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Abstract—Pareto dominance-based multiobjective optimization
has been successfully applied to constrained evolutionary op-
timization during the last two decades. However, as another
famous multiobjective optimization framework, decomposition-
based multiobjective optimization has not received sufficient
attention from constrained evolutionary optimization. In this
paper, we make use of decomposition-based multiobjective op-
timization to solve constrained optimization problems. In our
method, first of all, a constrained optimization problem is trans-
formed into a biobjective optimization problem. Afterward, the
transformed biobjective optimization problem is decomposed into
a number of scalar optimization subproblems. After generating
an offspring for each subproblem by differential evolution, the
weighted sum method is utilized for selection. In addition, to
make decomposition-based multiobjective optimization suit the
characteristics of constrained evolutionary optimization, weight
vectors are elaborately adjusted. Moreover, for some extremely
complicated constrained optimization problems, a restart strategy
is introduced to help the population jump out of a local optimum
in the infeasible region. Extensive experiments on three sets
of benchmark test functions, namely, 24 test functions from
IEEE CEC2006, 36 test functions from IEEE CEC2010, and
56 test functions from IEEE CEC2017, have demonstrated
that the proposed method shows better or at least competitive
performance against other state-of-the-art methods.

Index Terms—constrained optimization problems, multiobjec-
tive optimization, decomposition, Pareto dominance, evolutionary
algorithms

I. INTRODUCTION

MANY scientific and engineering optimization problems
can be formulated as constrained optimization prob-
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lems (COPs) [1], [2]. Without loss of generality, a COP can
be described as:

minimize f(~x), ~x = (x1, . . . , xD) ∈ S, Li ≤ xi ≤ Ui
subject to : gj(~x) ≤ 0, j = 1, . . . , l

hj(~x) = 0, j = l + 1, . . . ,m
where f(~x) is the objective function, ~x is the decision vector
(a solution or an individual), xi is the ith dimension of ~x, D is
the number of dimensions, Li and Ui are the lower and upper
bounds of xi, respectively, S =

∏D
i=1[Li, Ui] is the decision

space, gj(~x) is the jth inequality constraint, l is the number of
inequality constraints, hj(~x) is the (j−l)th equality constraint,
and (m− l) is the number of equality constraints.

For COPs, the degree of constraint violation of ~x on the jth
constraint is expressed as follows:

Gj(~x) =

{
max(0, gj(~x)), 1 ≤ j ≤ l
max(0, |hj(~x)| − δ) , l + 1 ≤ j ≤ m (1)

where δ is a positive tolerance value to relax equality con-
straints. Afterward, the degree of constraint violation of ~x on
all constraints is calculated as follows:

G(~x) =

m∑
j=1

Gj(~x) (2)

~x is called a feasible solution if G(~x) = 0; otherwise, it is
called an infeasible solution. The goal of solving a COP is to
locate the feasible optimum.

In the community of evolutionary computation, there has
been an increasing interest in applying evolutionary algorithms
(EAs) to solve COPs. In order for EAs to deal with COPs,
constraint-handling techniques should be integrated. In princi-
ple, EAs aim to generate offspring while constraint-handling
techniques are in charge of comparing individuals. The
last two decades have witnessed the successful applications
of multiobjective optimization to design constraint-handling
techniques. In multiobjective optimization-based constraint-
handling techniques, a COP is first transformed into a mul-
tiobjective optimization problem (MOP). Then, multiobjec-
tive optimization techniques are used to compare individuals.
In this paper, multiobjective optimization-based constraint-
handling techniques are briefly classified into three categories:
1) standard multiobjective optimization methods, 2) standard
biobjective optimization methods, and 3) generalized multi-
objective optimization methods. The standard multiobjective
optimization methods transform a COP into a MOP with
(m + 1) objectives, i.e., (f(~x), G1(~x), . . . , Gm(~x)). Multi-
objective optimization-based constraint-handling techniques at
the early stage always fall into this category [3], [4]. Under
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this condition, the transformed MOP always involves more
than two objectives. As we know, MOPs with more than two
objectives usually exhibit complicated properties. Consequent-
ly, the transformed MOP is also very difficult to be tackled
as the original COP. In contrast, the standard biobjective opti-
mization methods consider the degree of constraint violation,
i.e., G(~x), as another objective function in addition to the
original objective function f(~x). Interestingly, most of the
recent multiobjective optimization-based constraint-handling
techniques belong to this category [5]–[9]. Different from the
above two categories, the generalized multiobjective optimiza-
tion methods introduce other additional objective functions or
constraints [10], [11].

It can be found that most of the existing multiobjective
optimization-based constraint-handling techniques are based
on Pareto dominance [12], in which Pareto dominance is
viewed as the criterion to compare individuals. Note, how-
ever, that decomposition is another famous multiobjective
optimization framework [13]–[15]. Its outperformed perfor-
mance has been demonstrated in a lot of literature such
as [16], [17], and [18]. Different from Pareto dominance-
based multiobjective optimization, decomposition-based mul-
tiobjective optimization decomposes a MOP into a set of
scalar optimization subproblems, where each subproblem is
assigned a weight vector. Afterward, these subproblems are op-
timized in a collaborative manner. Such a framework exhibits
numerous advantages for solving MOPs. By decomposing a
MOP into a set of scalar optimization subproblems, every
two solutions are comparable. Hence, a certain degree of
selection pressure can be guaranteed. Besides, it is well-
known that decomposition-based framework is more efficient
than nondominated sorting [13], [19]. Moreover, by adjusting
the weight vectors, search biases can be incorporated. Note
that these search biases are crucial when taking advantage
of multiobjective optimization to tackle COPs [20], [21].
However, little effort has been devoted to making use of
the above advantages of decomposition-based multiobjective
optimization for constrained evolutionary optimization.

Motivated by the above considerations, this paper makes an
attempt to tailor decomposition-based multiobjective optimiza-
tion to solve COPs. In our method, a COP is first converted in-
to a biobjective optimization problem (BOP) (f(~x),G(~x)). Af-
terward, this BOP is decomposed into NP scalar optimization
subproblems. Each individual in the population is associated
with a subproblem and is evolved along the direction defined
by the weight vector of this subproblem. After generating an
offspring for each subproblem by differential evolution (DE),
the weighted sum method is employed to compare individuals.
To make decomposition-based multiobjective optimization suit
the properties of COPs, a weight vector adjusting strategy is
designed. Furthermore, a restart strategy is introduced to cope
with extremely complicated constraints. By the above process,
an alternative constrained optimization EA (COEA), i.e., De-
CODE, is proposed. Note that DeCODE is different from the
constrained decomposition-based multiobjective optimization
algorithm introduced in [22]. The algorithm in [22] utilizes
constrained optimization to improve the decomposition-based
method for multiobjective optimization. On the contrary,

DeCODE applies the decomposition-based method to solve
COPs.

The main contributions of this paper are summarized as
follows:
• The idea of decomposition-based multiobjective opti-

mization is thoroughly investigated for constrained evo-
lutionary optimization.

• A weight vector adjusting strategy is designed to make
the decomposition-based multiobjective optimization suit
the properties of COPs.

• We develop a search algorithm to strike a balance not
only between diversity and convergence, but also between
constraints and objective function.

• A restart strategy is introduced to find feasible solutions
for some COPs with extremely complicated constraints.

To be specific, in the theoretical aspect, the relationship
between decomposition-based multiobjective optimization and
constrained evolutionary optimization is analyzed. Besides, the
weight vectors which are beneficial to solve COPs are clarified.
Furthermore, how to achieve the tradeoff between constraints
and objective function in a search algorithm is illustrated. In
the practical aspect, systematic experiments on three bench-
mark test suites from IEEE CEC2006, IEE CEC2010, and
IEEE CEC2017 have demonstrated that DeCODE is effective
and efficient for solving various kinds of COPs.

The rest of this paper is organized as follows. Some pre-
liminary knowledge is introduced in Section II. Section III
conducts a brief survey of utilizing multiobjective optimiza-
tion for constrained evolutionary optimization. The details of
the proposed DeCODE are given in Section IV. Section V
provides the empirical study. Finally, Section VI concludes
this paper.

II. PRELIMINARY KNOWLEDGE

Since decomposition-based multiobjective optimization is
applied for constrained evolutionary optimization in this paper,
some basic concepts of multiobjective optimization and the
framework of decomposition-based multiobjective optimiza-
tion are briefly introduced in this section.

A. Related Concepts of Multiobjective Optimization

In general, a MOP is formulated as follows:

minimize ~f(~x) = (f1(~x), . . . , fn(~x)) (3)

where ~x = (x1, . . . , xD) ∈ S is a D-dimensional decision
vector and ~f(~x) is the objective vector involving n objective
functions. Several related concepts of multiobjective optimiza-
tion are presented below.

1) Pareto Dominance: A decision vector ~x = (x1, . . . , xD)
is said to Pareto dominate another decision vector ~y =
(y1, . . . , yD), denoted as ~x ≺ ~y, if ∀i ∈ {1, . . . , n}, fi(~x) ≤
fi(~y) and ~f(~x) 6= ~f(~y).

2) Pareto Optimum: A decision vector ~x∗ is called a Pareto
optimal solution, if it is not Pareto dominated by any other
decision vectors.

3) Pareto Set: The Pareto set PS is a set of all Pareto
optimal solutions.
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4) Pareto Front: The Pareto front is the image of the Pareto
set in the objective space, i.e., PF = {~f(~x)|~x ∈ PS}.

The principal task of multiobjective optimization is to seek
a reasonable approximation of the Pareto set/front.

B. Framework of Decomposition-based Multiobjective Opti-
mization

Decomposition-based multiobjective optimization is very
popular for solving MOPs [13]. Its framework with the weight-
ed sum method [23] is described as follows [19]:
Step 1) Initialization:

Step 1.1) Set the archive which is used to store nondomi-
nated solutions as an empty set: EP = ∅.

Step 1.2) Initialize a uniform spread of NP weight vec-
tors: WV = {~λ1,. . . ,~λNP }, where ~λi = (λi,1, . . . , λi,n),
i ∈ {1, . . . , NP}.

Step 1.3) Calculate the mating neighborhood Bm(i) which
includes Tm indexes and the replacement neighborhood Br(i)
which includes Tr indexes for each weight vector ~λi (i ∈
{1, . . . , NP}).

Step 1.4) Generate a random population consisting of NP
individuals: P = {~x1, . . . , ~xNP }, and evaluate the population:
FV = {~f(~x1), . . . , ~f(~xNP )}.

Step 1.5) Calculate the weighted sum of the population:
WS = {gws(~x1|~λ1), . . . , gws(~xNP |~λNP )}, where

gws(~xi|~λi) =

n∑
j=1

λi,jfj(~xi), i ∈ {1, . . . , NP} (4)

Step 2) Population updating:
For i = 1, . . . , NP do
Step 2.1) Generate an offspring ~y for ~xi by executing

the search algorithm on several individuals selected based on
Bm(i).

