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Abstract—Constrained multiobjective optimization problems
(CMOPs) are frequently encountered in real-world applications,
which usually involve constraints in both the decision and objec-
tive spaces. However, current artificial CMOPs never consider
constraints in the decision space (i.e., decision constraints) and
constraints in the objective space (i.e., objective constraints) at
the same time. As a result, they have a limited capability to
simulate practical scenes. To remedy this issue, a set of CMOPs,
named DOC, is constructed in this paper. It is the first attempt
to consider both the decision and objective constraints simulta-
neously in the design of artificial CMOPs. Specifically, in DOC,
various decision constraints (e.g., inequality constraints, equality
constraints, linear constraints, and nonlinear constraints) are
collected from real-world applications, thus making the feasible
region in the decision space have different properties (e.g.,
nonlinear, extremely small, and multimodal). On the other hand,
some simple and controllable objective constraints are devised
to reduce the feasible region in the objective space and to make
the Pareto front have diverse characteristics (e.g., continuous,
discrete, mixed, and degenerate). As a whole, DOC poses a
great challenge for a constrained multiobjective evolutionary
algorithm (CMOEA) to obtain a set of well-distributed and
well-converged feasible solutions. In order to enhance current
CMOEAs’ performance on DOC, a simple and efficient two-phase
framework, named ToP, is proposed in this paper. In ToP, the
first phase is implemented to find the promising feasible area
by transforming a CMOP into a constrained single-objective
optimization problem. Then in the second phase, a specific
CMOEA is executed to obtain the final solutions. ToP is applied
to four state-of-the-art CMOEAs, and the experimental results
suggest that it is quite effective.

Index Terms—Constrained multiobjective optimization prob-
lems, decision space, objective space, constraint-handling tech-
nique, evolutionary algorithms

I. INTRODUCTION

CONSTRAINED multiobjective optimization problems
(CMOPs) refer to the multiobjective optimization prob-

lems including constraints. CMOPs are not far away from our
daily life. For example, if someone wants to buy a car, he/she
may consider two essential issues: the minimum cost and at
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the same time the maximum comfort. Besides, he/she may
have some other requirements. For example, the number of
seats should be more than five, the car should be a German
car, and the cost of the car should be less than $50K. This
car selection problem can be regarded as a CMOP since it
contains two conflicting objectives (i.e., the minimum cost and
the maximum comfort) and three constraints (i.e., Seats ≥ 5,
Country = Germany, and Cost ≤ $50K).

Without loss of generality, a CMOP can be expressed as:

min F(x) = (f1(x), f2(x), . . . , fm(x))T ∈ F
s.t. gj(x) ≤ 0, j = 1, . . . , l

hj(x) = 0, j = l + 1, . . . , n

x = (x1, x2, . . . , xD)T ∈ S

(1)

where x is a D-dimensional decision vector, S is the decision
space, F(x) consists of m real-valued objective functions, F is
the objective space, fi(x) is the ith objective function, gj(x)
is the jth inequality constraint, hj(x) is the (j− l)th equality
constraint, and l and (n− l) are the number of inequality and
equality constraints, respectively.

Indeed, CMOPs are frequently encountered in many science
and engineering disciplines. Many real-world applications can
be formulated as CMOPs, such as the web service location
allocation [1], the risk-constrained energy and reserve pro-
curement [2], the optimal scheduling in microgrids [3], the
optimal demand response strategies to mitigate oligopolistic
behavior [4], and the deployment optimization of near space
communication [5]. These real-world CMOPs usually contain
multiple objective functions1 and diverse constraints.

In terms of constraints, they usually have various forms
and features [6], [7], [8], [9]. According to our observation,
constraints in real-world CMOPs can be roughly classified
into two categories: the decision constraints and the objective
constraints. In this paper, the decision constraints refer to the
constraints which cannot be expressed by objective functions
and thus cannot be described explicitly in the objective space.
Most constraints in real-world applications belong to the
decision constraints. For the objective constraints, they are
formulated by objective functions due to the fact that objective
functions may be mutually restricted. Overall, the decision
and objective constraints are easier to be interpreted in the
decision and objective spaces, respectively. To make a clear
explanation of these two kinds of constraints, we take the

1At least two of them are conflicting with each other.
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Fig. 1. Illustration of the objective constraint in the objective space. It
is obvious that the constraint Cost ≤ $50K is an objective constraint in
the objective space. However, the constraints Seats ≥ 5 and Country =
Gemany cannot be described in a straightforward way in the objective space.

above car selection problem as an example. As shown in
Fig. 1, the constraint Cost ≤ $50K can be directly described
in the objective space while the constraints Seats ≥ 5 and
Country = Gemany cannot. Therefore, Cost ≤ $50K is an
objective constraint and Seats ≥ 5 and Country = Gemany
are two decision constraints. In general, combining these
two kinds of constraints together causes great difficulties and
challenges to the solution of CMOPs.

Although many researchers have a consensus that con-
strained multiobjective evolutionary algorithms (CMOEAs)
are a promising way to deal with CMOPs [10], little effort
has been devoted to developing CMOEAs in the community
of evolutionary computation although both multiobjective EAs
(MOEAs) [11] and constraint-handling techniques [12] have
been extensively investigated individually. To boost the devel-
opment of CMOEAs, constrained multiobjective optimization
benchmark functions are always required. Note, however, that
real-world CMOPs are usually not suitable to be benchmark
functions, since the computational simulation of them may
require special hardware or software [13]. Hence, it is a
very important topic to devise some representative artificial
CMOPs to simulate real-world scenes, which can definitely
help researchers to analyze and understand the performance
of CMOEAs and encourage users to select the desired ones.

Unfortunately, current artificial CMOPs do not consider
the decision constraints and the objective constraints simul-
taneously. For some artificial CMOPs, such as CTP [8], C-
DTLZ [14], NCTPs [15] and DAS-CMOPs [16], only the
objective constraints are considered while the decision con-
straints are neglected in the design process. In addition, with
respect to CFs [17], the decision and objective constraints are
considered individually. Due to the fact that the decision and
objective constraints widely coexist in real-world CMOPs, the
capability of current artificial CMOPs to simulate practical
scenes is limited. Moreover, according to the report in [13],
for many current artificial CMOPs, even an MOEA without
any constraint-handling technique can find well-approximated
feasible solutions. The above phenomenon means that the
effectiveness of these artificial CMOPs is questionable. There-
fore, it is necessary to carry out an in-depth investigation on

the construction of artificial CMOPs.
Based on the above considerations, we design a set of

CMOPs in this paper, named DOC, which takes both the
decision and objective constraints into account simultaneous-
ly. In DOC, a variety of decision constraints is collected
from real-world applications (e.g., inequality constraints, equa-
lity constraints, linear constraints, and nonlinear constraints),
which can help to construct the feasible region in the decision
space and make the feasible region have many properties
(e.g., nonlinear, extremely small, and multimodal). Meanwhile,
some simple and controllable objective constraints are de-
signed to restrict the feasible region in the objective space
and to make the Pareto front associated with various charac-
teristics, such as continuous, discrete, mixed, and degenerate.

Due to the above complicated properties of DOC, the
performance of current CMOEAs is poor based on our exper-
iments. When solving DOC, it is very challenging for current
CMOEAs to approach the Pareto optimal set. To improve
the performance of current CMOEAs, we propose a brand-
new two-phase framework, referred to as ToP. In the first
phase, a CMOP in DOC is transformed into a constrained
single-objective optimization problem. This transformation not
only leads to faster convergence speed but also alleviates the
premature convergence inside the feasible region. Moreover,
the objective function information can be flexibly utilized
because of the single objective function. Afterward, a specific
CMOEA is implemented in the second phase to obtain the
final solutions. Because of its simple structure, ToP can
be integrated with many current CMOEAs. In this paper,
we have successfully applied ToP to four state-of-the-art
CMOEAs: NSGA-II-CDP [10], IDEA [18], CMOEAD [19],
and MOEA/D-CDP [20].

The main contributions of this paper are summarized as
follows:
• This paper constructs a set of novel artificial CMOPs,

called DOC. To the best of our knowledge, it is the
first attempt to consider both decision and objective con-
straints simultaneously in the design of artificial CMOPs.
Moreover, both equality and inequality constraints are
involved in DOC. Note that at present, few artificial
CMOPs consider equality constraints [21].

• A novel two-phase framework named ToP is proposed in
this paper. The unique feature of ToP is its first phase, in
which we transform a CMOP into a constrained single-
objective optimization problem by making use of the
weighted sum approach. In addition, current CMOEAs
can be directly applied in the second phase. These two
phases aim at discovering the promising feasible area
and achieving the Pareto optimal solutions, respectively.
It should be noted that we do not design any new
weighted sum approach, constraint-handling technique,
search engine, and CMOEA. It is because we focus on the
reason why the performance of current CMOEAs is poor
on DOC and how to enhance the performance of current
CMOEAs on DOC through a two-phase perspective.
Moreover, we would like to keep our framework simple
to understand and easy to implement.

• Systematic experiments have been conducted on DOC
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to verify the effectiveness of ToP. The experimental
results suggest that ToP can significantly improve the
performance of four well-established CMOEAs.

The rest of this paper is organized as follows. Section II
introduces the related work. The details of DOC are given
in Section III. Subsequently, ToP is presented in Section IV.
The experimental setup is introduced in Section V and the
experiments and discussions are carried out in Section VI.
Finally, Section VII concludes this paper.

II. RELATED WORK

In this section, we will introduce some basic definitions
in CMOPs and give a brief introduction to current artificial
CMOPs and CMOEAs.

A. Basic Definitions in CMOPs

• Pareto Dominance: Considering the m objective func-
tions of a CMOP in (1) and two decision vectors xu

and xv , if ∀i ∈ {1, 2, . . . ,m}, fi(xu) ≤ fi(xv) and
∃i ∈ {1, 2, . . . ,m}, fi(xu) < fi(xv), then xu is said
to Pareto dominate xv , denoted as xu ≺ xv .

• Feasible Region: The feasible region of a CMOP in (1)
is defined as O = {x ∈ S|CV (x) = 0}, where

CV (x) =

n∑
i=1

CVi(x) (2)

is the degree of constraint violation on all the constraints
and CVi(x) is the degree of constraint violation on the
ith constraint:

CVi(x) =

{
max(0, gi(x)), if i ≤ l
max(0, |hi(x)| − η), otherwise

, i = 1, . . . , n

(3)
In (3), η is a very small positive value (e.g., η = 10−4).

• Pareto Optimal Solution: A solution xu ∈ O is called a
Pareto optimal solution of a CMOP if and only if ¬∃xv ∈
O, xv ≺ xu.

• Pareto Optimal Set: The Pareto optimal set of a CMOP
is defined as PS = {xu ∈ O|¬∃xv ∈ O, xv ≺ xu}.

• Pareto Front: The Pareto front of a CMOP is defined as
PF = {F(xu)|xu ∈ PS}, which is the image of the
Pareto optimal set in the objective space.

B. A Brief Introduction to Current Artificial CMOPs

To date there exist a few artificial CMOPs to test CMOEAs’
performance. In this paper, we classify them into two cate-
gories, according to the way of constructing constraints.

The first category only constructs the objective constraints
yet ignores the decision constraints. Most of current artificial
CMOPs belong to this category, including CTPs [8], C-
DTLZ [14], DAS-CMOPs [16], and NCTPs [15]. CTPs were
proposed by Deb et al. in 2000 [8], which are the most
commonly used artificial CMOPs. This test set contains seven
CMOPs and all of them are two-objective optimization prob-
lems. Overall, CTPs provide two different types of difficulties
to a CMOEA: 1) the difficulty in the vicinity of the Pareto
front, and 2) the difficulty in the entire search space. In the

first type, the constraints can make the unconstrained Pareto
optimal solutions infeasible and divide the Pareto front into a
number of discrete regions. In the second type, the constraints
are designed to reduce the feasible region in the entire search
space. Note that the difficulties in CTPs are tunable. In terms
of the C-DTLZ problems [14], they are constructed by adding
constraints to the DTLZ problems [22]. This test suite includes
five CMOPs and each of them can be scalable to more than
15 objectives. The C-DTLZ problems can be divided into
three types. Type I introduces difficulties in converging to the
Pareto front, type II introduces infeasibility to a part of the
Pareto front, and in type III, multiple constraints are involved
and portions of the added constraint surfaces form the Pareto
front. As for DAS-CMOPs, it was presented by Fan et al. [16]
in 2016. This test suite contains nine CMOPs and all of
them are constructed by using a novel toolkit. This toolkit
considers three primary types of difficulties to characterize the
constraint functions in CMOPs, including feasibility-hardness,
convergence-hardness, and diversity-hardness. Afterward, this
toolkit constructs three types of parameterized constraint func-
tions according to the proposed three primary types of diffi-
culties. By combining the constraint functions with different
parameters, a variety of CMOPs, whose difficulty can be
adjustable and scalable, is generated. Very recently, Li et al.
proposed NCTPs [15], which are based on CTPs [8]. As
pointed out in [15], CTPs have some weaknesses, such as
the low dimension and large feasible region. To overcome
these issues, 18 test instances are devised. Compared with the
original CTPs, NCTPs exhibit more complex characteristics.
To be specific, in NCTPs, different test instances have different
shapes of the Pareto front, different dimensions of the search
space, and different sizes of the feasible region.

In the second category, the decision and objective con-
straints are developed individually. CFs, proposed by Zhang
et al. [17] in 2008, are a representative in this category. They
consist of ten CMOPs, in which seven are two-objective opti-
mization problems and three are three-objective optimization
problems. The construction of problems 1 − 3 and 8 − 10 is
inspired by the method introduced in [8], in which only the
objective constraints are considered. While for the others, they
are constructed by the authors themselves, in which only the
decision constraints are involved.

C. A Brief Introduction to Current CMOEAs
In essence, a CMOEA involves two key components: a

MOEA and a constraint-handling technique. In terms of
the former, the current CMOEAs can be roughly grouped
into three classes [23]: the dominance-based approach-
es, the decomposition-based approaches, and the indicator-
based approaches. Since very few attempts are made to-
ward the indicator-based CMOEAs, in this subsection, we
only introduce the dominance-based and decomposition-based
CMOEAs.

