanism for optimizing wind farm layout. IEEE
Transactions on Industrial Informatics, 14(3):1040–1054, 2018.

[37] Y. Wang, B. Xu, G. Sun, and S. Yang. A two-phase differential evolution for
uniform designs in constrained experimental domains. IEEE Transactions
on Evolutionary Computation, 21(5):665–680, 2017.

[38] Z. Liu, Y. Wang, S. Yang, and K. Tang. An adaptive framework to tune
the coordinate systems in nature-inspired optimization algorithms. IEEE
Transactions on Cybernetics, 49(4):1403–1416, April 2019.

[39] Y. Wang, D. Yin, S. Yang, and G. Sun. Global and local surrogate-assisted
differential evolution for expensive constrained optimization problems with
inequality constraints. IEEE Transactions on Cybernetics, 49(5):1642–1656,
May 2019.

[40] B.C. Wang, H.X. Li, J.P. Li, and Y. Wang. Composite differential evolution
for constrained evolutionary optimization. IEEE Transactions on Systems,
Man, and Cybernetics: Systems, (99):1–14, 2018.

47

[41] S. Das, S.S. Mullick, and P.N. Suganthan. Recent advances in differential
evolution–an updated survey. Swarm and Evolutionary Computation, 27:1–
30, 2016.

[42] J. Del Ser, E. Osaba, D. Molina, X.S. Yang, S. Salcedo-Sanz, D. Camacho,
S. Das, P.N. Suganthan, C.A. Coello Coello, and F. Herrera. Bio-inspired
computation: Where we stand and what’s next. Swarm and Evolutionary
Computation, 48:220–250, 2019.

[43] Y. Wang and Z. Cai. A dynamic hybrid framework for constrained evolu-
tionary optimization. IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), 42(1):203–217, 2012.

[44] T.T. Nguyen, S. Yang, and J. Branke. Evolutionary dynamic optimization: A
survey of the state of the art. Swarm and Evolutionary Computation, 6:1–24,
2012.

[45] T.P. Runarsson and X. Yao. Stochastic ranking for constrained evolutionary
optimization. IEEE Transactions on Evolutionary Computation, 4(3):284–
294, 2000.

[46] T. Takahama and S. Sakai. Constrained optimization by the ε constrained
differential evolution with an archive and gradient-based mutation. In 2010
IEEE Congress on Evolutionary Computation, pages 1–9. IEEE, 2010.

[47] Z. Cai and Y. Wang. A multiobjective optimization-based evolutionary
algorithm for constrained optimization. IEEE Transactions on Evolution-
ary Computation, 10(6):658–675, 2006.

[48] J. Zou, Q. Li, S. Yang, J. Zheng, Z. Peng, and T. Pei. A dynamic multiobjec-
tive evolutionary algorithm based on a dynamic evolutionary environment
model. Swarm and evolutionary computation, 44:247–259, 2019.

[49] C. Liu, Q. Chen, and D. Wang. CPG-inspired workspace trajectory genera-
tion and adaptive locomotion control for quadruped robots. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B (Cybernetics), 41(3):867–
880, 2011.

[50] X. Huang, K. Hamad, S. Amit, and X. Zhang. Variant PID controller design
for autonomous visual tracking of oil and gas pipelines via an unmanned

48

aerial vehicle. In 2017 17th International Conference on Control, Automa-
tion and Systems (ICCAS), pages 368–372. IEEE, 2017.

[51] P. Ioannou, A. Chassiakos, H. Jula, and R. Unglaub. Dynamic optimiza-
tion of cargo movement by trucks in metropolitan areas with adjacent ports.
METRANS Transportation Center, University of Southern California, Los
Angeles, CA, 90089:00–15, 2002.

49

	Introduction
	Related Work
	Test Functions of DCOPs
	EAs for Solving DCOPs
	Revising original static constrained optimization EAs
	Repair methods
	Combining dynamic unconstrained optimization strategies with constraint-handling techniques
	Other methods

	Test Suite Construction and Test Instances
	Test Suite Construction
	Test Instances
	Test Instance 1
	Test Instance 2
	Test Instance 3
	Test Instance 4
	Test Instance 5
	Test Instance 6

	Characteristics of the Proposed Test Suite

	Compared Algorithms
	CPSO
	LTFR-DSPSO
	DyCODE
	DE
	Motivation
	Algorithmic Framework

	Experimental Study
	Performance Metrics
	Parameter Settings
	 Experimental Analysis
	Dimension
	The number of the feasible regions
	Change severity of the feasible regions
	Effect of the number of peaks
	Effect of the optimal solution on the boundary of the feasible region
	The number of feasible regions changes in different environments
	Static objective function with dynamic constraints

	Conclusion