Step 2.2) Evaluate ~y: ~f(~y) = {f1(~y), . . . , fn(~y)}.
Step 2.3) For each index j ∈ Br(i), if gws(~y|~λj) ≤

gws(~xj |~λj), set ~xj = ~y, ~f(~xj) = ~f(~y), and gws(~xj |~λj) =

gws(~y|~λj).
Step 2.4) Remove all the solutions Pareto dominated by ~y

from EP , and add ~y into EP if no solutions in EP Pareto
dominate ~y.
Step 3) Stopping criterion: If the stopping criterion is
satisfied, then stop and output EP ; otherwise, go to Step 2).

The above procedure explicitly decomposes a MOP into
NP scalar optimization subproblems via the weighted sum
method, as shown in (4). Each subproblem is associated with
an individual and is optimized by making use of the informa-
tion from its neighboring subproblems. The main idea behind
decomposition-based multiobjective optimization is that the
optimal solutions of neighboring subproblems should be close
to each other and any information from one subproblem should
be helpful for optimizing another subproblem.

III. PREVIOUS WORK

A considerable number of multiobjective optimization-
based constraint-handling techniques have been proposed dur-
ing the last two decades. As mentioned previously, they are

divided into three kinds in this paper: 1) standard multiobjec-
tive optimization methods, 2) standard biobjective optimiza-
tion methods, and 3) generalized multiobjective optimization
methods.

1) Standard multiobjective optimization methods: This kind
of methods aims at optimizing (f(~x), G1(~x), . . . , Gm(~x))
simultaneously. Coello Coello et al. [24], [25] carried out a
series of pioneer work on generalizing the classical multiob-
jective optimization EAs [26], [27] to solve COPs. Ray et
al. [3], [28] calculated three ranks, which include the rank
of objective function, the Pareto rank of constraints, and the
Pareto rank of the combination of objective function and
constraints. These three ranks are utilized to select solutions in
a collaborative way. Angantyr et al. [29] proposed a constraint-
handling technique which is a variant of a multiobjective real-
coded genetic algorithm. In this method, the rank of objective
function and the Pareto rank of constraints are calculated sep-
arately. Subsequently, these two ranks are aggregated together
by the feasible proportion, i.e., the percentage of feasible
solutions in the population. Aguirre et al. [4] modified the
famous Pareto archived evolutionary strategy [30] to deal with
COPs. In this method, the constrained search space is shrunk
dynamically to focus the search effort on specific areas of the
feasible region. Besides, an adaptive grid is utilized to store
solutions.

2) Standard biobjective optimization methods: The aim of
this kind of methods is to optimize the BOP (f(~x), G(~x)).
Zhou et al. [31] defined the individual’s Pareto strength, which
is based on Pareto dominance. Afterward, a new real-coded
genetic algorithm based on Pareto strength and minimal gen-
eration gap model is devised. In 2006, Cai and Wang [5] made
use of Pareto dominance to compare individuals. Moreover,
an infeasible solution archiving and replacement mechanism
is proposed to drive the population approaching or landing
in the feasible region quickly. Later, they improved this in-
feasible solution archiving and replacement mechanism based
on multiobjective optimization and proposed CMODE [7].
In 2007, Wang et al. [6] proposed a hybrid COEA, called
HCOEA, which effectively combines Pareto dominance with
global and local search models. In [8], HCOEA is improved by
dynamically implementing the global and local search models.
In 2008, Wang et al. [32] divided the constrained optimization
process into three phases. In the first phase, a selection strategy
is designed based on Pareto dominance. Subsequently, several
COEAs adopt or improve this three-phase-based method [33]–
[36]. Similarly, Venkatraman and Yen [37] proposed a two-
phase-based method to tackle COPs. In phase one, a COP is
considered as a constraint satisfaction problem. In phase two,
the famous nondominated sorting genetic algorithm II (NSGA-
II) [38] and a niching scheme are combined to calculate the
fitness value. Masuda and Kurihara [39] exploited the mul-
tiobjective optimization particle swarm optimization to solve
COPs. In this method, only several Pareto optimal solutions
with the least degree of constraint violation will be preserved
if the number of Pareto optimal solutions exceeds a predefined
threshold. In addition, a novel global best selection technique
and a diversity preservation strategy are proposed. Deb and
Datta [40] applied NSGA-II to estimate the penalty factor.
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This study theoretically analyzes the relationship between the
lower bound of the penalty factor and the slope of the Pareto
front at the point of G(~x) = 0. Based on such analysis, the
penalty factor is obtained. This method is further improved
by estimating the penalty factor of each constraint separate-
ly [41]–[43]. Jiao et al. [9] proposed a novel selection strategy
based on multiobjective optimization. In this method, Pareto
dominance is used to classify dominated and nondominated
solutions. Li and Zhang [21] pointed out that Pareto dominance
lacks search biases toward constraints, which may lead to the
inferior performance of a COEA. Afterward, the b-dominance
is presented by introducing search biases into the conventional
Pareto dominance.

3) Generalized multiobjective optimization methods:
Watanabe and Sakakibara [44] presented two methods to
transform a COP into a MOP: the first one considers a
penalty function as an additional objective function and the
second one adds noise to the original objective function or
decision variables. Dong and Wang [10] converted a COP
into the following BOP: (f(~x)+εG(~x), G(~x)). The theoretical
analysis reveals that when ε tends to infinity, this BOP has the
unique Pareto optimal vector, which exactly corresponds to the
optimal solution of a COP. They claimed that this BOP could
be solved by a traditional multiobjective optimization EA
without biases. In the implementation phase, ε exponentially
increases and Pareto ranking is employed as the selection
criterion. Xu et al. [11] proposed a novel multiobjective model
with helper objective functions for constrained optimization.
In addition to (f(~x), G(~x)), an auxiliary objective function is
constructed. And then a three-objective-based CMODE [7] is
implemented. The experimental results show that the helper
objective function is able to improve the performance of
CMODE. Gao et al. [45] recast a COP as (G1(~x), . . . , Gm(~x))
with one constraint. In this method, the original objective
function value is restricted to be less than a value which is
set adaptively. Based on this formulation, a novel pair-wise
comparison strategy is proposed. Li et al. [46] reformulated a
COP as (f(~x), G1(~x), . . . , Gm(~x)) with dynamic constraints.
Note that the original constraints are still kept into consider-
ation in this method. To construct the dynamic environment,
all constraints are bounded by a value which decreases with
the increase of generation. Very recently, a general framework
based on this idea is proposed to solve COPs in [47].

All the above-mentioned multiobjective optimization-based
constraint-handling techniques are based on Pareto dominance
due to the fact that Pareto dominance serves as the compari-
son criterion. As another generic multiobjective optimization
framework, decomposition-based multiobjective optimization
has been gaining increasing attention for solving MOPs, nev-
ertheless, it has scarcely been applied for constrained evolu-
tionary optimization. Recently, Peng et al. [48] took advantage
of the Tchebycheff decomposition approach to solve COPs. In
this method, N weight vectors are used to select N promising
infeasible solutions, and the remaining (NP − N) candidate
solutions are selected based on the feasibility rule [49]. The
parameter N is adjusted according to the feasible proportion.
This method focuses on balancing diversity and convergence.
However, another key issue of constrained evolutionary opti-

Pareto Front

Feasible Optimum

Feasible Solutuions
f

0 G

Fig. 1. Principle of (f(~x), G(~x)).

mization, i.e., the tradeoff between constraints and objective
function, is neglected to some degree. Besides, it only utilizes
the Tchebycheff decomposition approach and the advantages
of decomposition-based multiobjective optimization are not
fully explored (such as the collaborative evolution of NP
scalar optimization subproblems). The experimental results
reveal that the performance of this method is limited on some
complicated test functions from IEEE CEC2006 and IEEE
CEC2010.

The above survey motivates us to further explore the po-
tential of decomposition-based multiobjective optimization for
solving COPs.

IV. PROPOSED METHOD

A. DeCODE

In DeCODE, a COP is transformed into the BOP
(f(~x), G(~x)). The principle of this BOP is depicted in
Fig. 1 [7], where the Pareto set is mapped to the Pareto front,
all the feasible solutions are mapped to the solid segment, and
the feasible optimum is mapped to the intersection of the f
axis and the Pareto front. It is easy to derive that the search
space S is mapped to points on and above the Pareto front.

DeCODE maintains a population of NP individuals, i.e.,
P = {~x1, . . . , ~xNP }, their objective function values, i.e.,
{f(~x1), . . . , f(~xNP )}, and their degree of constraint violation,
i.e., {G(~x1), . . . , G(~xNP )}. The framework of DeCODE is
described as follows.
Step 1) Initialization:

Step 1.1) For each i ∈ {1, . . . , NP}, set Bm(i) =
{1, . . . , NP}, Br(i) = {i}, and flag = 0.

Step 1.2) Initialize a set of NP weight vectors, i.e., WV =
{(λ1, 1−λ1), . . . , (λNP , 1−λNP )}, where {λ1, . . . , λNP } are
uniformly generated between 0 and η, and initialize η = 1.

Step 1.3) Generate a random population with NP in-
dividuals: P = {~x1, . . . , ~xNP }, and evaluate P : FV =
{(f(~x1), G(~x1)), . . . , (f(~xNP ), G(~xNP ))}.
Step 2) Population updating:

Step 2.1) Generate an offspring population OP =
{~y1, . . . , ~yNP } by executing the search algorithm.

For i = 1, . . . , NP do
Step 2.2) Evaluate ~yi: (f(~yi), G(~yi)).
Step 2.3) For the index in Br(i) (i.e., i), if gws(~yi|(λi, 1−

λi)) ≤ gws(~xi|(λi, 1 − λi)), set ~xi = ~yi, f(~xi) = f(~yi), and
G(~xi) = G(~yi).
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Fig. 2. Weight vectors with λ distributed between 0 and 1.

Step 3) Execute the weight vector adjusting strategy to
adjust η adaptively, and generate a set of NP weight vectors,
i.e., {(λ1, 1− λ1), . . . , (λNP , 1− λNP )}, by utilizing η.
Step 4) Executing the restart strategy.
Step 5) Stopping criterion: If the stopping criterion is
satisfied, then stop and output the feasible solution with the
smallest objective function value; otherwise, go to Step 2).

As the above description, DeCODE shares the same frame-
work with decomposition-based multiobjective optimization
except for Step 3) and Step 4). Step 3) is designed to make
decomposition-based framework suit the properties of COPs.
In addition, Step 4) is developed to cope with extremely
complicated constraints. Due to its numerous advantages such
as ease of implementation, powerful search ability, and few
algorithm-specific parameters, DE is employed to design the
search algorithm in this paper. It is worth noting that prior to
calculating the weighted sum of ~xi, its objective function value
and degree of constraint violation are normalized as follows:

fnorm(~xi) =
f(~xi)− fmin
fmax − fmin

(5)

Gnorm(~xi) =
G(~xi)−Gmin
Gmax −Gmin

(6)

where fmin and fmax are the minimum and maximum objec-
tive function values in P , respectively, and Gmin and Gmax
are the minimum and maximum degree of constraint violation
in P , respectively.