In the dominance-based CMOEAs, the dominance rule is
employed to rank the individuals. The most famous one in
this class is NSGA-II-CDP, which is an extension of NSGA-
II [10] for solving CMOPs. In NSGA-II-CDP, the constraint-
domination principle (CDP) is proposed to sort the individuals.
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Specifically, any feasible individuals dominate any infeasible
individuals, and for two infeasible individuals, the individual
with a smaller constraint violation is preferred. IDEA [18] is
another popular CMOEA which explicitly maintains a small
percentage of infeasible solutions during the evolution. It is
claimed that the presence of infeasible solutions is beneficial
for IDEA to search the Pareto optimal solutions from both
the feasible and infeasible regions. When solving CMOPs, the
adaptive tradeoff model [15] divides the whole evolutionary
process into three situations according to the feasibility pro-
portion of the current population. These three situations are
the infeasible situation, the semi-feasible situation, and the
feasible situation. In different situations, different constraint-
handling techniques are designed to cope with constraints.
In [24], Woldesenbet and Yen proposed a CMOEA based on
an adaptive penalty function and a distance measure, which
can not only search for the Pareto optimal solutions in the
feasible region, but also exploit the important information
provided by the infeasible individuals with better objective
function values and lower constraint violations. In [25], Young
presented a CMOEA, which can cross the infeasible regions of
the objective space and find the true constrained Pareto front.
The main idea of this algorithm is to blend an individual’s
rank in the objective space with its rank in the constraint space.
In [26], a CMOEA is proposed in which the Pareto dominance
concept is combined with a constraint-handling technique and
a diversity mechanism. In [27], a new constraint-handling
technique based on Pareto-optimality and niching concept is
presented for handling CMOPs. In [28] and [29], the simulated
annealing and immune system model are used for solving
CMOPs, respectively, while in [30] and [31], differential
evolution (DE) is applied to cope with CMOPs. In [32], Jiao et
al. introduced a modified objective function method to lead a
dominance checking, and adopted a feasible-guiding strategy
to repair the infeasible individuals. Recognizing the limitation
of a single constraint-handling technique, a novel CMOEA
is proposed in [33], which makes use of an ensemble of
constraint-handling techniques to solve CMOPs.

In the decomposition-based CMOEAs, the original CMOP
is decomposed into a set of constrained single-objective
optimization problems, and then these problems are opti-
mized in a collaborative way [34]. In [19], a decomposition-
based CMOEA named CMOEAD is proposed, which can
be regarded as an extension of MOEA/D [35] by adding a
novel constraint-handing technique. In this constraint-handling
technique, the violation threshold is adaptively adjusted based
on the type of constraints, the size of the feasible space, and the
search outcome. The aim of this constraint-handling technique
is to add selection pressure, and to make the infeasible
solutions with violations less than the identified threshold at
par with the feasible solutions. In [20], the extended/modified
versions of stochastic ranking and CDP are implemented under
the MOEA/D framework. The experimental results suggest
that CDP works better than stochastic ranking. In [36], an
improved epsilon constraint-handling technique is applied to
MOEA/D, in which the epsilon level is dynamically adapted
according to the feasibility ratio in the current population.
Recently, a push and pull search (PPS) framework is embedded
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Fig. 2. Pareto front of the objective functions in (4).

into MOEA/D for solving CMOPs [37]. In PPS, the search
process is divided into two different stages: the push stage
and the pull stage. In the push stage, the constraints are
ignored, aiming to get across the infeasible regions in front
of the unconstrained Pareto front. Then in the pull stage, the
constrains are considered, and an improved epsilon constraint-
handling technique is employed to pull the solutions obtained
in the push stage toward the feasible and nondominated area.
Very recently, in [38], a constraint-handling technique named
angle-based constrained dominance principle is incorporated
into MOEA/D for solving CMOPs.

III. PROPOSED CMOPS

From the above introduction, it is clear that current artificial
CMOPs never include constraints in both the decision and
objective spaces simultaneously. In this paper, we seek to
remedy this issue by constructing a new set of CMOPs, called
DOC. Next, we will introduce the principle, instances, and
characteristics of DOC.

A. Principle of DOC

In general, a CMOP with constraints in both the decision
and objective spaces should comprise of three aspects: objec-
tive functions, objective constraints, and decision constraints.
In DOC, three steps are implemented to construct these three
aspects, respectively.

It is well-known that in unconstrained multiobjective op-
timization, many excellent benchmark functions have been
put forward during the past two decades [17], [22], [39],
[40]. Thus, in the first step, it is not a difficult task to
construct objective functions for CMOPs, since we can benefit
from the benchmark functions of unconstrained multiobjective
optimization. For example, based on the idea in [40], it is easy
to construct the following two objective functions:{

min f1 = x1

min f2 = g(x)
(
1− f1

g(x)

) (4)

Suppose that g(x) = 1 + x2 + x3, 0 ≤ x1 ≤ 1, and
0 ≤ x2, x3 ≤ 10. Under this condition, g(x) can reach the
minimum value (i.e., 1), when x2 = 0 and x3 = 0. It is
necessary to note that the Pareto front of (4) is dependent on
the minimum value of g(x) [40]. Based on the minimum value
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Fig. 3. Illustration of the effect of the objective constraints. The red arc is
the Pareto front, and the blue region is the feasible region in the objective
space. As can be seen, the objective constraints cut down the feasible region
in the objective space and modify the Pareto front.

of g(x), we can obtain the Pareto front, as shown in Fig. 2:

f2 = 1− f1
0 ≤ f1 ≤ 1

(5)

The aim of the second step is to add objective constraints to
the objective functions. In principle, the objective constraints
can cut down the feasible region in the objective space and
produce a constrained Pareto front. It is noteworthy that
the constrained Pareto front may be totally different from
the unconstrained Pareto front, in terms of the shape and
location. Actually, the construction of objective constraints is
straightforward. We can make use of some simple functions
to describe the relationship among the objective functions.
Moreover, we can modify such functions to control the size
and shape of the feasible region in the objective space, due to
the fact that it is easy to visualize the objective constraints
if the number of objective functions is less than four. For
example, we add the following two objective constraints to (4):

g1 = f21 + f22 ≤ 1;

g2 = (f1 + 1)2 + (f2 + 1)2 ≥ 5.
(6)

It can be observed from Fig. 3 that the objective constraints
result in a small feasible region in the objective space, and the
Pareto front is changed to an arc:

f2 =
√
4− 2f1 − f21 − 1

0 ≤ f1 ≤ 1
(7)

Finally, the decision constraints are constructed. Overall,
this kind of constraints can reduce the feasible region in the
decision space and make the feasible region have a variety
of complex properties. In order to explain the construction of
decision constraints, we still take (4) as an example and add
the following two decision constraints:

g3 = x2 + 2x3 ≤ 6;

h1 = 2x2 + x3 = 6.
(8)

As depicted in Fig. 4, the feasible region in the x2−x3 plane
is extremely small, which is a line segment:

x3 = −2x2 + 6

2 ≤ x2 ≤ 3
(9)
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Fig. 4. Illustration of the effect of the decision constraints. The blue line
segment is the feasible region. We can see that the decision constraints reduce
the feasible region in the decision space significantly.

If we just consider the decision constraints in (8), g(x) =
1 + x2 + x3 will reach the minimum value (i.e., 4) and the
maximum value (i.e., 5), when x2 = 3 and x3 = 0 and when
x2 = 2 and x3 = 2, respectively. Thus, the value of g(x)
ranges from 4 to 5. Under this condition, according to (4), the
value of f2 will range from (4−f1) to (5−f1). Due to the fact
that 0 ≤ f1 = x1 ≤ 1, the value of f2 will range from 3 to
5. It is interesting to see that the objective constraint g1 in (6)
cannot be satisfied any more. It is because the absolute value of
f2 in g1 should be less than 1. This phenomenon suggests that
the decision constraints may be conflicting with the objective
constraints, which may make the constructed CMOP have no
feasible solution.

To address this problem, a simple way is to modify g(x)
to guarantee that there exist feasible solutions in both the
decision and objective spaces. For example, if g(x) is modified
by subtracting 3, then g(x) = (1+x2+x3)−3 = −2+x2+x3.
As a result, the finally constructed CMOP is:{

min f1 = x1

min f2 = g(x)
(
1− f1

g(x)

) (10)

s.t.
g1 = f21 + f22 ≤ 1;

g2 = (f1 + 1)2 + (f2 + 1)2 ≥ 5;

g3 = x2 + 2x3 ≤ 6;

h1 = 2x2 + x3 = 6.

(11)

where g(x) = −2 + x2 + x3 , 0 ≤ x1 ≤ 1, and 0 ≤ x2, x3 ≤
10.

Remark 1: Compared with the decision constraints, the
objective constraints can control the Pareto front of a CMOP in
the objective space flexibly. Thus, we can easily design various
CMOPs with known Pareto fronts. Under this condition, the
performance of difference CMOEAs can be evaluated and
compared via the designed CMOPs. In principle, the objective
constraints and the decision constraints can be dealt with by
the same constraint-handling technique during the evolution
since both of them should be satisfied.

B. Instances of DOC

Following the above three steps, we have constructed nine
instances of DOC, which are presented in the supplementary
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TABLE I
INFORMATION OF DOC.

Instance m D NOC NDC NIC NEC Feasibility Ratio Properties of the Pareto Front Properties of the Feasible Region

DOC-1 2 6 1 6 7 0 26.97% Concave, Continuous Nonlinear
DOC-2 2 16 2 5 7 0 0.00% Convex, Disconnected Very small, Nonlinear
DOC-3 2 10 4 6 6 4 0.00% Concave, Disconnected, Multimodal Very small, Nonlinear, Multimodal
DOC-4 2 8 2 4 6 0 0.53% Linear, Disconnected Nonlinear, Small
DOC-5 2 8 3 6 4 5 0.00% Disconnected, Multimodal Very small, Nonlinear
DOC-6 2 11 2 8 10 0 0.00% Mixed, Multimodal Very small, Nonlinear
DOC-7 2 11 3 3 3 3 0.00% Mixed, Multimodal Very small, Multimodal
DOC-8 3 10 1 6 7 0 0.00% Linear, Disconnected Very small, Nonlinear
DOC-9 3 11 1 13 14 0 0.00% Degenerate, Multimodal Very small, Nonlinear, Multimodal

file. To be specific, there are seven CMOPs with two objective
functions and two CMOPs with three objective functions.

Although researchers put more emphasis on the objective
constraints in the present study, it is more common to face
the decision constraints in real-world applications. Moreover,
the construction of decision constraints is much harder than
that of objective constraints. The reasons are twofold: 1) the
number of decision variables is usually significantly larger than
that of objective functions; and 2) it is difficult to control
the size and shape of the feasible region in the decision
space due to the higher dimension. Fortunately, Liang et
al. [41] collected 24 practical constrained single-objective
optimization problems at IEEE CEC2006. These 24 problems
only contain the decision constraints. In DOC, we borrow the
decision constraints from [41] based on the following two
considerations: 1) the decision constraints in [41] have been
well-studied during the past 12 years and we have already
carried out a series of work to ascertain their properties [42],
[43], [44]; and 2) the minimum value of g(x) under the
decision constraints can be obtained by employing a powerful
constrained single-objective EA, such as the method proposed
in [45]. Note that once we get the minimum value of g(x)
under the decision constraints of each instance, we can obtain
the Pareto front of each instance. Therefore, the Pareto front
of each instance in DOC can be known a priori.

C. Characteristics of DOC

The main information of the proposed DOC is summarized
in Table I. In this table, m denotes the number of objective
functions, D is the dimension, NOC and NDC are the num-
ber of objective constraints and decision constraints, respec-
tively, and NIC and NEC denote the number of inequality
and equality constraints, respectively. For the feasibility ratio,
it was estimated by computing the percentage of feasible solu-
tions among 105 uniformly and randomly generated solutions
from the search space, following the suggestion in [24].

Next, we give the following comments on DOC:
• It considers the objective and decision constraints at the

same time. As a result, DOC exhibits better potential
to simulate actual scenes, compared with other artificial
CMOPs. Hence, it is believed that DOC is a better test
bed.

• It contains both inequality and equality constraints. It is
common to face equality constraints in actual CMOPs,
which can result in a very small feasible region. Unfor-

tunately, few current artificial CMOPs involve equality
constraints.

• The Pareto fronts of DOC have various properties, such as
continuous, disconnected, convex, concave, linear, mixed,
degenerate, and multimodal.

• The feasible regions in the decision space also show many
properties, such as nonlinear, very small, and multimodal.

• Because of the above diverse characteristics, it is expected
that DOC can attract much attention from the evolu-
tionary computation research community, thus further
promoting the development of evolutionary constrained
multiobjective optimization.

IV. PROPOSED FRAMEWORK

A. ToP

As introduced in Section III, DOC includes many complex
properties in both the decision and objective spaces by con-
structing objective constraints, decision constraints, equality
constraints, and inequality constraints, which cause grand
difficulties for a CMOEA to firstly find the promising feasible
area2, and subsequently find the Pareto optimal solutions. The
reasons why it is hard for a CMOEA to find the promising
feasible area are explained as follows:

• Due to the fact that a CMOEA needs to balance all the
objective functions in the feasible region, the convergence
speed of the population is inevitably slow.

• It is expected that each individual in the population can
become a Pareto optimal solution of a CMOP in the
end. Suppose that a CMOP has a convex Pareto front.
According to [46], we know that each Pareto optimal
solution of (1) corresponds to the optimal solution of a
constrained single-objective optimization problem with a
weight vector w = {w1, w2, . . . , wm}T . By using the
weighted sum approach, (1) can be transformed as:

min
m∑
i=1

wi ∗ fi(x)

s.t. gj(x) ≤ 0, j = 1, . . . , l

hj(x) = 0, j = l + 1, . . . , n

x = (x1, x2, . . . , xD)T ∈ S

(12)

2The promising feasible area denotes either the feasible area around the
Pareto optimal solutions in the decision space or the feasible area around the
Pareto front in the objective space.
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Fig. 5. Extending the distribution of the population from different places. It is clear that the extension of the population from the central part of the Pareto
front is easier than from both the top and bottom parts of the Pareto front.

where wi ≥ 0 for all i = 1, 2, . . . ,m, and
∑m

i=1 wi = 1.
Suppose that the population size is N . If there is a
local optimal solution in the decision space, then all
the N constrained single-objective optimization problems
with N different weight vectors should jump out of this
local optimal solution, with the purpose of finding the
promising feasible area. Obviously, the above process will
consume a considerable number of fitness evaluations.
In principle, any CMOEA will face this dilemma. More
importantly, if there are numerous local optimal solutions
in the decision space, the efficiency and effectiveness of
a CMOEA will drastically drop.