Afterward, the weighted sum of ~xi is calculated as follows:

gws(~xi|(λi, 1− λi)) = λif
norm(~xi) + (1− λi)Gnorm(~xi)

(7)
where

λi =
i

NP
· η (8)

Remark 1: Compared with conventional mathematical pro-
gramming methods, the advantages of DeCODE are summa-
rized as follows:

1) Since DeCODE is population-based, it is more robust.
2) DeCODE does not impose strong assumptions such as

linearity, convexity, and differentiability on objective
function and constraints, which makes it applicable to
diverse kinds of COPs.

Remark 2: Compared with other COEAs, the advantages
of DeCODE are twofold:

1) Firstly, it shares the same framework with decompo-
sition-based multiobjective optimization. Thus, the su-
periorities of the decomposition-based method (such as
efficiency and collaborative evolution) can be inher-
ited. Besides, the valuable knowledge developed for
decomposition-based multiobjective optimization can be
borrowed to further improve DeCODE.

2) Secondly, the weighted sum method is easy to im-
plement. Moreover, it provides an effective way for
constrained optimization. The reason is explained in
the following. The aim of constrained optimization is
to locate the feasible optimum on the Pareto front (as
shown in Fig. 1), rather than a set of Pareto optimal
solutions uniformly distributed on the whole Pareto
front. Hence, the transformed BOP can be regarded
as a BOP with a discrete Pareto optimal solution. As
analyzed in [13], the weighted sum method is more
effective than the Tchebycheff decomposition approach
on the multiobjective 0-1 knapsack problem, which also
has discrete Pareto optimal solutions.

In the following subsections, the weight vector adjusting
strategy, the search algorithm, and the restart strategy are
introduced sequentially.

B. Weight Vector Adjusting Strategy
The transformed BOP is optimized under the framework

of decomposition-based multiobjective optimization. When
a general BOP is solved, a set of representative solutions,
the image of which is uniformly distributed on the whole
Pareto front, is desired. Hence, a set of uniformly distributed
weight vectors across the whole objective space is always
maintained, where different weight vectors are expected to
locate different points on the Pareto front. However, when
the transformed BOP is solved, only the feasible optimum,
which is the intersection of the f axis and the Pareto front, is
wanted. This difference indicates that a set of weight vectors
for seeking the whole Pareto front is not suitable for locating
the single feasible optimum. To address this issue, a weight
vector adjusting strategy is designed to generate proper weight
vectors for locating the feasible optimum.
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Fig. 3. Dynamic changing trajectory of η with α = 0.5 and Γ = 30.

In multiobjective optimization, it is well-known that a Pareto
optimal solution of a MOP, under mild conditions, is the
optimal solution of the weighted sum scalar optimization
subproblem with a weight vector (λ, 1−λ) [13], [23]. Besides,
as described in Fig. 2(a), the slope of the tangent at the image
of this Pareto optimal solution in the objective space is λ−1

λ
and the corresponding direction vector is (λ − 1,−λ) [23].
Furthermore, if the Pareto front is convex and differentiable,
the slope of the tangent will increase monotonously with the
increase of G [50]. That is to say, the bigger the value of G
of a Pareto optimal solution, the bigger the value of the slope
λ−1
λ . Because λ−1

λ increases monotonously with the increase
of λ, it is easy to know that the bigger the value of G, the
bigger the value of λ, and vice versa.

Assuming that (λopt, 1−λopt) is the weight vector attached
to the feasible optimum, whose G is equal to 0, then the weight
vector set {(λ, 1 − λ)|0 < λ ≤ 1} can be divided into two
subsets as shown in Fig. 2 (a), i.e., {(λ, 1−λ)|0 < λ ≤ λopt}
and {(λ, 1 − λ)|λopt < λ ≤ 1}. The properties of these two
subsets can be summarized as follows:
• As shown in Fig. 2(b), the weight vector (λ, 1− λ) with
λ ∈ (λopt, 1] will locate a Pareto optimal solution with
G > 0. That is to say, the weight vector with λ ∈ (λopt, 1]
cannot achieve the feasible optimum.

• As shown in Fig. 2(c), the weight vector (λ, 1 − λ)
with λ ∈ (0, λopt] will seek a feasible solution firstly.
Subsequently, guided by objective function (i.e., the f
axis), this feasible solution will approach the feasible
optimum. To sum up, the weight vector with λ ∈ (0, λopt]
could achieve the feasible optimum finally.

Based on the above analysis, a set of weight vectors
(λi, 1−λi)(i ∈ {1, . . . , NP}), where λi is generated between
0 and λopt, would be helpful to achieve the feasible optimum.
However, it is not easy to generate such a set of weight vectors
accurately due to the fact that λopt is problem-dependent
and cannot be known beforehand. In this paper, a simple yet
effective method is proposed to approximate this set of weight
vectors by decreasing the parameter η dynamically according
to the famous sigmoid function, which has been widely
employed in the community of evolutionary computation [19]:

η =
1

1 + eΓ(t/T−α)
(9)

where t is the current generation number, T is the maximum
generation number, and Γ and α are two critical parameters to
control the decreasing trend of η. As shown in Fig. 3, η de-
creases in accordance with the sigmoid curve as the generation

Algorithm 1: Weight Vector Adjusting Strategy
1 Set WV = ∅;
2 if flag == 0 then
3 if t

T ≤ p then
4 ε = ε0(1− t

T )cp;
5 else
6 ε = 0;

7 Calculate FeaPro of the population;
8 if FeaPro ≥ 0.85 then
9 ε = 0;

10 if Gmin ≥ ε then
11 flag = 1;
12 η = 10−18;
13 else
14 η = 1

1+eΓ(t/T−α)
;

15 else
16 η = 10−18;

17 for i = 1 to NP do
18 λi = i

NP · η;
19 WV = WV ∪ (λi, 1− λi);

increases. At the early stage, η is very likely to be bigger than
λopt. In this case, the weight vectors can be divided into two
sets: one includes weight vectors with λ ∈ (0, λopt], and the
other contains weight vectors with λ ∈ (λopt, 1]. As discussed
above, the first set of weight vectors can steer the solutions
approaching the feasible optimum. Although the second set
of weight vectors is not able to locate the feasible optimum
directly, it can introduce the information of objective function,
as shown in (7). Such information is beneficial to promote the
exploration in the infeasible region [51], [52], [53]. At the
later stage, η will be smaller than λopt. In this case, all of
the generated weight vectors can motivate their solutions to
find the feasible optimum. In summary, during the evolution,
decreasing η based on (9) is a suitable way to generate a set
of weight vectors, which has the potential to find the feasible
optimum gradually.

As shown in (9) and Fig. 3, η decreases slowly at the early
stage. When λopt of a COP is tiny, η may be larger than it for
a relatively long period. Meanwhile, the number of weight
vectors with λ ∈ (λopt, η] would be much more than the
number of weight vectors with λ ∈ (0, λopt]. Consequently,
according to (7), much information of objective function will
be used. Under this condition, much effort would be devoted to
exploring the region around the Pareto front while neglecting
the feasible optimum. To remedy this weakness, η should be
truncated to a small value to suit λopt. As stated previously,
we cannot know the value of λopt a priori, which signifies
that we cannot know whether η needs to be truncated or not.
Hence, a proper indicator should be used to reflect whether
decreasing η according to (9) is suitable for the considered
COP. Intuitively, if the decreasing manner of η is suitable
for a COP, the degree of constraint violation would decrease
consistently. Thus, we try to set a target level of degree of
constraint violation at each generation. Once the target level
cannot be satisfied, we consider that decreasing η according
to (9) is not suitable. Under this condition, η is truncated to an
extremely small value to guarantee that the number of weight
vectors with λ ∈ (0, λopt] is as many as possible. By this way,
the feasible optimum could be achieved.
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To set the target level at each generation, based on [51], the
ε level controlling method is utilized here:

ε =

{
ε0(1− t

T )cp, if t
T ≤ p

0, otherwise
(10)

cp = − logε0 + β

log(1− p)
(11)

where ε0 is the initial level, β is set to 6 in this paper, and
p is an important parameter to control the target level at each
generation. Similar to [51], in order to improve the usability, if
the feasible proportion, i.e., FeaPro, exceeds FP (i.e., 0.85),
ε is set to 0. As shown in (10), ε decreases with the increase
of generation.

The whole process of the weight vector adjusting strategy
is described in Algorithm 1. As shown in Algorithm 1, ε is
the target level at each generation and Gmin ≥ ε means that
the target level cannot be fulfilled. Besides, η is is truncated
to an extremely small value ηL (i.e., 10−18) rather than 0. In
this case, the information of objective function can be utilized
to some extent.

C. Search Algorithm

When a search algorithm is designed for constrained opti-
mization, it is expected to make a tradeoff not only between
convergence and diversity, but also between constraints and
objective function. In this paper, two DE trial vector genera-
tion strategies are integrated to achieve this goal, which are
described below [54], [55].
• DE/rand-to-best/1/bin

~vi = ~xr1 + F · (~xbest − ~xr1) + F · (~xr2 − ~xr3) (12)

ui,j =

{
vi,j , if randj < CR or j = jrand

xi,j , otherwise
, j = 1, . . . , D

(13)
• DE/current-to-rand/1

~ui = ~xi + rand · (~xr1 − ~xi) + F · (~xr2 − ~xr3) (14)

where ~xi, ~vi, and ~ui are the ith target vector, the ith
mutant vector, and the ith trial vector, respectively, xi,j ,
vi,j , and ui,j are the jth dimension of them, respectively,
~xr1 , ~xr2 , and ~xr3 are three mutually different individuals
randomly selected from the population, ~xbest is the indi-
vidual with the best performance, F is the scaling factor,
CR is the crossover control parameter, and jrand is a
random integer chosen from {1, . . . , D}.

With respect to (12), the information of the best individual
is utilized to generate a mutant vector. Consequently, the
convergence can be accelerated via this strategy. Besides,
in terms of (14), ~xi learns the information of a randomly
selected individual ~xr1 . Therefore, this strategy can promote
the diversity.

These two strategies are combined in the following manner.
For each individual, “DE/rand-to-best/1/bin” is executed with
the probability t

T while “DE/current-to-rand/1” is conducted
with the probability (1 − t

T ), where t and T are the current
and maximum generation number, respectively. At the early
stage, t

T is small. So “DE/current-to-rand/1” will be used more

Algorithm 2: Search Algorithm
1 Set OP = ∅;
2 for i = 1 to NP do
3 Calculate fnorm(~xi) and Gnorm(~xi) according to (5) and (6),

respectively;

4 for i = 1 to NP do
5 Randomly select a F value from the pool {0.6, 0.8, 1.0};
6 Randomly select a CR value from the pool {0.1, 0.2, 1.0};
7 if rand < t

T then
8 Set WSi = ∅;
9 for j = 1 to NP do

10 WSi = WSi ∪ gws(~xj |(λi, 1− λi));

11 Select ~xbest based on WSi;
12 Select ~xr1 , ~xr2 , and ~xr3 from the population;
13 Generate an offspring ~ui according to (12) and (13);
14 else
15 Select ~xr1 , ~xr2 , and ~xr3 from the population;
16 Generate an offspring ~ui according to (14);

17 OP = OP ∪ ~ui;

TABLE I
MAXIMUM NUMBER OF FUNCTION EVALUATIONS MaxFEs AND

POPULATION SIZE NP

Test Functions MaxFEs NP
24 test functions from IEEE CEC2006 5.0E+05 80

18 test functions with 10D from IEEE CEC2010 2.0E+05 60
18 test functions with 30D from IEEE CEC2010 6.0E+05 80
28 test functions with 50D from IEEE CEC2017 1.0E+06 100

28 test functions with 100D from IEEE CEC2017 2.0E+06 100

frequently for exploration. At the later stage, t
T becomes large.

Thus, “DE/rand-to-best/1/bin” will be utilized more often for
exploitation. By this manner, the tradeoff between convergence
and diversity can be achieved.

How to select the best individual in (12) has a direct effect
on the tradeoff between constraints and objective function.
In general, to achieve such a tradeoff, much information of
objective function should be preferred at the early stage while
little information of objective function should be favorable at
the later stage. It is because much information of objective
function is beneficial to promote the exploration in the in-
feasible region [51]–[53], while little information of objective
function can promote the convergence to the feasible optimum.
In this paper, the best individual is selected according to
the weighted sum. Firstly, the normalized objective function
value and degree of constraint violation are calculated for each
individual according to (5) and (6), respectively. Afterward, a
set of weighted sum is obtained on the basis of λi:

WSi = {gws(~x1|(λi, 1− λi)), . . . , gws(~xNP |(λi, 1− λi))}
(15)

Finally, the individual with the minimum value in WSi is
selected as the best individual for ~xi. By doing this, each
individual ~xi can evolve along its own direction defined by the
weight vector (λi, 1−λi). By making use of the weight vector
adjusting strategy illustrated in Section IV-B, the information
of objective function can be utilized properly and a tradeoff
between constraints and objective function can be achieved.

Therefore, the above process is able to strike a tradeoff
not only between convergence and diversity but also between
constraints and objective function. In addition, two control
parameters in DE, i.e., F and CR, are set in the same way as
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TABLE II
EXPERIMENTAL RESULTS OF DECODE AND OTHER FOUR SELECTED METHODS OVER 25 INDEPENDENT RUNS ON 22 TEST FUNCTIONS FROM IEEE

CEC2006

IEEE CEC2006 CMODE
Mean OFV±Std Dev

NSES
Mean OFV±Std Dev

DW
Mean OFV±Std Dev

FROFI
Mean OFV±Std Dev

DeCODE
Mean OFV±Std Dev

g01 -1.5000E+01±0.00E+00* -1.5000E+01±4.21E-30* -1.5000E+01±5.02E-14* -1.5000E+01±0.00E+00* -1.5000E+01±0.00E+00*
g02 -8.0362E-01±2.42E-08* -8.0362E-01±2.41E-32* -8.0362E-01±9.99E-08* -8.0362E-01±1.78E-07* -8.0362E-01±3.12E-09*
g03 -1.0005E+00±5.29E-10* -1.0005E+00±5.44E-19* -1.0005E+00±4.27E-12* -1.0005E+00±4.49E-16* -1.0005E+00±4.00E-16*
g04 -3.0666E+04±2.64E-26* -3.0666E+04±2.22E-24* -3.066553E+04±0.00E+00* -3.066553E+04±3.71E-12* -3.066553E+04±3.71E-12*
g05 5.1265E+03±1.24E-27* 5.1265E+03±0.00E+00* 5.1264967E+03±4.22E-10* 5.1264967E+03±2.78E-12* 5.1265E+03±2.78E-12*
g06 -6.9618E+03±1.32E-26* -6.9618E+03±0.00E+00* -6.961813E+03±0.00E+00* -6.961813E+03±0.00E+00* -6.961813E+03±0.00E+00*
g07 2.4306E+01±7.65E-15* 2.4306E+01±7.37E-09* 2.430621E+01±5.28E-10* 2.430621E+01±6.32E-15* 2.4306E+01±8.52E-12*
g08 -9.5825E+02±6.36E-18* -9.5825E+02±2.01E-34* -9.5825E+02±2.78E-18* -9.5825E+02±1.42E-17* -9.5825E+02±1.42E-17*
g09 6.8063E+02±4.96E-14* 6.8063E+02±1.10E-25* 6.8063006E+02±2.23E-11* 6.8063006E+02±2.23E-11* 6.8063006E+02±2.54E-13*
g10 7.0492480E+03±2.52E-13* 7.0492480E+03±2.07E-24* 7.0492480E+03±4.43E-08* 7.0492480E+03±3.26E-12* 7.0492480E+03±6.34E-10*
g11 7.499E-01±0.00E+00* 7.499E-01±0.00E+00* 7.499E-01±1.06E-16* 7.499E-01±1.13E-16* 7.499E-01±1.13E-16*
g12 -1.00E+00±0.00E+00* -1.00E+00±0.00E+00* -1.00E+00±0.00E+00* -1.00E+00±0.00E+00* -1.00E+00±0.00E+00*
g13 5.3942E-02±1.04E-17* 5.3942E-02±1.98E-34* 5.3942E-02±6.03E-14* 5.3942E-02±2.41E-17* 5.3942E-02±2.13E-17*
g14 -4.776489E+01±3.62E-15* -4.776489E+01±0.00E+00* -4.776489E+01±3.47E-10* -4.776489E+01±2.34E-14* -4.776489E+01±2.93E-14*
g15 9.617150E+02±0.00E+00* 9.617150E+02±0.00E+00* 9.617150E+02±4.47E-13* 9.617150E+02±5.80E-13* 9.617150E+02±5.80E-13*
g16 -1.90516E+00±2.64E-26* -1.90516E+00±2.62E-30* -1.90516E+00±0.00E+00* -1.90516E+00±4.53E-16* -1.90516E+00±4.53E-16*
g17 8.853533E+03±1.24E-27* 8.853533E+03±2.51E-23* 8.880233E+03±3.63E+01 8.853533E+03±0.00E+00* 8.853533E+03±3.23E-08*
g18 -8.66025E-01±6.51E-17* -8.66025E-01±4.62E-33* -8.66025E-01±3.30E-07* -8.66025E-01±6.94E-16* -8.66025E-01±2.47E-16 *
g19 3.265559E+01±1.07E-10* 3.265559E+01±1.52E-05* 3.265559E+01±3.37E-07* 3.265559E+01±2.18E-14* 3.265559E+01±2.25E-14*
g21 1.937245E+02±5.34E+01* 1.937245E+02±1.62E-22* 1.937245E+02±3.66E-09* 1.937245E+02±2.95E-11* 1.937245E+02±4.82E-10*
g23 -4.000551E+02±7.33E-11* -4.000551E+02±9.08E-26* -4.000551E+02±6.49E-06* -4.000551E+02±1.71E-13* -4.000551E+02±1.66E-05*
g24 -5.50801E+00±8.24E-28* -5.50801E+00±0.00E+00* -5.50801E+00±0.00E+00* -5.50801E+00±9.06E-16* -5.50801E+00±9.06E-16*

* 22 22 21 22 22

in [54]. The details of the search algorithm are summarized
in Algorithm 2.

D. Restart Strategy

In practice, some COPs may involve complicated con-
straints with strong nonlinearity and multimodality. Due to
the complex infeasible region formed by these constraints, the
population is very easy to stagnate. To address this issue, a
restart strategy is introduced [55].

Before applying the restart strategy, one needs to answer a
fundamental question: how to judge whether the population
has already stagnated in the infeasible region or not. Intu-
itively, if the population converges to a small region in the
infeasible region, the difference among the individuals will be
tiny. Consequently, the individuals will have the similar degree
of constraint violation or objective function values. Thus, we
can conclude that the population has stagnated in the infeasible
region when the following two conditions are satisfied:

1) All the individuals are infeasible.
2) All the individuals have the similar degree of constraint

violation or objective function values, i.e., the standard
deviation of the degree of constraint violation or objec-
tive function values is less than a predefined threshold
µ.

Once these two conditions have been detected, the restart
strategy will be triggered – all the solutions in the population
will be regenerated from the decision space randomly. The
reasons for regenerating the population randomly are twofold.
Firstly, if the population has stagnated in the infeasible region,
the information contained by the population is not useful for
searching for the optimal solution. Secondly, a possible way
to avoid stagnation is to exploit the feedback information from
the evolution to guide the optimization. However, under this
condition, more storage space is required. More importantly, it
is not easy to decide what feedback information is promising.

Apparently, the threshold µ is critical to the restart strategy.
A too big µ may lead to a wrong decision on the stagnation,
which has a negative impact on convergence. On the contrary,
a too small value cannot detect the stagnation timely, which
would waste computational resources to some extent. Thus, it
should be set carefully. We have investigated the setting of µ
in the empirical study.

V. EMPIRICAL STUDY

A. Benchmark Test Functions and Parameter Settings

Three sets of benchmark test functions were employed
to demonstrate the performance of DeCODE. The first set
includes 24 test functions from IEEE CEC2006 [56], the
second set contains 18 test functions with 10 dimensions (10D)
and 30 dimensions (30D) from IEEE CEC2010 [57], and
the third set involves 28 test functions with 50 dimensions
(50D) and 100 dimensions (100D) from IEEE CEC2017 [58].
Note that these three sets of test functions exhibit various
difficult properties, such as strong nonlinearity, tiny feasible
region, and rotated landscape. Thus, they are able to provide a
systematic assessment on the performance of DeCODE. More
details about these three sets of test functions are referred
to [56], [57], and [58].