• In constrained optimization, the information provided by
the objective function plays an important role in searching
for the optimal solution, in particular, searching for the
optimal solution located on the boundaries of the feasible
region [45]. However, for a CMOP, it is not trivial to make
use of the objective function information as it always
includes several conflicting objective functions.

Recognizing the above three aspects, we propose a new
framework called ToP, which divides the solution of a CMOP
into two phases. In the first phase, a CMOP is transformed
into a constrained single-objective optimization problem:

min f
′
(x) =

m∑
i=1

fi(x)

s.t. gj(x) ≤ 0, j = 1, . . . , l

hj(x) = 0, j = l + 1, . . . , n

x = (x1, x2, . . . , xD)T ∈ S

(13)

(13) is a special case of (12) with the weight vector w =
{w1 = 1/m,w2 = 1/m, · · · , wm = 1/m}T . Compared
with other weight vectors, the benefit of this weight vector is
explained in the following. The image of the optimal solution
of the constrained single-objective optimization problem with
this weight vector may be approximately located in the center
of the Pareto front of the original CMOP. As a result, after the
first phase, the images of the high-quality candidate solutions
may also scatter around the central part of the Pareto front
of the original CMOP, which makes the extension of the

Algorithm 1 ToP
Input: a CMOP and the population size N
Output: Pt+1

1: Initialization(P0);
2: t← 0
3: while the stopping criterion is not met do
4: if TOP is in its first phase then
5: Pt+1 ← Constrained-Single-Objective-Optimization(Pt)
6: else
7: Pt+1 ← Constrained-Multiobjective-Optimization(Pt)
8: end if
9: t← t+ 1;

10: end while

distribution of the population easier (as explained in Fig. 5).
Since we only modify the objective functions while keeping
the constraints untouched, (1) and (13) share the same feasible
region.

Compared with solving (1) directly, the above transforma-
tion provides the following technical advantages:
• In most cases, (13) only contains one optimal solution and

under this condition an optimization method only needs
to focus on this optimal solution [47]. As a consequence,
the convergence speed of the population in the feasible
region is faster.

• For a local optimal solution in the decision space, we only
need to guide a constrained single-objective optimization
problem, rather than N constrained single-objective op-
timization problems, to cross the local attraction basin.

• It is easy to obtain and utilize the objective function in-
formation. Moreover, such information can be integrated
with a search engine to search for the optimal solution.

Because of the aforementioned advantages, the first phase
has the good potential to probe the promising feasible area.
Nevertheless, it is necessary to note that the ultimate goal is
to find the Pareto optimal solutions of the original CMOP,
the images of which are uniformly distributed over the Pareto
front. To this end, it is necessary to make the images of
the individuals produced in the first phase further approach
the Pareto front and uniformly spread over the Pareto front
simultaneously. Clearly, a CMOEA can be an effective tool
to achieve this. Therefore, in the second phase, a specific
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CMOEA is implemented.
The main framework of ToP is presented in Algorithm 1.

Overall, the tasks of the first and second phases are solving the
transformed constrained single-objective optimization problem
and the original CMOP, respectively.

B. The First Phase—Constrained Single-Objective Optimiza-
tion

When solving a constrained single-objective optimization
problem, an optimization method should include two main
components: a constraint-handling technique and a search
engine. In addition, since the aim of the first phase is to provide
high-quality candidate solutions for the second phase, it is
necessary to design a stopping criterion for the first phase.

1) Constraint-handling Technique: The feasibility rule [48]
serves as the constraint-handling technique in ToP to compare
pairwise individuals. Specifically, given two individuals xu

and xv , xu is said to be better than xv if one of the following
cases is satisfied:
• both xu and xv are the feasible solutions, and f

′
(xu) <

f
′
(xv);

• xu is feasible yet xv is infeasible;
• both xu and xv are the infeasible solutions, and
CV (xu) < CV (xv);

In general, the feasibility rule can motivate the population to
approach or enter the feasible region promptly.

2) Search Engine: DE [49] is considered as the search
engine in ToP. We employ two popular trial vector generation
strategies of DE to generate offspring for each individual
xi = (xi,1, xi,2, . . . , xi,D)T (i ∈ {1, . . . , N}): DE/current-to-
rand/1 and DE/rand-to-best/1/bin.
• DE/current-to-rand/1:

ui = xi + F ∗ (xr1 − xi) + F ∗ (xr2 − xr3) (14)

• DE/rand-to-best/1/bin:

vi = xr1 + F ∗ (xbest − xr1) + F ∗ (xr2 − xr3) (15)

ui,j =

{
vi,j , if randj < CR or j = jrand

xi,j , otherwise
, j = 1, . . . , D.

(16)

where vi = (vi,1, vi,2, . . . , vi,D)T is the ith mutant vector,
ui = (ui,1, ui,2, . . . , ui,D)T is the ith trial vector, r1, r2 and
r3 are three mutually different integers randomly chosen from
[1, N ] and also different from i, xbest denotes the individual
with the smallest transformed objective function value in the
current population, randj is a uniformly distributed random
number between 0 and 1 for each j, jrand is a random integer
in [1, D], F is the scaling factor, and CR is the crossover con-
trol parameter. In DE/current-to-rand/1, the binomial crossover
is not applied; thus, it is rotation-invariant.

In DE/current-to-rand/1, each individual learns the informa-
tion from other randomly selected individuals. In contrast, in
DE/rand-to-best/1/bin, the information of the best individual
is exploited. Note that the best individual is determined
based on the transformed objective function f

′
. As analyzed

in [45], before the population enters the feasible region, the

Algorithm 2 Constrained-Single-Objective-Optimization
Input: Pt = (x1,x2, . . . ,xN )
Output: Pt+1

1: Pt+1 = ∅
2: for i = 1 : N do
3: if rand < 0.5 then
4: Generate the trial vector ui according to (14);
5: else
6: Generate the trial vector ui according to (15) and (16);
7: end if
8: Employ the feasibility rule to compare ui and xi, and store the better

one into Pt+1;
9: end for

individual with the smallest f
′

may change from generation to
generation. Under this condition, the best individual is similar
to a randomly selected individual. Therefore, both DE/current-
to-rand/1 and DE/rand-to-best/1/bin are able to enhance the
exploration ability of the population. After the population
enters the feasible region, if the individual with the smallest
f
′

is a feasible solution, then the population will be guided
by this individual toward the optimal solution. However, if the
individual with the smallest f

′
is an infeasible solution near

the boundaries of the feasible region, it is very likely that the
optimal solution is located on the boundaries of the feasible
region. In this case, the information of the best individual can
be used to search around the boundaries of the feasible region.
Therefore, the information provided by the objective function
is beneficial for exploration in the early stage of evolution and
for exploitation in the later stage of evolution.

In this paper, DE/current-to-rand/1 and DE/rand-to-
best/1/bin are applied to generate a trial vector ui for each
individual xi with the same probability, i.e., 0.5. In addition,
following the suggestion in [45], F and CR are randomly
chosen from a scaling factor pool (i.e., Fpool = [0.6, 0.8, 1.0])
and a crossover control parameter pool (i.e., CRpool =
[0.1, 0.2, 1.0]), respectively. After the trial vector has been
generated, the feasibility rule selects the better one between
xi and ui for the next generation.

The framework of constrained single-objective optimization
is presented in Algorithm 2.

3) Stopping Criterion: If we give plenty of fitness evalua-
tions to the first phase, all the individuals in the population may
converge to the optimal solution of the transformed single-
objective optimization problem. Obviously, it is not desirable
and the evolution should be halted before the population
converge to a single point. In essence, when the first phase
ends, we expect to obtain a number of high-quality feasible
solutions, which are close to the Pareto optimal solutions of
the original CMOP, but maintaining a good diversity. Under
this circumstance, we consider that the population attains the
promising feasible area. To obtain such high-quality feasible
solutions, we design the following two conditions:

• Condition 1: The feasibility proportion (i.e., Pf ) of the
current population is larger than 1/3.

• Condition 2: Suppose that fmax,j and fmin,j represent
the maximum and minimum values of the jth objective
function among all the discovered feasible solutions dur-
ing the evolution, respectively. Afterward, the jth objec-
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tive function of each feasible individual in the population
(denoted as yi) is normalized as follows:

f j(yi) =
fj(yi)− fmin,j

fmax,j − fmin,j
(17)

Subsequently, we add up all the normalized objective
function values and obtain f

′
(yi):

f
′
(yi) =

m∑
j=1

f j(yi) (18)

Finally, we sort the feasible solutions based on f
′
, and

calculate the biggest difference of f
′

among the first 1/3
feasible solutions. If this difference (i.e., δ) is less than
0.2, the second condition is regarded to be satisfied.

The aim of condition 1 is to guarantee that a number of
feasible individuals have been obtained. In addition, condition
2 denotes that some feasible solutions are of high quality and
gradually converge to a small area. Therefore, the first phase
should be terminated once both condition 1 and condition 2
are met, thus maintaining the quality of the feasible solutions
and preventing the loss of the diversity.

C. The Second Phase—Constrained Multiobjective Optimiza-
tion

Although the promising feasible area has been found, some
individuals in the population may still be far away from the
Pareto optimal solutions since we only utilize the best 1/3
feasible solutions in the population to test condition 2. Thus,
the whole population should be further evolved toward the
Pareto optimal solutions. On the other hand, due to the lack
of explicit diversity preservation mechanism in constrained
single-objective optimization, it is necessary to spread the
image of the whole population throughout the Pareto front.

Fortunately, based on the high-quality candidate solutions
produced in the first phase, it is not a difficult task for
a CMOEA to achieve well-distributed and well-converged
feasible solutions efficiently. The reason is simple: converging
to the Pareto front and maintaining a well-distributed set of
nondominated feasible solutions are two fundamental goals of
a CMOEA. Thereby, in principle, any CMOEA is applicable
in the second phase of ToP.

V. EXPERIMENTAL SETUP

A. Test Instances and Performance Metrics
Our experiments were conducted on DOC which contains

nine instances. These instances are denoted as DOC-1-DOC-
9, which can be divided into two groups: 1) two-objective
CMOPs: DOC-1-DOC-7; and 2) three-objective CMOPs:
DOC-8 and DOC-9.

To compare the performance of different algorithms, three
indicators were employed in our experiments.
• Feasible Rate (FR): Suppose that FeasibleRuns denotes

the number of runs where a CMOEA can find at least one
feasible solution in the final population, and TotalRuns
denotes the number of total runs. Then, FR is defined as:

FR =
FeasibleRuns

TotalRuns
(19)
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Fig. 6. Images of the feasible solutions obtained after the first and second
phases, which are provided by ToP-NSGA-II-CDP on DOC-1 in a run.

The value of FR ranges from 0% to 100%, and the larger
the value of FR, the higher the probability that a CMOEA
enters the feasible region.

• Inverted Generational Distance (IGD) [50]: IGD has
been widely used to evaluate a MOEA’s performance.
However, IGD may lose its effectiveness to evaluate a
CMOEA owing to the existence of the infeasible solu-
tions. Herein, we only keep the feasible solutions and
compute the IGD value of them. Specifically, suppose
that P is the set of images of the feasible solutions, and
P∗ is a set of nondominated points uniformly distributed
on the Pareto front. Then, the IGD metric is calculated
as:

IGD(P) = 1

|P∗|
∑

z∗∈P∗
distance(z∗,P) (20)

where distance(z∗,P) is the minimum Euclidean dis-
tance between z∗ and all the feasible solutions in P , and
|P∗| is the cardinality of P∗. The smaller the IGD value,
the better the performance of a CMOEA.

• Hypervolume (HV) [51]: Similarly, the infeasible solu-
tions should be deleted before the calculation of HV.
Then, HV measures the volume enclosed by P and a
specified reference point in the objective space [52].
HV has the capability to assess both convergence and
diversity of P . Usually, the larger the HV value, the better
the performance of a CMOEA. In our experiments, the
HV value is calculated by using the reference point which
is set to 1.1 times of the upper bounds of the Pareto front.

B. Algorithms for Comparison and Parameter Settings

ToP was applied to improve the performance of both
dominance-based and decomposition-based CMOEAs. In this
paper, we chose two widely used dominance-based CMOPs:
NSGA-II-CDP [10] and IDEA [18], and two state-of-the-art
decomposition-based CMOPs: CMOEAD [19] and MOEA/D-
CDP [20]. They have been introduced in Section II-C.

For the sake of convenience, if a specific CMOEA is under
the framework of ToP, the name of this CMOEA will be
modified by adding four letters “ToP-”. For example, NSGA-
II-CDP under our framework is named ToP-NSGA-II-CDP.

In our experiments, we adopted the following parameter
settings:
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TABLE II
EXPERIMENTAL RESULTS OF NSGA-II-CDP, TOP-NSGA-II-CDP, IDEA, AND TOP-IDEA OVER 20 INDEPENDENT RUNS IN TERMS OF FR AND IGD.

FOR IGD, THE AVERAGE AND STANDARD DEVIATION ARE RECORDED. FOR EACH INSTANCE, THE WILCOXON’S RANK SUM TEST AT 0.05 SIGNIFICANCE
LEVEL IS PERFORMED BETWEEN A CMOEA AND ITS AUGMENTED VERSION, AND THE BETTER RESULT IS HIGHLIGHTED IN BOLDFACE.

Instance
NSGA-II-CDP ToP-NSGA-II-CDP IDEA ToP-IDEA

FR IGD FR IGD FR IGD FR IGD
DOC-1 100% 2.070e+0(1.37e+0) 100% 6.925e-3(4.62e-4) 100% 7.828e-1(1.03e+1) 100% 7.831e-3(2.77e-4)
DOC-2 0% NA 100% 1.671e-1(3.69e-3) 5% 4.982e-1(0.00e+0) 100% 1.800e-2(6.26e-3)
DOC-3 0% NA 100% 1.270e-2(5.82e-2) 15% 5.521e+2(2.21e+2) 100% 1.157e-1(6.44e-2)
DOC-4 100% 8.712e-1(6.76e-1) 100% 4.820e-2(1.33e-2) 100% 6.718e-1(5.38e-1) 100% 3.841e-2(9.57e-3)
DOC-5 0% NA 100% 1.294e-1(8.75e-2) 100% 7.460e+1(3.90e+1) 100% 7.421e-2(5.05e-2)
DOC-6 100% 1.562e+0(1.54e+0) 100% 4.654e-3(7.23e-4) 100% 1.985e+0(2.22e+0) 100% 4.990e-3(3.75e-4)
DOC-7 100% 2.417e+0(8.70e-1) 100% 1.732e-2(5.88e-3) 75% 5.128e+0(1.55e+0) 100% 1.428e-2(4.89e-3)
DOC-8 35% 1.447e+1(1.50e+1) 100% 2.827e-1(1.66e-2) 100% 9.015e+1(5.44e+1) 100% 2.421e-1(1.04e-1)
DOC-9 100% 1.321e-1(6.20e-2) 100% 3.773e-2(5.88e-3) 100% 1.175e-1(1.05e-1) 100% 4.431e-2(1.07e-3)

TABLE III
EXPERIMENTAL RESULTS OF NSGA-II-CDP, TOP-NSGA-II-CDP, IDEA, AND TOP-IDEA OVER 20 INDEPENDENT RUNS IN TERMS OF FR AND HV.