The maximum number of functions evaluations (FEs)
MaxFEs and the population size NP are described in
Table I. Note that NP is varied with different test sets and
is related to the dimension of the search space. Following the
suggestions in [56], [57], and [58], 25 independent runs were
performed for each test function. In addition, the tolerance
value δ for equality constraints was set to 10−4. For DeCODE,
ε0 was set to min(εL, Gmax0), where Gmax0 is the maximum
degree of constraint violation in the initial population and
εL = 10D/2 is used to avoid a too large ε0. Moreover, Γ
in the sigmoid function, α in the sigmoid function, p in the
ε level controlling method, and µ in the restart strategy were
set to 30, 0.75, 0.85, and 10−6, respectively.
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TABLE III
EXPERIMENTAL RESULTS OF DECODE AND OTHER FIVE SELECTED METHODS OVER 25 INDEPENDENT RUNS ON 18 TEST FUNCTIONS WITH 10D

FROM IEEE CEC2010

IEEE CEC2010 with 10D ITLBO
Mean OFV±Std Dev

FROFI
Mean OFV±Std Dev

CACDE
Mean OFV±Std Dev

AIS-IRP
Mean OFV±Std Dev

DW
Mean OFV±Std Dev

DeCODE
Mean OFV±Std Dev

C01 -7.47E-01±1.87E-03+ -7.47E-01±1.35E-03+ -7.47E-01±1.88E-03+ -7.47E-01±1.30E-03+ -7.45E-01±3.66E-03− -7.46E-01±5.02E-03
C02 -2.03E+00±8.14E-02− -2.02E+00±1.41E-01− -2.26E+00±6.57E-02+ -2.27E+00±2.00E-03+ -2.28E+00±2.46E-03+ -2.18E+00±1.27E-01
C03 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 3.75E-09±4.81E-04− 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C04 -1.00E-05±3.39E-15≈ -1.00E-05±0.00E+00≈ -1.00E-05±0.00E+00≈ -9.97E-06±4.28E-03− -4.98E-03±7.63E-08+ -1.00E-05±8.42E-16
C05 -4.84E+02±1.11E-11≈ -4.84E+02±8.09E-07≈ -4.84E+02±3.48E-13≈ -4.80E+02±6.30E+00− -4.84E+02±1.49E-07≈ -4.84E+02±3.48E-13
C06 -5.79E+02±2.39E-04≈ -5.79E+02±5.04E-04≈ -5.79E+02±1.68E-02≈ -5.80E+02±7.30E-08+ -5.80E+02±1.59E-03+ -5.79E+02±1.29E-13
C07 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 1.17E-08±2.70E+00− 4.65E+00±1.16E+00− 0.00E+00±0.00E+00
C08 8.47E+00±4.09E+00≈ 7.11E+00±4.79E+00≈ 7.01E+00±5.01E+00≈ 4.09E+00±1.46E+00+ 6.46E+00±5.06E+00+ 8.56E+00±4.26E+00
C09 0.00E+00±0.00E+00+ 2.50E+01±3.92E+01− 2.10E+01±3.51E+01− 2.70E+01±7.50E+01− 4.72E+00±8.38E-01≈ 4.91E+00±1.82E+01
C10 1.92E-01±9.62E-01+ 4.17E+01±8.69E-06≈ 6.59E+01±4.40E+01− 1.62E+03±5.00E+02− 1.23E+01±1.82E+01+ 4.17E+01±2.20E-14
C11 -1.51E-03±1.30E-05≈ -1.52E-03±5.63E-14≈ -1.52E-03±1.30E-06≈ -9.20E-04±8.23E-04− ∇− -1.52E-03±3.77E-18
C12 -2.39E+01±1.14E+02+ -3.84E+02±2.17E+02+ -4.34E+02±2.49E+02+ -4.36E+02±6.02E+01+ -7.40E+01±2.51E+02+ -1.99E+00±4.81E-17
C13 -6.52E+01±1.78E+00− -6.84E+01±2.52E-09≈ -6.72E+01±1.04E+00− -6.79E+01±3.11E-01− -6.56E+01±2.37E+00− -6.84E+01±2.90E-14
C14 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 1.22E-04±2.90E-08− 4.45E+00±7.56E-01− 0.00E+00±0.00E+00
C15 3.54E+00±4.97E+00− 3.09E+00±1.37E+00− 3.38E+00±1.02E+00− 5.19E-09±1.10E-08+ 3.67E+00±1.96E-10− 2.94E+00±1.50E+00
C16 2.27E-01±3.11E-01− 1.19E-02±2.07E-02− 4.52E-02±1.03E-01− 9.96E-18±6.27E-15− 2.96E-02±3.16E-02− 0.00E+00±0.00E+00
C17 3.91E-01±6.71E-01− 7.83E-02±2.25E-01− 1.23E-33±2.52E-33+ 2.93E+00±2.29E+00− 4.79E-01±5.40E-01− 2.05E-11±4.44E-11
C18 0.00E+00±0.00E+00≈ 5.23E-26±1.71E-25− 0.00E+00±0.00E+00≈ 1.66E+00±1.27E+00− 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
− 5 6 5 12 8 /
+ 4 2 4 6 6 /
≈ 9 10 9 0 4 /

TABLE IV
RESULTS OF THE MULTIPLE-PROBLEM WILCOXON’S TEST FOR DECODE

AND OTHER FIVE SELECTED METHODS ON 18 TEST FUNCTIONS WITH
10D FROM IEEE CEC2010

DeCoDE VS R+ R− p-value α=0.1 α=0.05
ITLBO 102.5 68.5 ≥ 0.2 No No
FROFI 94.0 59.0 ≥ 0.2 No No

CACDE 87.5 82.5 ≥ 0.2 No No
AIS-IRP 124.0 47.0 1.30E-01 No No

DW 114.0 57.0 ≥ 0.2 No No

TABLE V
RANKING OF DECODE AND OTHER FIVE SELECTED METHODS BY THE

FRIEDMAN’S TEST ON 18 TEST FUNCTIONS WITH 10D FROM IEEE
CEC2010

Algorithm Ranking
DeCODE 3.0389
CACDE 3.1944
FROFI 3.3889
ITLBO 3.6389

DW 3.6944
AIS-IRP 3.9444

B. Experiments on the 24 Benchmark Test Functions from
IEEE CEC2006

First, DeCODE was evaluated on the 24 benchmark test
functions from IEEE CEC2006. Its performance was compared
with four state-of-the-art COEAs with various constraint-
handling techniques: CMODE [7], NSES [9], DW [48], and
FROFI [54]. Note that CMODE and NSES are methods based
on Pareto dominance. It can be known from [56] that it is
extremely difficult to locate the optimum of g22 and there are
no feasible solutions for g20. Thus, these two test functions
were not considered here. The experimental results over 25
independent runs are summarized in Table II, where “Mean
OFV” and “Std Dev” denote the average and standard devi-
ation of objective function values over 25 runs, respectively.
Due to the fact that the true optimum of each test function
has been provided in [56], we can define a successful run as

follows. A run for a test function is successful, if and only if
f(~xbest)− f(~x∗) < 10−4, where ~x∗ is the optimum provided
in [56] and ~xbest is the best feasible solution provided by a
method. In Table II, “*” denotes that a method can satisfy the
successful condition over all 25 runs for a test function.

It can be seen from Table II that among the five compared
methods, CMODE, NSES, FROFI, and DeCODE can success-
fully obtain the optima of all test functions. However, DW
cannot find the optimum of g17 consistently. In summary, the
experimental results validate that DeCODE yields better or
similar performance compared with other four competitors on
the 24 test functions from IEEE CEC2006.

C. Experiments on the 18 Benchmark Test Functions with 10D
and 30D from IEEE CEC2010

Subsequently, 36 complicated test functions from IEEE
CEC2010 were taken into account. Due to the fact that the
optimal solutions of these test functions are unknown, the
average and standard deviation of objective function values
over 25 runs were taken as the comparison criteria. Five state-
of-the-art methods with various constraint-handling techniques
were selected as the competitors: ITLBO [59], FROFI [54],
CACDE [60], AIS-IRP [61], and DW [48]. The experimental
results of ITLBO and FROFI can be available from our
previous study. So the Wilcoxon’s rank sum test at a 0.05
significance level was used to compare DeCODE with each
of ITLBO and FROFI. We can just obtain the average and
standard deviation of objective function values of CACDE,
AIS-IRP, and DW from their original papers. Thus, the t-test at
a 0.05 significance level was adopted to compare each of them
with DeCODE. Furthermore, to compare these six methods
simultaneously, the multiple-problem Wilcoxon’s test and the
Friedman’s test were implemented via KEEL software [62].
Note that the Bonferroni-Dunn method was selected as the
post-hoc method of the Friedman’s test.

Regarding the test functions with 10D, the average and
standard deviation of objective function values over 25 runs,
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TABLE VI
EXPERIMENTAL RESULTS OF DECODE AND OTHER FIVE SELECTED METHODS OVER 25 INDEPENDENT RUNS ON 18 TEST FUNCTIONS WITH 30D

FROM IEEE CEC2010

IEEE CEC2010 with 30D ITLBO
Mean OFV±Std Dev

FROFI
Mean OFV±Std Dev

CACDE
Mean OFV±Std Dev

AIS-IRP
Mean OFV±Std Dev

CMODE
Mean OFV±Std Dev

DeCODE
Mean OFV±Std Dev

C01 -8.20E-01±8.95E-04≈ -8.21E-01±2.36E-03≈ -8.20E-01±2.67E-03≈ -8.20E-01±3.25E-04≈ -8.21E-01±3.3E-03≈ -8.19E-01±3.20E-03
C02 -2.03E+00±7.64E-02− -2.00E+00±4.35E-02− -2.01E+00±7.78E-02− -2.21E+00±2.84E-03≈ 9.75E-01±6.25E+01− -2.23E+00±3.49E-02
C03 7.84E+01±6.31E+01− 2.87E+01±6.24E-08− 3.08E+01±3.50E+01− 6.68E+01±4.26E+02− 2.18E+01±1.25E+01≈ 2.06E+01±1.31E+01
C04 1.69E-03±1.14E-03− -3.33E-06±4.13E-10≈ 3.54E+00±7.62E+00− 1.98E-03±1.61E-03− 6.72E-04±4.24E-04− -3.33E-06±6.92E-12
C05 -4.82E+02±1.73E+00≈ -4.81E+02±2.84E+00≈ -3.41E+02±8.69E+01− -4.36E+02±2.51E+01− 2.77E+02±2.03E+02∇− -4.83E+02±1.53E-01
C06 -5.30E+02±4.80E-01≈ -5.29E+02±5.71E-01≈ -5.22E+02±2.92E+00− -4.54E+02±4.79E+01− -4.96E+02±2.15E+02∇− -5.28E+02±1.46E+00
C07 1.59E-01±7.97E-01− 0.00E+00±0.00E+00≈ 9.57E-01±1.74E+00− 1.07E+00±1.61E+00− 5.24E-05±5.89E-05− 0.00E+00±0.00E+00
C08 1.14E+01±2.79E+01− 0.00E+00±0.00E+00≈ 9.76E+00±3.20E+01− 1.65E+00±6.41E-01− 3.68E-01±2.62E-01− 0.00E+00±0.00E+00
C09 2.86E+00±1.43E+01≈ 4.30E+01±3.27E+01− 9.23E+03±1.26E+04− 1.57E+00±1.96E+00+ 1.72E+13±1.07E+13∇− 8.97E+00±2.32E+01
C10 3.29E+01±1.41E+01≈ 3.13E+01±8.22E-02≈ 8.20E+10±3.91E+11− 1.78E+01±1.88E+01+ 1.60E+13±7.00E+12∇− 3.13E+01±1.72E-05
C11 -3.86E-04±1.14E-05− -3.92E-04±2.64E-06≈ 2.99E-03±7.14E-03− -1.58E-04±4.67E-05− 9.5E-03±9.7E-03∇− -3.92E-04±3.11E-10
C12 -1.98E-01±2.39E-03≈ -1.99E-01±1.42E-06≈ -1.99E-01±2.35E-04≈ 4.29E-06±4.52E-04− -3.46E+00±7.35E+02∇− -1.99E-01±1.23E-06
C13 -5.05E+01±1.18E+00− -6.83E+01±1.95E-01≈ -6.77E+01±6.88E-01≈ -6.62E+01±2.27E-01− -3.89E+01±2.17E+00− -6.73E+01±1.60E+00
C14 4.78E-01±1.32E+00− 9.80E-29±4.90E-28≈ 7.37E-26±1.79E-25≈ 8.68E-07±3.14E-07− 9.31E+00±2.46E+00− 0.00E+00±0.00E+00
C15 2.38E+01±2.51E+01≈ 2.16E+01±8.03E-05≈ 2.17E+01±2.45E-01≈ 3.41E+01±3.82E+01− 1.51E+13±8.26E+12− 2.18E+01±1.14E+00
C16 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 6.03E-04±3.02E-03− 8.21E-02±1.12E-01− 6.30E-02±2.72E-02− 0.00E+00±0.00E+00
C17 9.65E-01±1.73E+00− 1.59E-01±3.82E-01− 8.24E-01±6.85E-01− 3.61E+00±2.54E+00− 3.12E+02±2.75E+02∇− 4.48E-02±1.21E-01
C18 9.07E-17±3.18E-16+ 4.87E-01±1.25E+00− 2.35E-05±8.46E-05− 4.02E+01±1.80E+01− 7.36E+03±3.12E+03− 3.03E-06±1.29E-05
− 9 5 13 14 16 /
+ 1 0 0 2 0 /
≈ 8 13 5 2 2 /