FOR HV, THE AVERAGE AND STANDARD DEVIATION ARE RECORDED. FOR EACH INSTANCE, THE WILCOXON’S RANK SUM TEST AT 0.05 SIGNIFICANCE
LEVEL IS PERFORMED BETWEEN A CMOEA AND ITS AUGMENTED VERSION, AND THE BETTER RESULT IS HIGHLIGHTED IN BOLDFACE.

Instance
NSGA-II-CDP ToP-NSGA-II-CDP IDEA ToP-IDEA

FR HV FR HV FR HV FR HV
DOC-1 100% 1.776e-2(7.26e-2) 100% 4.041e-1(6.55e-3) 100% 1.549e-1(1.44e-1) 100% 4.057e-1(3.88e-3)
DOC-2 0% NA 100% 5.677e-1(4.76e-3) 5% 1.916e-1(0.00e+0) 100% 5.672e-1(7.46e-3)
DOC-3 0% NA 100% 2.630e-1(4.95e-2) 15% 0.000e+0(0.00e+0) 100% 2.741e-1(5.92e-2)
DOC-4 100% 8.989e-2(1.47e-1) 100% 6.144e-1(1.96e-2) 100% 1.704e-1(1.91e-1) 100% 6.154e-1(6.32e-2)
DOC-5 0% NA 100% 5.022e-1(5.65e-2) 100% 2.394e-2(1.07e-1) 100% 5.432e-1(3.41e-2)
DOC-6 100% 7.732e-2(1.77e-1) 100% 6.248e-1(2.60e-2) 100% 3.554e-2(7.65e-2) 100% 6.501e-1(1.10e-2)
DOC-7 100% 0.000e+0(0.00e+0) 100% 5.654e-1(3.24e-2) 75% 0.000e+0(0.00e+0) 100% 5.682e-1(3.33e-2)
DOC-8 35% 0.000e+0(0.00e+0) 100% 7.471e-1(1.53e-1) 100% 0.000e+0(0.00e+0) 100% 8.070e-1(1.42e-1)
DOC-9 100% 2.897e-2(9.02e-3) 100% 3.696e-2(1.14e-3) 100% 2.484e-2(1.42e-2) 100% 3.603e-2(2.43e-3)
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Fig. 7. Images of the feasible solutions provided by two dominance-based CMOEAs (NSGA-II-CDP and IDEA) and their augmented algorithms in a run
on DOC-1, DOC-4, DOC-6, and DOC-7.

• Population Size: Following the suggestions in [35], for
two-objective CMOPs, the population size in each algo-
rithm was set to 100, while for three-objective CMOPs,
it was set to 300.

• Parameter Settings for Operators: For four CMOEAs
(i.e., NSGA-II-CDP, IDEA, CMOEAD, and MOEA/D-
CDP), the simulated binary crossover (SBX) and poly-
nomial mutation were used to produce offspring. The
crossover probability and the mutation probability were
set to 1.0 and 1/D, respectively. The distribution indexes
of both SBX and the polynomial mutation were set to
20 [23]. To make a fair comparison, when a CMOEA

is under the framework of ToP, its offspring generation
operators and parameter settings were kept untouched.

• Number of Independent Runs and Termination Condition:
All algorithms were independently run 20 times on each
instance, and terminated when a maximum of 200,000
and 400,000 fitness evaluations reached for two-objective
CMOPs and three-objective CMOPs, respectively.

• Parameter Settings for Algorithms: To ensure the compar-
ison fair, the other parameter settings of NSGA-II-CDP,
IDEA, CMOEAD, and MOEA/D-CDP were identical
with their original papers, and remained unchanged when
they were under the framework of ToP.
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VI. RESULTS AND DISCUSSIONS

A. Analysis of Principle

First of all, we intended to ascertain whether ToP can find
the promising feasible area in the first phase and obtain well-
distributed and well-converged feasible solutions in the second
phase. To answer this question, we took ToP-NSGA-II-CDP
as an example, and tested it on DOC-1 whose Pareto front
is non-convex. The images of the feasible solutions obtained
after the first and second phases are presented in Fig. 6.

From Fig. 6(a), it can be seen that even for a non-convex
CMOP, the images of the feasible solutions obtained after the
first phase not only are close to the Pareto front, but also
have a good diversity around the Pareto front. The above
phenomenon suggests that the first phase of ToP succeeds
in finding the promising feasible area and that it is also
terminated at a proper stage. From Fig. 6(b), we can observe
that the images of the feasible solutions obtained after the
second phase distribute well along the Pareto front. Thus, ToP-
NSGA-II-CDP is able to push the images of the high-quality
candidate solutions obtained in the first phase toward the
Pareto front from diverse directions. After these two phases,
ToP-NSGA-II-CDP eventually produces a set of representative
feasible solutions.

B. Applying ToP to Two Dominance-based CMOEAs

Subsequently, we applied ToP to two popular dominance-
based CMOEAs, namely NSGA-II-CDP and IDEA. Tables II
and III summarize the experimental results of NSGA-II-CDP,
ToP-NSGA-II-CDP, IDEA, and ToP-IDEA over 20 indepen-
dent runs on DOC in terms of FR, IGD, and HV. For IGD
and HV, their average and standard deviation are recorded. In
addition, The Wilcoxon’s rank sum test at 0.05 significance
level is performed between a CMOEA and its augmented
version, and the better result is highlighted in boldface on
each instance.

At our first glance from Tables II and III, ToP can signif-
icantly improve the performance of both NSGA-II-CDP and
IDEA in terms of three indicators (i.e., FR, IGD, and HV).
The detailed discussions are given below:
• NSGA-II-CDP and IDEA under the framework of ToP

perform better than or similar to their original algorithms
in terms of FR. For NSGA-II-CDP, its FR values on
DOC-2, DOC-3, DOC-5, and DOC-8 are 0%, 0%, 0%,
and 35%, respectively. With respect to IDEA, its FR
values on DOC-2, DOC-3, and DOC-7 are 5%, 15%,
and 75%, respectively. However, when NSGA-II-CDP
and IDEA are under the framework of ToP, both of them
can obtain 100% FR on all instances. Therefore, ToP is
capable of helping them to find the feasible region.

• In terms of IGD, from Table II, ToP-NSGA-II-CDP and
ToP-IDEA beat their original algorithms on all instances
as ToP-NSGA-II-CDP and ToP-IDEA consistently obtain
smaller IGD values.

• Regarding the HV indicator, from Table III, ToP-NSGA-
II-CDP and ToP-IDEA provide higher HV values on each
instance than their original algorithms. When NSGA-II-
CDP is applied to solve DOC-7 and DOC-8, the HV

values are zero. The reason is that the images of the
obtained feasible solutions are far away from the Pareto
front. In addition, the similar phenomenon occurs when
IDEA is applied to solve DOC-3, DOC-7, and DOC-8.

The images of the feasible solutions provided by NSGA-
II-CDP, ToP-NSGA-II-CDP, IDEA, and ToP-IDEA in the end
of a run are plotted in Fig. 7 on four instances (i.e., DOC-1,
DOC-4, DOC-6, and DOC-7).

C. Applying ToP to Two Decomposition-based CMOEAs

Thereafter, we investigated the effectiveness of ToP on
two state-of-the-art decomposition-based CMOEAs, namely
CMOEAD and MOEAD-CDP. The experimental results are
presented in Tables IV and V.

As shown in Tables IV and V, both CMOEAD and
MOEA/D-CDP fail to provide 100% FR on four instances,
i.e., DOC-2, DOC-3, DOC-5, and DOC-7. However, under
the framework of ToP, they can achieve 100% FR on all
instances, which means that ToP is able to improve their
capability in finding the feasible region. As far as IGD is
concerned, according to Table IV, both ToP-CMOEAD and
ToP-MOEA/D-CDP provide smaller values than their original
algorithms on each instance. With respect to HV, as shown
in Table V, the values derived from ToP-CMOEAD and ToP-
MOEA/D-CDP are much larger than their original algorithms
on all instances expect for DOC-9.

From the above comparison, one can conclude that
CMOEAD and MOEA/D-CDP under the framework of ToP
achieve better performance than the original algorithms in
terms of three indicators (i.e., FR, IGD, and HV), which
verifies the effectiveness of ToP on the decomposition-based
CMOEAs. Fig. 8 plots the images of the feasible solutions
resulting from CMOEAD, ToP-CMOEAD, MOEA/D-CDP,
and ToP-MOEA/D-CDP when a run halts on DOC-8.

D. Benefit of the Two-Phase Optimization Mechanism

The aim of this subsection is to investigate the benefit
of the two-phase optimization mechanism in ToP. To this
end, we selected ToP-NSGA-II-CDP as the instance algo-
rithm and considered its two variants, i.e., Former-NSGA-II-
CDP and Latter-NSGA-II-CDP. In Former-NSGA-II-CDP, the
constrained single-objective optimization in the first phase of
ToP was implemented throughout the whole evolution. As for
Latter-NSGA-II-CDP, NSGA-II-CDP was implemented during
the whole evolution. It is obvious that Latter-NSGA-II-CDP
is equivalent to the original NSGA-II-CDP. Herein, we tested
ToP-NSGA-II-CDP and its two variants on DOC-1 and DOC-
3, and the experimental results are presented in Figs. S-10 and
S-11 of the supplementary file, respectively.

From Figs. S-10 and S-11, the images of the feasible
solutions derived from Former-NSGA-II-CDP always cluster
in a very small area of the Pareto front. It is not difficult to
understand since the conflict among the objective functions
of the original CMOP is ignored in Former-NSGA-II-CDP;
thus, it converges toward the Pareto front from few directions.
For Latter-NSGA-II-CDP, the images of the feasible solutions
are distant from the Pareto front on DOC-1. It is probably
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TABLE IV
EXPERIMENTAL RESULTS OF CMOEAD, TOP-CMOEAD, MOEA/D-CDP, AND TOP-MOEA/D-CDP OVER 20 INDEPENDENT RUNS IN TERMS OF FR

AND IGD. FOR IGD, THE AVERAGE AND STANDARD DEVIATION ARE RECORDED. FOR EACH INSTANCE, THE WILCOXON’S RANK SUM TEST AT 0.05
SIGNIFICANCE LEVEL IS PERFORMED BETWEEN A CMOEA AND ITS AUGMENTED VERSION, AND THE BETTER RESULT IS HIGHLIGHTED IN BOLDFACE.

Instance
CMOEAD ToP-CMOEAD MOEA/D-CDP ToP-MOEA/D-CDP

FR IGD FR IGD FR IGD FR IGD
DOC-1 100% 3.761e+2(2.15e+2) 100% 2.600e-1(2.45e-1) 100% 3.526e+2(2.02e+2) 100% 2.010e-1(2.41e-1)
DOC-2 0% NA 100% 3.871e-2(3.45e-2) 0% NA 100% 4.794e-2(3.55e-2)
DOC-3 25% 6.417e+2(1.60e+2) 100% 1.739e-1(7.68e-2) 25% 5.892e+2(2.91e+2) 100% 2.627e-1(1.60e-1)
DOC-4 100% 7.411e+0(7.62e+0) 100% 5.789e-2(1.39e-2) 100% 9.181e+1(1.07e+1) 100% 5.936e-2(2.27e-2)
DOC-5 0% NA 100% 1.971e-1(7.91e-2) 0% NA 100% 2.258e-1(5.35e-2)
DOC-6 100% 1.036e+2(2.71e+2) 100% 8.929e-3(2.26e-2) 100% 9.486e+1(2.82e+2) 100% 4.825e-3(1.23e-3)
DOC-7 75% 8.284e+0(2.87e+0) 100% 3.106e-2(2.60e-2) 65% 9.574e+0(2.03e+0) 100% 3.055e-2(1.42e-2)
DOC-8 100% 2.810e+1(3.26e+1) 100% 1.590e-1(7.51e-2) 100% 3.878e+1(3.93e+1) 100% 1.752e-1(6.77e-2)
DOC-9 100% 1.362e-1(9.59e-2) 100% 5.811e-2(5.92e-3) 100% 1.228e-1(7.76e-2) 100% 6.002e-2(8.67e-3)

TABLE V
EXPERIMENTAL RESULTS OF CMOEAD, TOP-CMOEAD, MOEA/D-CDP, AND TOP-MOEA/D-CDP OVER 20 INDEPENDENT RUNS IN TERMS OF FR

AND HV. FOR HV, THE AVERAGE AND STANDARD DEVIATION ARE RECORDED. FOR EACH INSTANCE, THE WILCOXON’S RANK SUM TEST AT 0.05
SIGNIFICANCE LEVEL IS PERFORMED BETWEEN A CMOEA AND ITS AUGMENTED VERSION, AND THE BETTER RESULT IS HIGHLIGHTED IN BOLDFACE.