TABLE VII
RESULTS OF THE MULTIPLE-PROBLEM WILCOXON’S TEST FOR DECODE

AND OTHER FIVE SELECTED METHODS ON 18 TEST FUNCTIONS WITH
30D FROM IEEE CEC2010

DeCODE VS R+ R− p-value α=0.1 α=0.05
ITLBO 144.0 27.0 8.964E-03 Yes Yes
FROFI 114.0 39.0 7.968E-02 Yes No

CACDE 148.0 5.0 1.5258E-04 Yes Yes
AIS-IRP 149.0 4.0 1.0682E-04 Yes Yes
CMODE 153.0 0.0 1.5258E-05 Yes Yes

TABLE VIII
RANKING OF DECODE AND OTHER FIVE SELECTED METHODS BY THE

FRIEDMAN’S TEST ON 18 TEST FUNCTIONS WITH 30D FROM IEEE
CEC2010

Algorithm Ranking
DeCODE 1.9444

FROFI 2.5278
ITLBO 3.3889
CACDE 3.9722
AIS-IRP 4.0833
CMODE 5.0833

results of the multi-problem Wilcoxon’s test, and results of
the Friedman’s test are summarized in Tables III, IV, and V,
respectively. In Table III, “∇” denotes that feasible solutions
cannot be found by a method consistently over 25 runs,
and “−”, “+”, and “≈” represent that the performance of
the corresponding competitor is worse than, better than, and
similar to that of DeCODE in terms of the Wilcoxon’s rank
sum test/t-test, respectively. As shown in Table III, DeCODE
performs better than ITLBO, FROFI, CACDE, AIS-IRP, and
DW on five, six, five, 12, and eight test functions, respectively.
In contrast, these five competitors outperform DeCODE on
four, two, four, six, and six test functions, respectively. Note
that DW cannot find any feasible solution on C11 and the
experimental results of C11 are not provided in its original
literature. In Table IV, all the R+ values are bigger than the
R− values, which reflects that the performance of DeCODE is

superior to that of other five competitors. Moreover, DeCODE
achieves the first rank in the Friedman’s test. Therefore, the
experimental results demonstrate that DeCODE outperforms
the five competitors on the 18 test functions with 10D from
IEEE CEC2010.

In terms of the test functions with 30D, the average and
standard deviation of objective function values over 25 runs,
results of the multi-problem Wilcoxon’s test, and results of
the Friedman’s test are reported in Tables VI, VII, and VIII,
respectively. Note that, since the experimental results of DW
on 30D cannot be obtained from the original paper [48],
we removed DW and added CMODE [7] as a compared
method. As shown in Table VI, DeCODE outperforms ITLBO,
FROFI, CACDE, AIS-IRP, and CMODE on nine, five, 13, 14,
and 16 test functions, respectively. However, ITLBO, FROFI,
CACDE, AIS-IRP and CMODE cannot surpass DeCODE
on more than two test functions. In Table VII, all the R+

values are bigger than the R− values, which reflects that
the performance of DeCODE is better than that of the five
competitors. Moreover, the significant difference at α = 0.1
can be observed in all cases and the significant difference at
α = 0.05 can be found in four cases, i.e., DeCODE versus
ITLBO, DeCODE versus CACDE, DeCODE versus AIS-IRP,
and DeCODE versus CMODE. From Table VIII, DeCODE
ranks the first according to the Friedman’s test. Considering
the experimental results, we can conclude that DeCODE has
an edge over the five competitors on the 18 test functions with
30D from IEEE CEC2010.

To test the computational efficiency of DeCODE, its com-
putational time was compared with CMODE, whose source
code can be obtained online, on the 36 test functions from
IEEE CEC2010. Note that CMODE is a Pareto dominance-
based method. The experiments were performed on a computer
with Intel Core (TM) i7-3770 (3.40 GHz) processor and
Windows10 (64 bit) system. These two algorithms were pro-
grammed in MATLAB. The computational time provided by
DeCODE is 139.55 seconds and 429.55 seconds for the 18 test
functions with 10D and 30D over one run, respectively. The



11

corresponding computational time resulting from CMODE
is 200.84 seconds and 653.44 seconds, respectively. Thus,
DeCODE is more efficient than CMODE, which also verifies
that the decomposition-based framework is more efficient than
nondominated sorting [13], [19].

In view of all the above experimental results, DeCODE
shows overall better performance than the five competitors.

D. Experiments on the 28 Benchmark Test Functions with 50D
and 100D from IEEE CEC2017

The 28 test functions with 50D and 100D from IEEE
CEC2017 [58] were adopted to further evaluate DeCODE’s
performance on high-dimensional COPs. The two best algo-
rithms, i.e., LSHADE44 [63] and UDE [64], in the IEEE
CEC2017 competition were selected as the competitors. We
compared DeCODE with each of LSHADE44 and UDE ac-
cording to the ranking procedure provided in IEEE CEC2017:
• Rank the methods based on the feasible rate (FR), which

denotes the percentage of runs where at least one feasible
solution is found;

• Then rank the methods according to the average degree
of constraint violation (voi);

• Finally, rank the methods in terms of the average objec-
tive function value.

To compare these three algorithms concurrently, we first
ranked them on each test function according to the above
procedure. Afterward, the total rank on all test functions
was calculated. The experimental results are summarized in
Table S-1 in the supplementary file. As shown in Table S-
1, the total ranks of DeCODE on the 28 test functions with
50D and 100D are 45 and 44, respectively. Compared with
DeCODE, the corresponding total ranks achieved by both
LSHADE44 and UDE are larger. Therefore, DeCODE is better
than LSHADE44 and UDE on these 56 test functions, which
means that DeCODE has good scalability in solving high-
dimensional COPs.

E. Effectiveness of the Weight Vector Adjusting Strategy

As introduced in Section IV-B, the weight vector adjusting
strategy is used to generate proper weight vectors for locating
the feasible optimum of a COP. To investigate the effectiveness
of this strategy, five variants of DeCODE were implemented
by setting η to five fixed values, i.e., η = 0.1, η = 0.3, η =
0.5, η = 0.7, and η = 1.0. The performance of DeCODE
and these five variants was evaluated on the 18 test functions
with 30D from IEEE CEC2010. Similar to Section V-C, the
average and standard deviation of objective function values
were recorded. In addition, if an algorithm fails to find at least
one feasible solution consistently over 25 runs, the feasible rate
was provided.

The Wilcoxon’s rank sum test at a 0.05 significance level
was used for performance comparison. The experimental re-
sults are summarized in Table S-2 in the supplementary file.
As shown in Table S-2, DeCODE performs better than its
five variants on 13, 14, 10, seven, and five test functions,
respectively. However, these five variants cannot surpass De-
CODE on more than one test function. The experimental

results validate that the weight vector adjusting strategy plays
a key role in making the decomposition-based framework suit
the properties of COPs.

F. Effectiveness of the Search Algorithm

We implemented six variants of DeCODE where six
different search algorithms were adopted. To be specific,
in DeCODE-ConCon, the best individual in “DE/rand-to-
best/1/bin” was selected based on G(~x). In DeCODE-ConObj,
the best individual in “DE/rand-to-best/1/bin” was selected
according to f(~x). In DeCODE-Con and DeCODE-Obj, only
“DE/rand-to-best/1/bin” was used. Note that the best individ-
ual was selected based on G(~x) in DeCODE-Con and based
on f(~x) in DeCODE-Obj, respectively. In DeCODE-Div,
“DE/current-to-rand/1” was employed as the search algorithm
while “DE/rand/1/bin” was used as the search algorithm in
DeCODE-rand1. These six variants were evaluated on the 18
test functions with 30D from IEEE CEC2010. The experimen-
tal results are collected in Table S-3 in the supplementary file.
Note that the performance of these six variants was compared
with that of DeCODE based on the Wilcoxon’s rank sum test
at a 0.05 significance level.

From Table S-3, DeCODE outperforms the six variants on
six, two, 14, eight, 18, and 16 test functions, respectively.
However, no variant can provide better results on more than
two test functions than DeCODE. By comparing DeCODE
with DeCODE-ConCon and DeCODE-ConObj, it can be seen
that properly utilizing f(~x)/G(~x) is critical to a search al-
gorithm. That is to say, the tradeoff between constraints and
objective function is critical. By comparing DeCODE with
DeCODE-Con, DeCODE-Obj, DeCODE-Div, and DeCODE-
rand1, we can find that the tradeoff between diversity and
convergence is also important for a search algorithm. In
summary, the effectiveness of the proposed search algorithm
has been confirmed.

G. Effectiveness of the Sigmoid Function

As described in Section IV-B, the sigmoid function controls
the decreasing trend of η. As we know, the linear function
and the exponential function are two other popular functions
that can be used to control a dynamic parameter. To this end,
we implemented two variants of DeCODE, i.e., DeCODE-Lin
and DeCODE-Exp, which made use of the linear function (i.e.,
η = 1− t

T ) and the exponential function (i.e., η = e30(1− t
T

)−1
e30−1 ),

respectively. The performance of DeCODE, DeCODE-Lin,
and DeCODE-Exp was evaluated on the 36 test functions from
IEEE CEC2010. The experimental results are summarized in
Table S-4 in the supplementary file.

As shown in Table S-4, compared with DeCODE-Exp,
DeCODE shows better performance on more test functions in
terms of both 10D and 30D. Although DeCODE-Lin performs
better than DeCODE on the 18 test functions with 10D,
it is worse than DeCODE on the 18 test functions with
30D. Moreover, DeCODE-Lin cannot consistently find feasible
solutions on C05 with 30D. Therefore, the experimental results
verify the advantage of the sigmoid function.
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TABLE IX
EXPERIMENTAL RESULTS OF DECODE AND DECODE-WOR OVER 25

INDEPENDENT RUNS ON THREE TEST FUNCTIONS

Instance
DeCODE

Mean OFV±Std Dev
(FR)

DeCODE-WoR
Mean OFV±Std Dev

(FR)
C11 with 30D -3.92E-04±3.11E-10 (76%)
C12 with 30D -1.99E-01±1.23E-06 (96%)
C17 with 30D 4.48E-02±1.21E-01 (80%)

H. Effectiveness of the Weighted Sum Method

We compared DeCODE with another variant, i.e.,
DeCODE-Tch, where the weighted sum method was replaced
with the Tchebycheff decomposition approach. Both DeCODE
and DeCODE-Tch were evaluated on the 36 test functions
from IEEE CEC2010 and the experimental results are sum-
marized in Table S-5 in the supplementary file. As shown in
Table S-5, DeCODE-Tch cannot beat DeCODE on any test
function while DeCODE provides better results on 10 test
functions. The experimental results reflect the superiority of
the weighted sum method for constrained optimization, which
is in line with the analysis in Section IV-A.

I. Effectiveness of the Restart Strategy

In order to validate the effectiveness of the restart strategy, a
competitor called DeCODE-WoR was implemented by remov-
ing the restart strategy from DeCODE. The 36 test functions
from IEEE CEC2010 were used to produce the experimental
results.

Similar to Section V-E, the average and standard devia-
tion of objective function values and the feasible rate were
recorded. Significant difference can be observed on three
test functions, i.e., C11 with 30D, C12 with 30D, and C17
with 30D, based on the Wilcoxon’s rank sum test at a 0.05
significance level. The experimental results of these three test
functions are summarized in Table IX.

As shown in Table IX, on C11 with 30D, C12 with 30D,
and C17 with 30D, DeCODE-WoR tends to be trapped in
the infeasible region. Specifically, DeCODE-WoR converges
to a local optimum in the infeasible region on these three test
functions over six, one, and five runs, respectively.

In summary, the restart strategy can help the population
jump out of the infeasible area where it has stagnated.

Remark 3: In Section S-I in the supplementary file, we
also analyzed the effect of the parameter settings on the
performance of DeCODE by extensive experiments.

VI. CONCLUSION

This paper further developed the potential of decomposition-
based multiobjective optimization for constrained evolutionary
optimization. In this paper, a COP was first transformed
into a BOP. Thereafter, the transformed BOP was opti-
mized under the decomposition-based framework. In order
to make decomposition-based multiobjective optimization suit
the properties of COPs, a weight vector adjusting strategy
was proposed. In addition, DE was used to design the search

algorithm. Moreover, a restart strategy was introduced to tackle
COPs with complicated constraints. By the above process, an
alternative COEA, i.e., DeCODE, was presented. Extensive
and systematic experiments verified that:

1) The weight vector adjusting strategy is an effective way
to adapt decomposition-based multiobjective optimiza-
tion for COPs, by producing appropriate weight vectors.

2) The restart strategy improves DeCODE’s ability to
find feasible solutions for COPs with complicated con-
straints.

3) DeCODE shows superior performance against some
state-of-the-art COEAs including Pareto dominance-
based methods on three sets of benchmark test functions.

In the future, it is interesting to extend DeCODE to solve
constrained multiobjective optimization problems. Note that,
as an EA, the optimality and convergence of DeCODE cannot
be theoretically guaranteed as conventional mathematical pro-
gramming methods, especially in the scenarios which have
high requirements for real-time performance and optimali-
ty [65], [66]. In the future, we will try to investigate COEAs
from theoretical aspects.

The Matlab source code of DeCODE can be downloaded
from Y. Wang’s homepage: http://www.escience.cn/people/
yongwang1/index.html
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Supplementary File for “Decomposition-based
Multiobjective Optimization for Constrained

Evolutionary Optimization”

S-1. PARAMETER SENSITIVITY ANALYSIS

We investigated the sensitivities of all involved parameters experimentally. Extensive experiments were executed on the 18
test functions with 30D from IEEE CEC2010. Note that the comparisons were based on the Wilcoxon’s rank sum test at a
0.05 significance level.

As shown in (9), Γ and α are two important parameters in the decreasing function of the weight vector adjusting strategy.
In terms of α, we tested five different values in DeCODE, i.e., α = 0.0, α = 0.25, α = 0.5, α = 0.75, and α = 1.0. The
average and standard deviation of objective function values are collected in Table S-6 in the supplementary file. In addition,
the feasible rate is provided if a method cannot achieve at least one feasible solution consistently over 25 runs. According
to the collected results, DeCODE with α = 0.75 outperforms DeCODE with α = 0.0, α = 0.25, α = 0.5, and α = 1.0 on
12, nine, four, and one test function, respectively. However, DeCODE with α = 0.0, α = 0.25, α = 0.5, and α = 1.0 cannot
beat DeCODE with α = 0.75 on any test function. In view of this, α = 0.75 was recommended in this paper. Similarly, we
implemented five variants of DeCODE, which had different Γ values, i.e., Γ = 10, Γ = 20, Γ = 30, Γ = 40, and Γ = 50.
Note that Γ = 30 is used in the original DeCODE. Table S-7 in the supplementary file reports the experimental results. As
shown in Table S-7, all variants perform similarly on most of the test functions. That is to say, this parameter is not sensitive.
Overall, DeCODE with Γ = 30 exhibits better performance than other variants. Thus, Γ = 30 was employed in this paper.

As describe in (10) and (11), p and β are two important parameters in the ε level controlling method. We investigated their
settings as follows. As far as p is concerned, we tested six different values in DeCODE, i.e., p = 0.45, p = 0.55, p = 0.65,
p = 0.75, p = 0.85, and p = 1. The experimental results are summarized in Table S-8 in the supplementary file. It can be seen
that DeCODE with p = 0.85 provides better results than DeCODE with p = 0.45, p = 0.55, p = 0.65, p = 0.75, and p = 1.0
on eight, six, four, one, and three test functions, respectively. However, the five competitors cannot outperform DeCODE with
p = 0.85 on any test function. As a result, p = 0.85 was recommended for DeCODE. In terms of β, we tested five different
values in DeCODE, i.e., β = 0, β = 3, β = 6, β = 9, and β = 12. Note that β is set to 6 in the original DeCODE.
The experimental results are summarized in Table S-9 in the supplementary file. As shown in Table S-9, all variants perform
similarly on most of the test functions. Thus, this parameter is not sensitive. DeCODE with β = 6 shows better performance
on more test functions than other variants. Therefore, it was adopted in this paper.

Besides, two other parameters, i.e., εL and FP , which are also related to ε, were investigated experimentally. In terms of
εL, it has little impact on test functions with 30D from IEEE CEC2010. Alternatively, test functions with 10D were adopted.
We implemented five variants where five different εL values, i.e., εL = 101, εL = 103, εL = 105, εL = 107, and εL = 109,
were used. Note that εL = 105 is used in the original DeCODE. The experimental results are collected in Table S-10 in the
supplementary file. With respect to a too small εL (i.e., εL = 101 and εL = 103), the information of objective function cannot
be utilized adequately. The performance of test functions needing the information of objective function, such as C02, C05,
C06, C09, and C10, is affected. However, with respect to a too big εL (i.e., εL = 109), too much information of objective
function has a negative impact on the convergence of some test functions. Overall, DeCODE with εL = 105 provides the
best result. In terms of FP , we tested five different values, i.e., FP = 0.55, FP = 0.65, FP = 0.75, FP = 0.85, and
FP = 0.95. Note that FP = 0.85 is utilized in the original DeCODE. The experimental results are summarized in Table S-11
in the supplementary file. As shown in Table S-11, all variants perform similarly on most of the test functions. Thus, FP is
not sensitive. DeCODE with FP = 0.85 performs better on more test functions than other variants. Therefore, we made use
of it in this paper.

In Section IV-B, ηL is a parameter to truncate η, which was set to a tiny value. We tested six different values to study its
sensitivity, i.e., ηL = 10−6, ηL = 10−10, ηL = 10−14, ηL = 10−18, ηL = 10−22, and ηL = 10−26. The experimental results
are reported in Table S-12 in the supplementary file. As shown in Table S-12, all variants provide similar results on most of
test functions, thus ηL is insensitive.
µ is the key parameter in the restart strategy in Section IV-D. We implemented five variants of DeCODE where five different

µ values, i.e., µ = 100, µ = 10−3, µ = 10−6, µ = 10−9, and µ = 10−12, were utilized. The experimental results are
summarized in Table S-13 in the supplementary file. It is clear that DeCODE with µ = 10−6 performs better than DeCODE
with µ = 100, µ = 10−3, µ = 10−9, and µ = 10−12 on 13, eight, two, and two test functions, respectively. However, the other
four variants cannot be better than DeCODE with µ = 10−6 on more than one test function. As a consequence, µ = 10−6

was chosen in this paper.
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TABLE S-1
EXPERIMENTAL RESULTS OF DECODE, LSHADE44, AND UDE OVER 25 INDEPENDENT RUNS ON THE 56 TEST FUNCTIONS FROM IEEE CEC2017

IEEE CEC2017
50D 100D

LSHADE44
Mean OFV/voi/FR (rank)

UDE
Mean OFV/voi/FR (rank)

DeCODE
Mean OFV/voi/FR (rank)

LSHADE44
Mean OFV/voi/FR (rank)

UDE
Mean OFV/voi/FR (rank)

DeCODE
Mean OFV/voi/FR (rank)