Instance
CMOEAD ToP-CMOEAD MOEA/D-CDP ToP-MOEA/D-CDP

FR HV FR HV FR HV FR HV
DOC-1 100% 0.000e+0(0.00e+0) 100% 2.424e-1(1.37e-1) 100% 0.000e+0(0.00e+0) 100% 2.879e-1(1.37e-1)
DOC-2 0% NA 100% 5.533e-1(1.80e-2) 0% NA 100% 5.449e-1(1.659e-2)
DOC-3 25% 0.000e+0(0.00e+0) 100% 2.257e-1(5.83e-2) 25% 0.000e+0(0.00e+0) 100% 1.817e-1(8.12e-2)
DOC-4 100% 0.000e+0(0.00e+0) 100% 5.936e-1(3.19e-2) 100% 0.000e+0(0.00e+0) 100% 6.007e-1(2.98e-2)
DOC-5 0% NA 100% 5.233e-1(1.67e-2) 0% NA 100% 4.289e-1(2.78e-2)
DOC-6 100% 1.224e-3(5.48e-3) 100% 5.816e-1(5.41e-2) 100% 6.040e-4(2.70e-3) 100% 6.143e-1(3.54e-2)
DOC-7 75% 0.000e+0(0.00e+0) 100% 5.178e-1(4.35e-2) 65% 0.000e+0(0.00e+0) 100% 5.128e-1(6.25e-2)
DOC-8 100% 0.000e+0(0.00e+0) 100% 8.985e-1(1.12e-1) 100% 0.000e+0(0.00e+0) 100% 8.726e-1(9.92e-2)
DOC-9 100% 2.117e-2(1.38e-2) 100% 3.380e-2(1.67e-3) 100% 2.308e-2(1.32e-2) 100% 3.332e-2(2.69e-3)
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Fig. 8. Images of the feasible solutions provided by two decomposition-based CMOEAs (CMOEAD and MOEA/D-CDP ) and their augmented algorithms
in the end of a run on DOC-8.

because Latter-NSGA-II-CDP runs the risk of getting stuck at
a local optimal area in the feasible region. Moreover, Latter-
NSGA-II-CDP cannot obtain any feasible solution on DOC-
3. In contrast, the images of the feasible solutions provided
by ToP-NSGA-II-CDP can scatter throughout the Pareto front
well on DOC-1. When solving DOC-3, the images of its finally
obtained feasible solutions can also approach the Pareto front
with a good distribution.

The above comparison demonstrates the importance of the
two-phase optimization mechanism in ToP, thus verifying the
main motivation of this paper. Due to the lack of the first
phase, a CMOEA may either not be able to enter the feasible

region, or stall in a local attraction basin. On the other hand,
without the second phase, a constrained single-objective EA
is prone to converge to a small area of the Pareto optimal
solutions.

E. Investigation to the Search Engine

As depicted in Tables II–V, the four CMOEAs (i.e., NSGA-
II-CDP, IDEA, CMOEAD, and MOEA/D-CDP) fail to obtain
promising results on most instances. Someone may attribute
the poor performance to the search engine used in them. To
investigate this guess, DE introduced in Section IV-B2 was
utilized to produce offspring for these four CMOEAs. For
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TABLE VI
EXPERIMENTAL RESULTS OF NSGA-II-CDP-DE, TOP-NSGA-II-CDP-DE, IDEA-DE, AND TOP-IDEA-DE OVER 20 INDEPENDENT RUNS IN TERMS OF
FR AND IGD. FOR IGD, THE AVERAGE AND STANDARD DEVIATION ARE RECORDED. FOR EACH INSTANCE, THE WILCOXON’S RANK SUM TEST AT 0.05
SIGNIFICANCE LEVEL IS PERFORMED BETWEEN A CMOEA AND ITS AUGMENTED VERSION, AND THE BETTER RESULT IS HIGHLIGHTED IN BOLDFACE.

Instance
NSGA-II-CDP-DE ToP-NSGA-II-CDP-DE IDEA-DE ToP-IDEA-DE

FR IGD FR IGD FR IGD FR IGD
DOC-1 100% 4.696e-1(1.99e-1) 100% 6.437e-3(2.30e-4) 100% 8.230e-3(3.53e-4) 100% 8.235e-3(4.53e-4)
DOC-2 100% 4.426e-1(1.47e-4) 100% 4.431e-1(1.67e-4) 0% NA 100% 1.013e-2(9.94e-4)
DOC-3 100% 4.062e-1(2.78e-1) 100% 8.466e-3(2.02e-3) 0% NA 100% 1.129e-2(2.73e-3)
DOC-4 100% 7.055e-1(2.32e-1) 100% 9.392e-2(2.35e-1) 100% 2.949e-2(3.71e-3) 100% 2.760e-2(3.39e-3)
DOC-5 100% 1.010e+2(4.79e+1) 100% 2.968e-2(5.78e-3) 90% 2.124e-1(2.79e-1) 100% 4.718e-2(1.21e-2)
DOC-6 100% 2.790e-3(1.21e-4) 100% 2.790e-3(9.93e-5) 100% 3.679e-3(1.90e-4) 100% 3.684e-3(1.48e-4)
DOC-7 100% 2.589e-3(7.35e-5) 100% 2.590e-3(8.99e-5) 0% NA 100% 3.398e-3(1.29e-4)
DOC-8 100% 1.127e+0(6.86e-1) 100% 1.188e-1(1.26e-2) 20% 2.391e+1(2.05e+1) 100% 1.659e-1(3.36e-2)
DOC-9 100% 9.529e-2(1.02e-2) 100% 8.599e-2(1.26e-2) 100% 1.636e-1(1.53e-1) 100% 9.681e-2(7.79e-3)

TABLE VII
EXPERIMENTAL RESULTS OF CMOEAD-DE, TOP-CMOEAD-DE, MOEA/D-CDP-DE, AND TOP-MOEA/D-CDP-DE OVER 20 INDEPENDENT RUNS

IN TERMS OF FR AND IGD. FOR IGD, THE AVERAGE AND STANDARD DEVIATION ARE RECORDED. FOR EACH INSTANCE, THE WILCOXON’S RANK SUM
TEST AT 0.05 SIGNIFICANCE LEVEL IS PERFORMED BETWEEN A CMOEA AND ITS AUGMENTED VERSION, AND THE BETTER RESULT IS HIGHLIGHTED IN

BOLDFACE.

Instance
CMOEAD-DE ToP-CMOEAD-DE MOEA/D-CDP-DE ToP-MOEA/D-CDP-DE

FR IGD FR IGD FR IGD FR IGD
DOC-1 100% 1.009e-1(9.78e-2) 100% 4.288e-3(1.04e-4) 100% 1.437e-1(1.20e-1) 100% 1.016e-1(2.01e-1)
DOC-2 80% 5.258e-1(7.37e-2) 100% 4.409e-1(3.35e-5) 70% 5.080e-1(2.67e-2) 100% 4.198e-1(9.46e-2)
DOC-3 100% 2.912e+2(1.48e+2) 100% 3.091e-2(5.28e-2) 100% 3.662e+2(2.26e+2) 100% 3.938e-2(5.43e-2)
DOC-4 100% 3.670e-1(1.92e-1) 100% 2.867e-2(8.43e-3) 100% 4.381e-1(2.74e-1) 100% 3.179e-2(9.13e-3)
DOC-5 100% 8.516e+1(6.43e+1) 100% 7.076e-2(6.46e-2) 100% 6.842e+1(4.79e+1) 100% 6.294e-2(3.08e-2)
DOC-6 100% 3.165e-1(1.28e-1) 100% 3.351e-3(1.66e-4) 100% 3.328e-1(8.78e-2) 100% 3.471e-3(2.23e-4)
DOC-7 100% 2.082e+0(1.36e+0) 100% 4.561e-3(1.39e-3) 100% 2.385e+0(1.35e+0) 100% 5.147e-3(1.27e-3)
DOC-8 100% 3.288e-2(6.19e-4) 100% 3.638e-2(1.32e-3) 100% 1.094e-1(2.11e-2) 100% 7.208e-2(1.73e-2)
DOC-9 100% 5.468e-2(4.17e-3) 100% 5.360e-2(4.30e-3) 100% 5.437e-2(4.40e-3) 100% 5.431e-2(2.84e-3)

convenience, a CMOEA with DE is named CMOEA-DE, and
a CMOEA-DE under the framework of ToP is denoted as ToP-
CMOEA-DE. Note that in a CMOEA-DE, it is hard to define
the best individual due to the multiple objective functions.
Therefore, the best individual in (15) was replaced with a
random individual in the current population. While for other
parameters (i.e., F and CR), they were kept the same as in
Section IV-B2. The experimental results are given in Tables VI
and VII.

From Tables VI and VII, it is interesting to see that, overall,
NSGA-II-CDP-DE, CMOEAD-DE, and MOEA/D-CDP-DE
can obtain very good FR values on all instances, which in-
dicates that DE is more powerful to find the feasible solutions
for these three CMOEAs. For NSGA-II-CDP-DE, it prefers
constraints to objective functions and a CMOP is regarded as
an unconstrained single-objective optimization problem (the
objective function is the degree of constraint violation) when
the population is infeasible. In addition, for CMOEAD-DE
and MOEA/D-CDP-DE, the original CMOP is decomposed
into a set of constrained single-objective optimization prob-
lems. Considering that DE is a powerful search engine to
solve single-objective optimization problems [45], [53], it is
not a hard task for NSGA-II-CDP-DE, CMOEAD-DE, and
MOEA/D-CDP-DE to find the feasible region. However, the
performance of IDEA-DE is still unsatisfactory in terms of
FR. The reason might be that IDEA-DE compares infeasible

solutions based on (m + 1) objective functions, in which all
constraints are considered as an additional objective function,
in addition to the m original objective functions. As a result,
IDEA-DE has a low selection pressure to steer the individuals
from the infeasible region to the feasible region, especially
for some instances in DOC which have very small feasible
regions. The fact that ToP-IDEA-DE can achieve 100% FR
suggests that the first phase of ToP, which transforms the ori-
ginal CMOP into a constrained single-objective optimization
problem, is helpful for IDEA-DE.

In terms of IGD, from Tables VI and VII, ToP-NSGA-
II-CDP-DE, ToP-IDEA-DE, ToP-CMOEAD-DE, and ToP-
MOEA/D-CDP-DE perform better than their original algo-
rithms on six, six, seven, and seven instances, respectively;
while the original algorithms cannot beat their enhanced
versions on more than one instance. Therefore, despite the
powerful DE can help some CMOEAs (i.e., NSGA-II-CDP,
CMOEAD and MOEA/D-CDP) to enter the feasible region,
ToP can still further improve their performance inside the
feasible region. The performance improvement should be
attributed to the transformation from the original CMOP into
a constrained single-objective optimization problem in ToP.
This transformation can result in faster convergence speed in
the feasible region due to concentrating on only one optimal
solution and a stronger capability to cross the local optimal
area in the feasible region as analysed in Section IV-A.
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From the above discussions, the performance of CMOEAs
can be improved through a powerful search engine. However,
the transformation idea in ToP is also indispensable to the
performance improvement of CMOEAs.

Remark 2: In the supplementary file, we also investigated
the effect of the parameter settings in Section S-II-A, the
generality of ToP on other CMOPs in Section S-II-B, the
impact of the search engine in the first phase of ToP in Section
S-II-C, the effect of the constraint-handling techniques in the
second phase of ToP in Section S-II-D, the influence of the
normalized process in Section S-II-E, the allocation of the
number of fitness evaluations in the first and second phases in
Section S-II-F, and the effectiveness of the best individual in
ToP in Section S-II-G.

VII. CONCLUSIONS

In this paper, a set of artificial CMOPs, named DOC, was
proposed. It contained seven two-objective CMOPs and two
three-objective CMOPs. It was the first attempt to consider
both decision and objective constraints simultaneously in the
design of CMOPs. It was also one of the first artificial CMOP
suites considering both inequality and equality constraints. In
general, DOC posed a great challenge for a CMOEA to obtain
a set of well-distributed and well-converged feasible solutions.

Subsequently, we proposed a two-phase framework called
ToP to improve current CMOEAs’ performance on DOC. The
first phase was implemented to find the promising feasible
area. To achieve this goal, the original CMOP was transformed
into a constrained single-objective optimization problem by
ignoring the conflict among the objective functions. We an-
alyzed the advantages of the above transformation. After
the promising feasible area has been discovered, a specific
CMOEA was implemented in the second phase to approximate
the Pareto front. ToP had a simple structure and could be
applied to many current CMOEAs. In this paper, we applied
ToP to four state-of-the-art CMOPs, and the experimental
results suggested that ToP can improve their performance
significantly.

In the future, we will design some other powerful con-
strained single-objective EAs and CMOEAs in the first and
second phases of ToP, respectively. The new developments
in constrained single-objective optimization and constrained
multiobjective optimization can also be integrated into the
framework of ToP. Moreover, we plan to apply the idea of ToP
to deal with expensive constrained multiobjective optimization.
For expensive constrained multiobjective optimization, the
fast convergence is required since the computational resource
is very limited. We expect that the ability of ToP rapidly
locating the promising feasible area can benefit the solution
of expensive constrained multiobjective optimization.

The Matlab source codes of DOC and ToP can be download-
ed from Y. Wang’s homepage: http://www.escience.cn/people/
yongwang1/index.html
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Supplementary File for “Handling Constrained
Multiobjective Optimization Problems with

Constraints in Both the Decision
and Objective Spaces”

S-I. NINE INSTANCES OF DOC

A. DOC-1

• Objective functions: {
min f1 = x1

min f2 = g(x)(1−
√
f1/g(x))

where g(x) = 5.3578547x24 + 0.8356891x2x6 + 37.293239x2 − 10125.6023282166.
• Objective constraint:

g1 = f21 + f22 − 1 ≥ 0.

• Decision constraints [1]:

g2 = +85.334407 + 0.0056858x3x6 + 0.0006262x2x5 − 0.0022053x4x6 ≤ 92;

g3 = −85.334407− 0.0056858x3x6 − 0.0006262x2x5 + 0.0022053x4x6 ≤ 0;

g4 = +80.51249 + 0.0071317x3x6 + 0.0029955x2x3 + 0.0021813x24 ≤ 110;

g5 = −80.51249− 0.0071317x3x6 − 0.0029955x2x3 − 0.0021813x24 ≤ −90;
g6 = +9.300961 + 0.0047026x4x6 + 0.0012547x2x4 + 0.0019085x4x5 ≤ 25;

g7 = −9.300961− 0.0047026x4x6 − 0.0012547x2x4 − 0.0019085x4x5 ≤ −20.

• The search space is: 0 ≤ x1 ≤ 1, 78 ≤ x2 ≤ 102, 33 ≤ x3 ≤ 45, and 27 ≤ x4, x5, x6 ≤ 45.
• Its Pareto front is:

f2 =
√
1− f21 ;

0 ≤ f1 ≤ 1.

which is illustrated in Fig. S-1.
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Fig. S-1. Pareto front of DOC-1.
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TABLE S-I
PARAMETER SETTINGS FOR DOC-2

j 1 2 3 4 5

a1j -16 2 0 1 0
a2j 0 -2 0 0.4 2
a3j -3.5 0 2 0 0
a4j 0 -2 0 -4 -1
a5j 0 -9 -2 1 -2.8
a6j 2 0 -4 0 0
a7j -1 -1 -1 -1 -1
a8j -1 -2 -3 -2 -1
a9j 1 2 3 4 5
a10j 1 1 1 1 1
c1j 30 -20 -10 32 -10
c2j -20 39 -6 -31 32
c3j -10 -6 10 -6 -10
c4j 32 -31 -6 39 -20
c5j -10 32 -10 -20 30
dj 4 8 10 6 2
ej -15 -27 -36 -18 -12

B. DOC-2

• Objective functions: {
min f1 = x1

min f2 = g(x)(1− 3
√
f1/g(x))

where g(x) =
∑5

j=1

∑5
i=1 cijx11+ix11+j + 2

∑5
j=1 djx

3
11+j −

∑10
i=1 bixi+1 − 31.6555929502.

• Objective constraints:

g1 =
√

f1 + f2 − 1 ≥ 0;

g2 = min{(f1 −
1

8
)2 + (f2 − 1 +

√
2

4
)2 − 0.0225, (f1 −

1

2
)2 + (f2 − 1 +

√
2

2
)2 − 0.0225, (f1 −

7

8
)2 + (f2 − 1 +

√
14

4
)2 − 0.0225} ≤ 0.

• Decision constraints [1]:

gj+2 = −2
5∑

i=1

cijx11+i − 3djx
2
11+j − ej +

10∑
i=1

aijxi+1 ≤ 0, j = 1, 2, . . . , 5.

where ~b = [−40,−2,−0.25,−4,−4,−1,−40,−60, 5, 1], and the remaining parameters are set in Table S-I.
• The search space is: 0 ≤ x1 ≤ 1, and 0 ≤ xi ≤ 10, i = 2, 3, . . . , 16.
• Its Pareto front consists of three parts:

f2 = 1−
√
f1;

f1 ∈ [0.050, 0.2202] ∪ [0.3830, 0.6247] ∪ [0.7440, 1].

which is illustrated in Fig. S-2.
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Fig. S-2. Pareto front of DOC-2.
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C. DOC-3

• Objective functions: {
min f1 = x1

min f2 = g(x)(1− f1/g(x))

where g(x) = −9x6 − 15x9 + 6x2 + 16x3 + 10(x7 + x8) + 401.0551.
• Objective constraints:

g1 = f21 + f22 − 1 ≥ 0;

g2 = |f1 − f2 − 0.5| ≥ 0.1;

g3 = |f1 − f2| ≥ 0.1;

g4 = |f1 − f2 + 0.5| ≥ 0.1.

• Decision constraints [2], [3]:
g5 = x10x4 + 0.02x7 − 0.025x6 ≤ 0;

g6 = x10x5 + 0.02x8 − 0.015x9 ≤ 0;

h1 = x2 + x3 − x4 − x5 = 0;

h2 = 0.03x2 + 0.01x3 − x10(x4 + x5) = 0;

h3 = x4 + x7 − x6 = 0;

h4 = x5 + x8 − x9 = 0.

• The search space is: 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, 0 ≤ x3 ≤ 300, 0 ≤ x4 ≤ 100, 0 ≤ x5 ≤ 200, 0 ≤ x6 ≤ 100, 0 ≤ x7 ≤ 1,
0 ≤ x8 ≤ 100, 0 ≤ x9 ≤ 200, and 0 ≤ x10 ≤ 0.03.

• Its Pareto front consists of four parts:

f2 =
√
1− f21 ;

f1 ∈ [0, 0.3403] ∪ [0.4782, 0.6553] ∪ [0.7553, 0.8782] ∪ [0.9403, 1].

which is illustrated in Fig. S-3.
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Fig. S-3. Pareto front of DOC-3.

D. DOC-4

• Objective functions: {
min f1 = x1

min f2 = g(x)(1−
√
f1/g(x))

where g(x) = (x2− 10)2+5(x3− 12)2+x44+3(x5− 11)2+10x66+7x27+x
4
8− 4x7x8− 10x7− 8x8− 679.6300573745.

• Objective constraints:
g1 = f1 + f2 − 1 ≥ 0;

g2 = f1 + f2 − 1− |sin(10π(f1 − f2 + 1))| ≥ 0.
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• Decision constraints [4]:
g3 = −127 + 2x22 + 3x43 + x4 + 4x25 + 5x6 ≤ 0;

g4 = −282 + 7x2 + 3x3 + 10x24 + x5 − x6 ≤ 0;

g5 = −196 + 23x2 + x23 + 6x27 − 8x8 ≤ 0;

g6 = 4x22 + x23 − 3x2x3 + 2x24 + 5x7 − 11x8 ≤ 0.

• The search space is: 0 ≤ x1 ≤ 1, and −10 ≤ xi ≤ 10, i = 2, 3, . . . , 8.
• Its Pareto front consists of 21 points:

f2 = 1− f1;
f1 = i/20, i = 0, 1, . . . , 20.

which is illustrated in Fig. S-4.
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Fig. S-4. Pareto front of DOC-4.

E. DOC-5

• Objective functions: {
min f1 = x1

min f2 = g(x)(1−
√
f1/g(x))

where g(x) = x2 − 192.724510070035.
• Objective constraints:

g1 = f1 + f2 − 1 ≥ 0;

g2 = f1 + f2 − 1− |sin(10π(f1 − f2 + 1))| ≥ 0;

g3 = (f1 − 0.8)(f2 − 0.6) ≤ 0.

• Decision constraints [2]:

g4 = −x2 + 35x0.63 + 35x0.64 ≤ 0;

h1 = −300x4 + 7500x6 − 7500x7 − 25x5x6 + 25x5x7 + x4x5 = 0;

h2 = 100x3 + 155.365x5 + 2500x8 − x3x5 − 25x5x8 − 15536.5 = 0;

h3 = −x6 + log(−x5 + 900) = 0;

h4 = −x7 + log(x5 + 300) = 0;

h5 = −x8 + log(−2x5 + 700) = 0.

• The search space is: 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1000, 0 ≤ x3, x4 ≤ 40, 100 ≤ x5 ≤ 300, 6.3 ≤ x6 ≤ 6.7, 5.9 ≤ x7 ≤ 6.4,
and 4.5 ≤ x8 ≤ 6.25.

• Its Pareto front consists of 14 points:

f2 = 1− f1;
f1 = i/20, i = 0, 1, 2, 3, 4, 5, 6, 7, 8, 16, 17, 18, 19, 20.

which is illustrated in Fig. S-5.
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Fig. S-5. Pareto front of DOC-5.

F. DOC-6

• Objective functions: {
min f1 = x1

min f2 = g(x)(1−
√
f1/g(x))

where g(x) = x22 +x23 +x2x3− 14x2− 16x3 +(x4− 10)2 +4(x5− 5)2 +(x6− 3)2 +2(x7− 1)2 +5x28 +7(x9− 11)2 +
2(x10 − 10)2 + (x11 − 7)2 + 21.693790931900001.

• Objective constraints:
g1 = f1 + f2 − 1 ≥ 0;

g2 = (f1 − 0.5)(f1 + f2 − 1− |sin(10π(f1 − f2 + 1))|) ≥ 0.

• Decision constraints [4]:
g3 = −105 + 4x2 + 5x3 − 3x8 + 9x9 ≤ 0;

g4 = 10x2 − 8x3 − 17x8 + 2x9 ≤ 0;

g5 = −8x2 + 2x3 + 5x10 − 2x11 − 12 ≤ 0;

g6 = 3(x2 − 2)2 + 4(x3 − 3)2 + 2x24 − 7x5 − 120 ≤ 0; ;

g7 = 5x22 + 8x3 + (x4 − 6)2 − 2x5 − 40 ≤ 0;

g8 = x22 + 2(x3 − 2)2 − 2x2x3 + 14x6 − 6x7 ≤ 0;

g9 = 0.5(x2 − 8)2 + 2(x3 − 4)2 + 3x26 − x7 − 30 ≤ 0;

g10 = −3x2 + 6x3 + 12(x10 − 8)2 − 7x11 ≤ 0.

• The search space is: 0 ≤ x1 ≤ 1, and −10 ≤ xi ≤ 10, i = 2, 3, . . . , 11.
• Its Pareto front is:

f2 = 1− f1;
f1 ∈ [0, 0.5] ∪ f1 = i/20, i = 11, . . . , 20.

which is illustrated in Fig. S-6.
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Fig. S-6. Pareto front of DOC-6.
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G. DOC-7

• Objective functions: {
min f1 = x1

min f2 = g(x)(1−
√
f1/g(x))

where g(x) =
∑11

i=2 xi(ci−1 + ln xi∑11
j=2 xj

) + 48.7648884, c1 = −6.089, c2 = −17.164, c3 = −34.054, c4 = −5.914,
c5 = −24.721, c6 = −14.986, c7 = −24.1, c8 = −10.708, c9 = −26.662, and c10 = −22.179.

• Objective constraints:
g1 = f1 + f2 ≥ 1;

g2 = (f1 − 0.5)(f1 + f2 − | sin(10π(f1 − f2 + 1))|+ 1) ≥ 0;

g3 = |f1 − f2| ≥ 0.1.

• Decision constraints [5]:
h1 = x2 + 2x3 + 2x4 + x7 + x11 = 2;

h2 = x5 + 2x6 + x7 + x8 = 1;

h3 = x4 + x8 + x9 + 2x10 + x11 = 1.

• The search space is: 0 ≤ x1 ≤ 1, and 0 ≤ xi ≤ 10, i = 2, 3, . . . , 11.
• Its Pareto front is:

f2 = 1− f1;
f1 ∈ [0, 0.45] ∪ f1 = i/20, i = 11, 12, . . . , 20.

which is illustrated in Fig. S-7.
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Fig. S-7. Pareto front of DOC-7.

H. DOC-8

• Objective functions: 
min f1 = x1x2 ∗ g(x)
min f2 = x1(1− x2) ∗ g(x)
min f3 = (1− x1) ∗ g(x)

where g(x) = x3 + x4 + x5 − 7048.2480205286.
• Objective constraint:

g1 = (f3 − 0.4)(f3 − 0.6) ≥ 0.

• Decision constraints [4]:
g2 = −1 + 0.0025(x6 + x8) ≤ 0;

g3 = −1 + 0.0025(x7 + x9 − x6) ≤ 0;

g4 = −1 + 0.01 ∗ (x10 − x7) ≤ 0;

g5 = −x3x8 + 833.33252x6 + 100x3 − 83333.333 ≤ 0;

g6 = −x4x9 + 1250x7 + x4x6 − 1250x6 ≤ 0;

g7 = −x5x10 + 1250000 + x5x7 − 2500x7 ≤ 0.
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• The search space is: 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, 500 ≤ x3 ≤ 1000, 1000 ≤ x4 ≤ 2000, 5000 ≤ x5 ≤ 6000, and
100 ≤ xi ≤ 500, i = 6, 7, . . . , 10.

• Its Pareto front is:
f1 = 1− f2 − f3;
0 ≤ f2 ≤ 1;

0 ≤ f3 ≤ 0.4 ∪ 0.6 ≤ f3 ≤ 1.

which is illustrated in Fig. S-8.
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Fig. S-8. Pareto front of DOC-8.

I. DOC-9

• Objective functions: 
min f1 = cos(0.5πx1)cos(0.5πx2) ∗ g(x)
min f2 = cos(0.5πx1)sin(0.5πx2) ∗ g(x)
min f3 = sin(0.5πx2) ∗ g(x)

where g(x) = −0.5(x3x6 − x4x5 + x5x11 − x7x11 + x7x10 − x8x9) + 1.8660254038.
• Objective constraint:

g1 = f21 + f22 ≥ 1;

• Decision constraints [1], [2]:
g2 = x25 + x26 ≤ 1;

g3 = x211 ≤ 1;

g4 = x27 + x28 ≤ 1;

g5 = x23 + (x4 − x11)2 ≤ 1;

g6 = (x3 − x7)2 + (x4 − x8)2 ≤ 1;

g7 = (x3 − x9)2 + (x4 − x10)2 ≤ 1;

g8 = (x5 − x7)2 + (x6 − x8)2 ≤ 1;

g9 = (x5 − x9)2 + (x6 − x10)2 ≤ 1;

g10 = x29 + (x10 − x11)2 ≤ 1;

g11 = x4x5 − x3x6 ≤ 0;

g12 = −x5x11 ≤ 0;

g13 = x7x11 ≤ 0;

g14 = x8x9 − x7x10 ≤ 0.

• The search space is: 0 ≤ x1, x2 ≤ 1, and −1 ≤ xi ≤ 10, i = 3, 4, . . . , 11.
• Its Pareto front is a line segment:

f2 =
√
1− f21 ;

0 ≤ f1 ≤ 1;

f3 = 0.

which is illustrated in Fig. S-9.
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Fig. S-9. Pareto front of DOC-9.
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Fig. S-10. Images of the feasible solutions provided by ToP-NSGA-II-CDP and its two variants (Former-NSGA-II-CDP and Latter-NSGA-II-CDP ) in the
end of a run on DOC-1.
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Fig. S-11. Images of the feasible solutions provided by ToP-NSGA-II-CDP and its two variants (Former-NSGA-II-CDP and Latter-NSGA-II-CDP ) in the
end of a run on DOC-3.

S-II. ADDITIONAL RESULTS AND DISCUSSIONS

A. Effect of the Parameter Settings in ToP

In this subsection, we conducted the sensitivity analysis of two parameters (i.e., Pf and δ) introduced in Section IV-B. These
two parameters determined when to stop the first phase and enter the second phase. A large value of Pf and a small value of
δ may result in the feasible solutions clustering in a very small area in the feasible region when the first phase ends. Whereas,
with a small value of Pf and a large value of δ, the population may be distant from the Pareto front when the first phase
terminates. Therefore, both Pf and δ should be set to a moderate value.

We selected ToP-NSGA-II-CDP as the instance algorithm and tested its performance on three DOC test instances: DOC-1,
DOC-4, and DOC-9, with the aim of providing multi-facet insights. We chose eight different Pf values: 1/100, 1/10, 1/8,
1/5, 1/4, 1/3, 1/2, and 1, and 11 different δ values: 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. Fig. S-12 records
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Fig. S-12. Average IGD values provided by ToP-NSGA-II-CDP with 88 different combinations of Pf and δ on DOC-1, DOC-4, and DOC-9.

TABLE S-II
FEASIBILITY RATIOS OF CFS.

Instance Feasibility Ratio
CF1 52.24%
CF2 99.42%
CF3 100.00%
CF4 50.00%
CF5 50.71%
CF6 30.73%
CF7 31.75%
CF8 0.44%
CF9 15.97%

CF10 0.00%

the average IGD values provided by ToP-NSGA-II-CDP with 88 different combinations of Pf and δ over 20 independent
runs. From Fig. S-12, we can observe that, overall, ToP-NSGA-II-CDP exhibits better performance with Pf ∈ [1/4, 1/3] and
δ ∈ [0.2, 0.3]. Therefore, in this paper, Pf was set to 1/3 and δ was set to 0.2.

B. Investigation to the Generality of ToP

The effectiveness of ToP has been verified on DOC whose feasibility ratios are very small. One might be interested in whether
ToP can improve the performance of CMOEAs on other CMOPs whose feasibility ratios are large. To answer this question,
we selected one dominance-based CMOEA (i.e., NSGA-II-CDP) and one decomposition-based CMOEA (i.e., MOEA/D-CDP)
as two instance algorithms, and compared them with their variants under the framework of ToP (i.e., ToP-NSGA-II-CDP and
ToP-MOEA/D-CDP) on the well-known CFs [6]. Note that CFs include ten instances for the Special Session & Competition
on “Performance Assessment of Constrained/Bound Constrained Multi-Objective Optimization Algorithms” at IEEE CEC2009.
The feasibility ratios of CFs are presented in Table S-II. It can be seen from Table S-II that all instances in CFs except for
CF8 and CF10 have large feasible regions. For the parameter settings, they were set following the suggestions in Section V-B.
The comparison results are presented in Table S-III and Table S-IV in terms of IGD and HV, respectively.

From Table S-III, ToP-NSGA-II-CDP and ToP-MOEA/D-CDP obtain better IGD values than NSGA-II-CDP and MOEA/D-
CDP on nine and eight instances, respectively, while provide worse results on no more than one instance. Similarly, from
Table S-IV, ToP-NSGA-II-CDP and ToP-MOEA/D-CDP outperform NSGA-II-CDP and MOEA/D-CDP on nine and eight
instances, respectively, while lose on no more than one instance in terms of the HV metric. Thus, we can conclude that
ToP has the capability to enhance the performance of NSGA-II-CDP and MOEA/D-CDP on CFs, which again validates the
effectiveness of ToP.

C. Investigation to the Search Engine in the First Phase of ToP

In the first phase of ToP, both DE/current-to-rand/1 and DE/rand-to-best/1/bin are used to produce offspring. The aim of
DE/current-to-rand/1 is to enhance the exploration ability of the population. As a classical DE version, DE/rand/1/bin also
exhibits good exploration ability. Thus, a question which arises naturally is whether DE/current-to-rand/1 can be replaced with
DE/rand/1/bin. To this end, we designed a variant of ToP-NSGA-II-CDP, named ToP-NSGA-II-CDP-1, in which DE/rand/1/bin
is combined with DE/rand-to-best/1/bin in the first phase of ToP. The comparison results between ToP-NSGA-II-CDP-1 and
ToP-NSGA-II-CDP on DOC are presented in Table S-V and Table S-VI in terms of IGD and HV, respectively.
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TABLE S-III
EXPERIMENTAL RESULTS OF NSGA-II-CDP, TOP-NSGA-II-CDP, MOEA/D-CDP, AND TOP-MOEA/D-CDP OVER 20 INDEPENDENT RUNS IN TERMS
OF FR AND IGD ON CFS. FOR IGD, THE AVERAGE AND STANDARD DEVIATION ARE RECORDED. FOR EACH INSTANCE, WILCOXON’S RANK SUM TEST

AT 0.05 SIGNIFICANCE LEVEL IS PERFORMED BETWEEN A CMOEA AND ITS AUGMENTED VERSION, AND THE BETTER RESULT IS HIGHLIGHTED IN
BOLDFACE.

Instance
NSGA-II-CDP ToP-NSGA-II-CDP MOEA/D-CDP ToP-MOEA/D-CDP

FR IGD FR IGD FR IGD FR IGD
CF1 100% 4.952e-02(1.30e-02) 100% 4.948e-02(1.26e-02) 100% 8.230e-03(2.60e-03) 100% 7.585e-03(2.51e-03)
CF2 100% 1.702e-01(4.99e-02) 100% 1.100e-01(2.15e-02) 100% 1.350e-01(5.32e-02) 100% 1.078e-01(3.43e-02)
CF3 100% 4.849e-01(1.51e-01) 100% 2.143e-01(6.23e-02) 100% 4.398e-01(1.46e-01) 100% 3.603e-01(1.76e-01)
CF4 100% 1.590e-01(4.69e-02) 100% 8.337e-02(3.53e-02) 100% 2.029e-01(1.13e-01) 100% 8.451e-02(2.85e-02)
CF5 100% 3.761e-01(9.63e-02) 100% 2.937e-01(1.48e-01) 100% 3.945e-01(1.21e-01) 100% 3.677e-01(1.34e-01)
CF6 100% 1.254e-01(3.82e-02) 100% 9.879e-02(2.77e-02) 100% 1.546e-01(5.28e-02) 100% 1.334e-01(4.57e-02)
CF7 100% 3.763e-01(9.81e-02) 100% 1.925e-01(9.03e-02) 100% 3.803e-01(1.25e-01) 100% 2.276e-01(1.09e-01)
CF8 100% 3.453e-01(6.68e-02) 100% 2.745e-01(4.19e-02) 100% 1.163e-01(3.17e-02) 100% 1.560e-01(3.98e-02)
CF9 100% 1.966e-01(2.73e-02) 100% 1.491e-01(2.41e-02) 100% 1.058e-01(1.08e-02) 100% 1.060e-01(7.28e-03)
CF10 0% NA 100% 5.588e-01(9.19e-02) 0% NA 100% 4.680e-01(1.09e-01)

TABLE S-IV
EXPERIMENTAL RESULTS OF NSGA-II-CDP, TOP-NSGA-II-CDP, MOEA/D-CDP, AND TOP-MOEA/D-CDP OVER 20 INDEPENDENT RUNS IN TERMS
OF FR AND HV ON CFS. FOR HV, THE AVERAGE AND STANDARD DEVIATION ARE RECORDED. FOR EACH INSTANCE, WILCOXON’S RANK SUM TEST AT

0.05 SIGNIFICANCE LEVEL IS PERFORMED BETWEEN A CMOEA AND ITS AUGMENTED VERSION, AND THE BETTER RESULT IS HIGHLIGHTED IN
BOLDFACE.

Instance
NSGA-II-CDP ToP-NSGA-II-CDP MOEA/D-CDP ToP-MOEA/D-CDP

FR HV FR HV FR IGD FR HV
CF1 100% 6.133e-01(1.39e-02) 100% 6.131e-01(1.65e-02) 100% 6.721e-01(4.26e-03) 100% 6.729e-01(4.05e-03)
CF2 100% 6.917e-01(3.79e-02) 100% 7.490e-01(2.74e-02) 100% 7.448e-01(4.68e-02) 100% 7.774e-01(1.94e-02)
CF3 100% 1.871e-01(4.59e-02) 100% 2.354e-01(6.44e-02) 100% 1.582e-01(6.99e-02) 100% 1.593e-01(7.00e-02)
CF4 100% 4.249e-01(4.53e-02) 100% 5.147e-01(5.62e-02) 100% 4.179e-01(7.84e-02) 100% 5.111e-01(4.14e-02)
CF5 100% 2.746e-01(6.88e-02) 100% 3.731e-01(1.10e-01) 100% 2.905e-01(8.96e-02) 100% 3.072e-01(9.18e-02)
CF6 100% 7.196e-01(6.46e-02) 100% 7.718e-01(1.60e-02) 100% 7.383e-01(4.06e-02) 100% 7.501e-01(3.18e-02)
CF7 100% 4.310e-01(1.42e-01) 100% 6.249e-01(8.07e-02) 100% 4.690e-01(1.17e-01) 100% 5.996e-01(8.90e-02)
CF8 100% 2.698e-01(9.52e-02) 100% 3.619e-01(6.18e-02) 100% 5.876e-01(3.29e-02) 100% 5.495e-01(3.65e-02)
CF9 100% 4.460e-01(4.85e-02) 100% 5.209e-01(4.59e-02) 100% 6.465e-01(1.54e-02) 100% 6.464e-01(1.23e-02)
CF10 0% NA 100% 1.434e-01(5.06e-02) 0% NA 100% 2.115e-01(8.98e-02)

TABLE S-V
EXPERIMENTAL RESULTS OF TOP-NSGA-II-CDP-1 AND TOP-NSGA-II-CDP OVER 20 INDEPENDENT RUNS IN TERMS OF FR AND IGD. FOR IGD, THE

AVERAGE AND STANDARD DEVIATION ARE RECORDED. FOR EACH INSTANCE, WILCOXON’S RANK SUM TEST AT 0.05 SIGNIFICANCE LEVEL IS
PERFORMED BETWEEN TOP-NSGA-II-CDP-1 AND TOP-NSGA-II-CDP, AND THE BETTER RESULT IS HIGHLIGHTED IN BOLDFACE.

Instance
ToP-NSGA-II-CDP-1 ToP-NSGA-II-CDP

FR IGD FR IGD
DOC-1 100% 1.355e-01(2.30e-01) 100% 6.859e-3(6.91e-4)
DOC-2 100% 2.444e-02(1.27e-02) 100% 3.569e-2(1.47e-2)
DOC-3 100% 1.796e-01(9.16e-02) 100% 9.264e-2(5.67e-2)
DOC-4 100% 5.862e-02(2.18e-02) 100% 4.477e-2(1.76e-2)
DOC-5 100% 3.028e+01(5.02e+01) 100% 1.634e-1(9.82e-2)
DOC-6 100% 5.734e-03(2.38e-03) 100% 4.550e-3(3.71e-4)
DOC-7 100% 3.716e-02(5.55e-02) 100% 1.716e-2(5.20e-3)
DOC-8 100% 1.550e+00(2.09e+00) 100% 1.045e-1(2.29e-2)
DOC-9 100% 3.943e-02(7.05e-03) 100% 3.162e-2(4.55e-3)

From these two tables, it is evident that ToP-NSGA-II-CDP achieves superior performance on most of instances in terms of
both IGD and HV, compared with ToP-NSGA-II-CDP-1. Therefore, we can conclude that DE/current-to-rand/1 is more effective
than DE/rand/1/bin in the first phase of ToP. It may be because DE/current-to-rand/1 is a rotation-invariant DE version due to
the fact that the binomial crossover is not applied, as pointed out in Section IV-B.

D. Effect of the Constraint-Handling Techniques in the Second Phase of ToP

In this subsection, we investigated the influence of different constraint-handling techniques in the second phase of ToP.
Firstly, we incorporated CDP [7] and ATM [8] into NSGA-II and obtained NSGA-II-CDP and NSGA-II-ATM, respectively.
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TABLE S-VI
EXPERIMENTAL RESULTS OF TOP-NSGA-II-CDP-1 AND TOP-NSGA-II-CDP OVER 20 INDEPENDENT RUNS IN TERMS OF FR AND HV. FOR HV, THE

AVERAGE AND STANDARD DEVIATION ARE RECORDED. FOR EACH INSTANCE, WILCOXON’S RANK SUM TEST AT 0.05 SIGNIFICANCE LEVEL IS
PERFORMED BETWEEN TOP-NSGA-II-CDP-1 AND TOP-NSGA-II-CDP, AND THE BETTER RESULT IS HIGHLIGHTED IN BOLDFACE.

Instance
ToP-NSGA-II-CDP-1 ToP-NSGA-II-CDP

FR HV FR HV
DOC-1 100% 3.313E-01(1.30E-01) 100% 4.041e-1(6.55e-3)
DOC-2 100% 5.588E-01(1.46E-02) 100% 5.677e-1(4.76e-3)
DOC-3 100% 2.244E-01(7.14E-02) 100% 2.630e-1(4.95e-2)
DOC-4 100% 5.995E-01(2.99E-02) 100% 6.144e-1(1.96e-2)
DOC-5 100% 3.617E-01(2.47E-01) 100% 5.022e-1(5.65e-2)
DOC-6 100% 6.312E-01(2.80E-02) 100% 6.248e-1(2.60e-2)
DOC-7 100% 5.322E-01(7.67E-02) 100% 5.654e-1(3.24e-2)
DOC-8 100% 2.011E-01(2.44E-01) 100% 7.471e-1(1.53e-2)
DOC-9 100% 3.625E-02(2.03E-03) 100% 3.696e-2(1.14e-3)

TABLE S-VII
EXPERIMENTAL RESULTS OF TOP-NSGA-II-CDP AND TOP-NSGA-II-ATM OVER 20 INDEPENDENT RUNS IN TERMS OF FR AND IGD. FOR IGD, THE

AVERAGE AND STANDARD DEVIATION ARE RECORDED. FOR EACH INSTANCE, WILCOXON’S RANK SUM TEST AT 0.05 SIGNIFICANCE LEVEL IS
PERFORMED BETWEEN TOP-NSGA-II-CDP AND TOP-NSGA-II-ATM, AND THE BETTER RESULT IS HIGHLIGHTED IN BOLDFACE.

Instance
ToP-NSGA-II-CDP ToP-NSGA-II-ATM

FR IGD FR IGD
DOC-1 100% 6.859e-3(6.91e-4) 100% 1.413e-01(2.39e-01)
DOC-2 100% 3.569e-2(1.47e-2) 100% 1.889e-02(8.13e-03)
DOC-3 100% 9.264e-2(5.67e-2) 100% 1.401e-01(1.01e-01)
DOC-4 100% 4.477e-2(1.76e-2) 100% 8.506e-02(1.21e-01)
DOC-5 100% 1.634e-1(9.82e-2) 100% 1.934e-1(1.82e-01)
DOC-6 100% 4.550e-3(3.71e-4) 100% 5.955e-03(4.52e-03)
DOC-7 100% 1.716e-2(5.20e-3) 100% 1.859e-02(8.06e-03)
DOC-8 100% 1.045e-1(2.29e-2) 100% 2.920e-01(1.50e-01)
DOC-9 100% 3.162e-2(4.55e-3) 100% 3.612e-02(4.66e-03)

TABLE S-VIII
EXPERIMENTAL RESULTS OF TOP-NSGA-II-CDP AND TOP-NSGA-II-ATM OVER 20 INDEPENDENT RUNS IN TERMS OF FR AND HV. FOR HV, THE

AVERAGE AND STANDARD DEVIATION ARE RECORDED. FOR EACH INSTANCE, WILCOXON’S RANK SUM TEST AT 0.05 SIGNIFICANCE LEVEL IS
PERFORMED BETWEEN TOP-NSGA-II-CDP AND TOP-NSGA-II-ATM, AND THE BETTER RESULT IS HIGHLIGHTED IN BOLDFACE.

Instance
ToP-NSGA-II-CDP ToP-NSGA-II-ATM

FR HV FR HV
DOC-1 100% 4.041e-1(6.55e-3) 100% 3.324e-01(1.32e-01)
DOC-2 100% 5.677e-1(4.76e-3) 100% 5.651e-01(9.71e-03)
DOC-3 100% 2.630e-1(4.95e-2) 100% 2.634e-01(5.95e-02)
DOC-4 100% 6.144e-1(1.96e-2) 100% 5.724e-01(1.22e-01)
DOC-5 100% 5.022e-1(5.65e-2) 100% 4.873e-01(1.86e-01)
DOC-6 100% 6.248e-1(2.60e-2) 100% 6.226e-01(2.85e-02)
DOC-7 100% 5.654e-1(3.24e-2) 100% 5.588e-01(2.88e-02)
DOC-8 100% 7.471e-1(1.53e-2) 100% 6.888e-01(2.28e-01)
DOC-9 100% 3.696e-2(1.14e-3) 100% 3.717e-02(1.04e-03)

Subsequently, we applied ToP to NSGA-II-CDP and NSGA-II-ATM and tested the performance of ToP-NSGA-II-CDP and
ToP-NSGA-II-ATM on DOC. The comparison results are summarized in Table S-VII and Table S-VIII in terms of IGD and
HV, respectively.

Regarding IGD, Table S-VII shows that ToP-NSGA-II-CDP obtains better performance than ToP-NSGA-II-ATM on eight
instances yet worse performance on only one instance (i.e., DOC-2). With respect to HV, Table S-VIII suggests that ToP-
NSGA-II-CDP beats ToP-NSGA-II-ATM on seven instances while loses on only one instance (i.e., DOC-9). It is thus concluded
that ToP-NSGA-II-CDP is superior to ToP-NSGA-II-ATM on DOC. The reason is that in ToP-NSGA-II-ATM, the infeasible
solutions with good objective function values may be better than the feasible solutions with poor objective function values,
and a lot of infeasible solutions may be kept in the final population. However, such infeasible solutions are deleted before the
calculation of IGD and HV as introduced in Section V-A. Due to the relatively less feasible solutions, ToP-NSGA-II-ATM
provides worse IGD and HV values, compared with ToP-NSGA-II-CDP.
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TABLE S-IX
EXPERIMENTAL RESULTS OF NORMALIZED-TOP-NSGA-II-CDP AND TOP-NSGA-II-CDP OVER 20 INDEPENDENT RUNS IN TERMS OF FR AND IGD.

FOR IGD, THE AVERAGE AND STANDARD DEVIATION ARE RECORDED. FOR EACH INSTANCE, WILCOXON’S RANK SUM TEST AT 0.05 SIGNIFICANCE
LEVEL IS PERFORMED BETWEEN NORMALIZED-TOP-NSGA-II-CDP-DE AND TOP-NSGA-II-CDP-DE, AND THE BETTER RESULT IS HIGHLIGHTED IN

BOLDFACE.

Instance
Normalized-ToP-NSGA-II-CDP ToP-NSGA-II-CDP

FR IGD FR IGD
DOC-1 100% 3.088e+00(2.95e+00) 100% 6.859e-3(6.91e-4)
DOC-2 100% 1.743e-01(1.67e-01) 100% 3.569e-2(1.47e-2)
DOC-3 100% 2.013e+02(7.13e+01) 100% 9.264e-2(5.67e-2)
DOC-4 100% 6.868e-01(3.93e-01) 100% 4.477e-2(1.76e-2)
DOC-5 100% 7.018e+01(6.09e+01) 100% 1.634e-1(9.82e-2)
DOC-6 100% 1.135e+00(6.34e-01) 100% 4.550e-3(3.71e-4)
DOC-7 100% 1.760e+00(5.92e-01) 100% 1.716e-2(5.20e-3)
DOC-8 100% 6.346e+01(3.83e+01) 100% 1.045e-1(2.29e-2)
DOC-9 100% 1.193e-01(4.39e-02) 100% 3.162e-2(4.55e-3)

TABLE S-X
EXPERIMENTAL RESULTS OF NORMALIZED-TOP-NSGA-II-CDP-DE AND TOP-NSGA-II-CDP-DE OVER 20 INDEPENDENT RUNS IN TERMS OF FR AND
HV. FOR HV, THE AVERAGE AND STANDARD DEVIATION ARE RECORDED. FOR EACH INSTANCE, WILCOXON’S RANK SUM TEST AT 0.05 SIGNIFICANCE

LEVEL IS PERFORMED BETWEEN NORMALIZED-NSGA-II-CDP AND TOP-NSGA-II-CDP, AND THE BETTER RESULT IS HIGHLIGHTED IN BOLDFACE.

Instance
Normalized-ToP-NSGA-II-CDP ToP-NSGA-II-CDP

FR HV FR HV
DOC-1 100% 2.551e-02(8.79e-02) 100% 4.041e-1(6.55e-3)
DOC-2 100% 4.678e-01(9.25e-02) 100% 5.677e-1(4.76e-3)
DOC-3 100% 0.000e+00(0.00e+00) 100% 2.630e-1(4.95e-2)
DOC-4 100% 1.041e-01(1.22e-01) 100% 6.144e-1(1.96e-2)
DOC-5 100% 4.623e-02(1.19e-01) 100% 5.022e-1(5.65e-2)
DOC-6 100% 3.183e-02(8.68e-02) 100% 6.248e-1(2.60e-2)
DOC-7 100% 0.000e+00(0.00e+00) 100% 5.654e-1(3.24e-2)
DOC-8 100% 3.047e-04(1.36e-03) 100% 7.471e-1(1.53e-2)
DOC-9 100% 2.043e-02(7.48e-03) 100% 3.696e-2(1.14e-3)

E. Is the Normalized Process Necessary?

In the first phase of ToP, a CMOP is transformed into a constrained single-objective optimization problem. One may argue
that each objective function should be normalized since the bias might occur among different objective functions. To investigate
this issue, we selected ToP-NSGA-II-CDP as the instance algorithm and compared its performance with that of Normalized-
ToP-NSGA-II-CDP on DOC. Normalized-ToP-NSGA-II-CDP is a variant of ToP-NSGA-II-CDP, whose objective functions are
normalized. The comparison results are presented in Table S-IX and Table S-X in terms of IGD and HV, respectively.

As shown in Table S-IX and Table S-X, ToP-NSGA-II-CDP performs better than Normalized-ToP-NSGA-II-CDP on all
instances in terms of both IGD and HV. The above comparison indicates that the normalized process is not necessary for ToP.
It is probably because both the feasible and infeasible solutions are employed to normalize the objective functions. For some
infeasible solutions, they might be far away from the feasible region but with small objective function values, then the usage
of them in the normalized process may mislead the search of the population. Next, we take an example to explain it. Suppose
that in a two-dimensional objective space, there are four individuals (i.e., A(0,10), B(0.2,8), C(0.8,-10), and D(1,2)) in the
population and our task is to select two individuals into the next generation. For A, B, and D, they are feasible solutions, while
for C, it is an infeasible solution which would be deleted first based on the feasibility rule in Section IV-B. If the normalized
process is not implemented, for these three feasible solutions, B and D will be selected into the next generation as shown in
Fig. 13(a), since f

′
(A) = 0 + 10 = 10 > f

′
(B) = 8 + 0.2 = 8.2 > f

′
(D) = 1 + 2 = 3. On the contrary, if the normalized

process is conducted, then A, B, C, and D will be normalized as A
′
(0,1), B

′
(0.2,0.9), C

′
(0.8,0), and D

′
(1,0.6), respectively.

Then D will be removed from the population since f
′
(A

′
) = 0+1 = 1 < f

′
(B

′
) = 0.2+0.9 = 1.1 < f

′
(D

′
) = 1+0.6 = 1.6

as shown in Fig. 13(b). Note, however, that D is the closest individual to the Pareto front which should not be deleted. Thus
we can conclude that the normalized process may mislead the selection in the first phase of ToP. Someone may argue why
not only employ the feasible solutions to normalize the objective functions. Unfortunately, this way might be invalid, since all
solutions in the population may be infeasible in the early stage of evolution.

Therefore, we did not normalize the objective functions in (13). The reason why ToP without the normalized process can
obtain good performance may be because during the evolution, the bias among different objective functions will gradually
decrease due to the fact that we minimize the sum of the objective functions in (13).
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The Pareto 

Front 

1f

2f A(0,10)

B(0.2,8)

C(0.8,-10)

D(1,2)

(a) Without the normalized process

The Pareto 

Front 

*

1f

*

2f A (́0,1)

B (́0.2,0.9)

C (́0.8,0)

D (́1,0.6)

(b) With the normalized process

Fig. S-13. Illustration of the effects of the normalized process in the first phase of ToP. There are four individuals in the population, i.e., A, B, C and D, and
the task is to select two promising individuals into the next generation. For A, B, and D, they are feasible solutions, while for C, it is an infeasible solution.

TABLE S-XI
EXPERIMENTAL RESULTS OF THE AVERAGE NUMBER OF FITNESS EVALUATIONS USED IN THE FIRST AND SECOND PHASES OF TOP-NSGA-II-CDP OVER

20 INDEPENDENT RUNS.

Instance
Phase 1 Phase 2

The average number of FEs Percentage The average number of FEs Percentage
DOC-1 2.71e+04 13.53% 1.73e+05 86.47%
DOC-2 6.65e+04 33.23% 1.34e+05 66.78%
DOC-3 9.29e+04 46.45% 1.07e+05 53.55%
DOC-4 2.13e+04 10.67% 1.79e+05 89.34%
DOC-5 9.04e+04 45.18% 1.10e+05 54.82%
DOC-6 4.43e+04 22.17% 1.56e+05 77.83%
DOC-7 5.44e+04 27.19% 1.46e+05 72.81%
DOC-8 2.13e+05 53.26% 1.87e+05 46.74%
DOC-9 5.94e+04 14.84% 3.41e+05 85.16%

F. Allocation of the Number of Fitness Evaluations in the First and Second Phases

In this subsection, we are interested in investigating the allocation of the number of fitness evaluations (FEs) in the first
and second phases of ToP for DOC. To this end, we selected ToP-NSGA-II-CDP as the instance algorithm and recorded the
number of FEs allocated in the first and second phases of ToP-NSGA-II-CDP. The results are presented in Table S-XI.

From Table S-XI, it is obvious that for different instances, the numbers of FEs allocated in the first and second phases are
different. It is the reason why we made use of two conditions, rather than a deterministic approach, to stop the first phase.

G. Effectiveness of the Best Individual in ToP

In Section IV-B, we mentioned that the objective function information is useful under the circumstance that the Pareto optimal
solutions are exactly located on the boundaries of the feasible region. Moreover, the objective function information can also be
used to accelerate the convergence in the feasible region. Indeed, the objective function information can be flexibly exploited
in the first stage of ToP due to the single objective function, compared with the original multiple objective functions. In this
paper, we made use of the objective function information via the best individual in (15). One may be interested in whether
the objective function information is really helpful. To this end, we selected ToP-NSGA-II-CDP-DE as the instance algorithm,
and tested its performance with or without the best individual in the first phase of ToP. The variant without the best individual
is named Rand-ToP-NSGA-II-CDP-DE, in which the best individual is replaced with a randomly selected individual in the
current population. The comparison results between Rand-ToP-NSGA-II-CDP-DE and ToP-NSGA-II-CDP-DE are presented
in Table S-XII.

From Table S-XII, both ToP-NSGA-II-CDP and Rand-ToP-NSGA-II-CDP obtain satisfactory FR values (i.e, 100%) on all
instances, which means that the difference between the utilization of the best individual and that of the random individual is
not significant in finding the feasible region. It is because in the infeasible region, the best individual is similar to a random
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TABLE S-XII
EXPERIMENTAL RESULTS OF RAND-NSGA-II-CDP-DE AND TOP-NSGA-II-CDP-DE OVER 20 INDEPENDENT RUNS IN TERMS OF FR AND IGD. FOR

IGD, THE AVERAGE AND STANDARD DEVIATION ARE RECORDED. FOR EACH INSTANCE, WILCOXON’S RANK SUM TEST AT 0.05 SIGNIFICANCE LEVEL IS
PERFORMED BETWEEN RAND-NSGA-II-CDP-DE AND TOP-NSGA-II-CDP-DE, AND THE BETTER RESULT IS HIGHLIGHTED IN BOLDFACE.

Instance
Rand-ToP-NSGA-II-CDP-DE ToP-NSGA-II-CDP-DE

FR IGD FR IGD
DOC-1 100% 8.804e-2(1.99e-1) 100% 6.437e-3(2.30e-4)
DOC-2 100% 4.441e-1(2.68e-4) 100% 4.431e-1(1.67e-4)
DOC-3 100% 9.911e-3(1.74e-3) 100% 8.466e-3(2.02e-3)
DOC-4 100% 9.388e-2(2.35e-1) 100% 9.392e-2(2.35e-1)
DOC-5 100% 2.094e+1(3.81e+1) 100% 2.968e-2(5.78e-3)
DOC-6 100% 2.817e-3(1.01e-4) 100% 2.790e-3(9.93e-05)
DOC-7 100% 2.637e-3(1.01e-4) 100% 2.590e-3(8.99e-5)
DOC-8 100% 1.669e-1(3.66e-2) 100% 1.188e-1(1.26e-2)
DOC-9 100% 8.882e-2(1.16e-2) 100% 8.599e-2(1.26e-2)

individual if the best individual is selected based on objective function, as analyzed in Section IV-B. In terms of IGD, ToP-
NSGA-II-CDP-DE outperforms Rand-ToP-NSGA-II-CDP-DE on six instances (i.e., DOC-1, DOC-3, DOC-5, DOC-7, DOC-8,
and DOC-9), and performs similar to Rand-ToP-NSGA-II-CDP-DE on the remaining three instances (i.e., DOC-2, DOC-4,
and DOC-6). Thus, Rand-ToP-NSGA-II-CDP-DE cannot surpass ToP-NSGA-II-CDP-DE on any instance.

The above comparison demonstrates that it is beneficial to use the objective function information to guide the search in ToP.
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