C01 7.79E-29/0.00E+00/1.00 (1) 3.18E-11/0.00E+00/1.00 (1) 5.42E-20/0.00E+00/1.00 (1) 1.03E-25/0.00E+00/1.00 (1) 1.79E-03/0.00E+00/1.00 (3) 3.36E-09/0.00E+00/1.00 (1)
C02 9.79E-29/0.00E+00/1.00 (1) 1.60E-11/0.00E+00/1.00 (1) 1.98E-20/0.00E+00/1.00 (1) 8.47E-26/0.00E+00/1.00 (1) 1.56E-03/0.00E+00/1.00 (3) 1.35E-09/0.00E+00/1.00 (1)
C03 8.95E+05/0.00E+00/1.00 (3) 1.09E+02/0.00E+00/1.00 (2) 8.64E-20/0.00E+00/1.00 (1) 2.73E+06/0.00E+00/1.00 (3) 7.42E+02/0.00E+00/1.00 (2) 2.31E-09/0.00E+00/1.00 (1)
C04 1.36E+01/0.00E+00/1.00 (1) 1.47E+02/0.00E+00/1.00 (3) 1.52E+01/0.00E+00/1.00 (2) 1.37E+01/0.00E+00/1.00 (1) 4.01E+02/0.00E+00/1.00 (3) 8.07E+01/0.00E+00/1.00 (2)
C05 1.68E-28/0.00E+00/1.00 (1) 1.34E+01/0.00E+00/1.00 (3) 6.38E-01/0.00E+00/1.00 (2) 3.28E-05/0.00E+00/1.00 (1) 7.54E+01/0.00E+00/1.00 (3) 2.99E+00/0.00E+00/1.00 (2)
C06 7.51E+03/1.17E-02/0.00 (3) 7.43E+02/0.00E+00/1.00 (1) 7.59E+02/0.00E+00/1.00 (2) 1.56E+04/9.81E-03/0.00 (3) 2.53E+03/4.28E-06/0.96 (2) 1.54E+03/0.00E+00/1.00 (1)
C07 -1.79E+02/0.00E+00/1.00 (2) -9.78E+02/0.00E+00/1.00 (1) -5.66E+01/0.00E+00/1.00 (3) -3.02E+02/0.00E+00/1.00 (2) -1.64E+03/0.00E+00/1.00 (1) -1.43E+02/0.00E+00/1.00 (3)
C08 -1.30E-04/0.00E+00/1.00 (1) 1.45E-04/0.00E+00/1.00 (3) -1.34E-04/0.00E+00/1.00 (1) -4.81E-05/0.00E+00/1.00 (1) 2.97E-03/4.16E-06/0.92 (3) 1.57E-03/0.00E+00/1.00 (2)
C09 -2.04E-03/0.00E+00/1.00 (1) -2.04E-03/0.00E+00/1.00 (1) 1.62E-02/0.00E+00/1.00 (3) -1.43E-03/0.00E+00/1.00 (1) 2.46E-01/2.52E-24/0.84 (3) 6.86E-09/0.00E+00/1.00 (2)
C10 -4.83E-05/0.00E+00/1.00 (1) 3.04E-05/0.00E+00/1.00 (3) -4.82E-05/0.00E+00/1.00 (1) -1.72E-05/0.00E+00/1.00 (1) 5.57E-04/0.00E+00/1.00 (3) 3.58E-04/0.00E+00/1.00 (2)
C11 -1.76E+00/0.00E+00/1.00 (1) -1.77E+02/4.36E-01/0.00 (2) -4.49E+02/6.35E+03/0.00 (3) -3.65E+00/5.25E-43/0.88 (1) -1.84E+02/2.03E-01/0.00 (3) -6.39E+03/1.41E-09/0.00 (2)
C12 4.98E+01/0.00E+00/1.00 (3) 2.09E+01/0.00E+00/1.00 (2) 1.28E+01/0.00E+00/1.00 (1) 3.25E+01/0.00E+00/1.00 (3) 1.07E+01/0.00E+00/1.00 (1) 2.49E+01/0.00E+00/1.00 (2)
C13 2.67E+01/0.00E+00/1.00 (2) 1.12E+03/0.00E+00/1.00 (3) 4.01E+00/0.00E+00/1.00 (1) 8.07E+01/0.00E+00/1.00 (2) 3.38E+04/2.69E+01/0.00 (3) 3.84E+01/0.00E+00/1.00 (1)
C14 1.40E+00/0.00E+00/1.00 (3) 1.23E+00/0.00E+00/1.00 (2) 1.10E+00/0.00E+00/1.00 (1) 9.72E-01/0.00E+00/1.00 (3) 9.14E-01/0.00E+00/1.00 (1) 9.28E-01/0.00E+00/1.00 (2)
C15 1.78E+01/0.00E+00/1.00 (3) 1.05E+01/0.00E+00/1.00 (2) 6.50E+00/0.00E+00/1.00 (1) 1.81E+01/0.00E+00/1.00 (3) 1.80E+01/0.00E+00/1.00 (2) 1.25E+01/0.00E+00/1.00 (1)
C16 2.53E+02/0.00E+00/1.00 (3) 1.21E+01/0.00E+00/1.00 (2) 6.28E+00/0.00E+00/1.00 (1) 5.35E+02/0.00E+00/1.00 (3) 3.37E+01/0.00E+00/1.00 (2) 6.79E+00/0.00E+00/1.00 (1)
C17 1.03E+00/2.55E+01/0.00 (1) 1.05E+00/2.55E+01/0.00 (1) 7.54E-01/2.55E+01/0.00 (1) 1.09E+00/5.05E+01/0.00 (2) 1.10E+00/5.05E+01/0.00 (2) 9.74E-01/4.95E+01/0.00 (1)
C18 5.67E+03/2.24E+05/0.00 (1) 4.06E+03/6.32E+07/0.00 (2) 4.13E+02/2.69E+10/0.00 (3) 3.44E+03/3.34E+06/0.00 (1) 8.33E+03/1.37E+08/0.00 (2) 9.58E+02/3.40E+08/0.00 (3)
C19 1.21E-05/3.61E+04/0.00 (1) 4.66E+00/3.61E+04/0.00 (1) 1.01E-03/3.61E+04/0.00 (1) 4.68E-05/7.30E+04/0.00 (1) 3.25E+01/7.30E+04/0.00 (1) 1.68E-03/7.30E+04/0.00 (1)
C20 3.20E+00/0.00E+00/1.00 (1) 7.59E+00/0.00E+00/1.00 (3) 3.88E+00/0.00E+00/1.00 (2) 9.36E+00/0.00E+00/1.00 (2) 1.89E+01/0.00E+00/1.00 (3) 8.23E+00/0.00E+00/1.00 (1)
C21 6.29E+01/0.00E+00/1.00 (3) 6.43E+00/0.00E+00/1.00 (1) 2.55E+01/0.00E+00/1.00 (2) 3.16E+01/0.00E+00/1.00 (3) 1.48E+01/0.00E+00/1.00 (2) 7.18E+00/0.00E+00/1.00 (1)
C22 8.39E+03/1.01E-02/0.96 (2) 2.90E+03/6.74E-02/0.84 (3) 1.70E+01/0.00E+00/1.00 (1) 5.04E+04/6.46E+00/0.04 (2) 5.58E+04/4.27E+02/0.00 (3) 3.61E+02/0.00E+00/1.00 (1)
C23 1.34E+00/0.00E+00/1.00 (2) 1.10E+00/0.00E+00/1.00 (1) 1.52E+00/0.00E+00/1.00 (3) 9.69E-01/0.00E+00/1.00 (2) 7.85E-01/0.00E+00/1.00 (1) 1.02E+00/0.00E+00/1.00 (3)
C24 1.43E+01/0.00E+00/1.00 (3) 1.13E+01/0.00E+00/1.00 (2) 5.62E+00/0.00E+00/1.00 (1) 1.72E+01/0.00E+00/1.00 (2) 1.81E+01/0.00E+00/1.00 (3) 5.75E+00/0.00E+00/1.00 (1)
C25 2.49E+02/0.00E+00/1.00 (3) 2.24E+01/0.00E+00/1.00 (2) 6.28E+00/0.00E+00/1.00 (1) 5.44E+02/0.00E+00/1.00 (3) 1.65E+02/0.00E+00/1.00 (2) 3.62E+01/0.00E+00/1.00 (1)
C26 1.04E+00/2.55E+01/0.00 (1) 1.05E+00/2.55E+01/0.00 (1) 9.62E-01/2.55E+01/0.00 (1) 1.10E+00/5.05E+01/0.00 (2) 1.10E+00/5.05E+01/0.00 (2) 1.03E+00/4.95E+01/0.00 (1)
C27 2.17E+04/1.34E+07/0.00 (1) 1.04E+04/2.58E+08/0.00 (2) 5.50E+02/4.73E+11/0.00 (3) 3.69E+04/4.78E+08/0.00 (1) 4.22E+04/2.03E+09/0.00 (2) 1.23E+03/3.80E+08/0.00 (3)
C28 2.65E+02/3.63E+04/0.00 (1) 1.25E+02/3.63E+04/0.00 (1) 1.53E+01/3.63E+04/0.00 (1) 5.84E+02/7.34E+04/0.00 (2) 3.20E+02/7.33E+04/0.00 (2) 1.58E+02/4.41E+03/0.00 (1)

Total Rank 50 52 45 53 63 44

TABLE S-2
EXPERIMENTAL RESULTS OF DECODE AND DECODE WITH FIVE FIXED η OVER 25 INDEPENDENT RUNS ON THE 18 TEST FUNCTIONS WITH 30D

FROM IEEE CEC2010. FR DENOTES THE FEASIBLE RATE.

IEEE CEC2010 with 30D
η = 0.1

Mean OFV±Std Dev
(FR)

η = 0.3
Mean OFV±Std Dev

(FR)

η = 0.5
Mean OFV±Std Dev

(FR)

η = 0.7
Mean OFV±Std Dev

(FR)

η = 1.0
Mean OFV±Std Dev

(FR)

DeCODE
Mean OFV±Std Dev

(FR)
C01 -5.78E-01±2.25E-02− -5.75E-01±2.52E-02− -5.79E-01±2.38E-02− -5.80E-01±2.59E-02− -5.09E-01±2.33E-02− -8.19E-01±3.20E-03
C02 -7.62E-01±6.05E-01− -1.98E+00±2.29E-01− -2.26E+00±2.77E-02≈ -2.27E+00±2.20E-02≈ -2.27E+00±1.35E-02≈ -2.23E+00±3.49E-02
C03 2.21E+03±1.10E+04≈ 1.26E+01±1.45E+01≈ 1.15E+01±1.43E+01≈ 1.61E+01±1.45E+01≈ (36%)− 2.06E+01±1.31E+01
C04 (96%)− (92%)− -3.33E-06±2.32E-11≈ -3.33E-06±3.38E-12≈ -3.33E-06±2.51E-12≈ -3.33E-06±6.92E-12
C05 (88%)− -2.37E+02±1.23E+02− (88%)− (44%)− -4.84E+02±4.16E-03≈ -4.83E+02±1.53E-01
C06 (76%)− (76%)− (76%)− -5.16E+02±6.44E+00− -5.29E+02±6.87E-01≈ -5.28E+02±1.46E+00
C07 1.46E-27±6.85E-27≈ 1.59E-01±7.97E-01− 4.78E-01±1.32E+00− 3.19E-01±1.10E+00− 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C08 4.41E+00±2.12E+01− 3.67E+00±1.84E+01− 1.19E+01±3.31E+01− 1.59E-01±7.97E-01− 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C09 1.37E+10±3.93E+10− 8.94E+04±2.70E+05− 6.25E+01±6.68E+01− 3.55E+00±1.41E+01≈ 5.28E+00±1.46E+00≈ 8.97E+00±2.32E+01
C10 (84%)− 2.68E+05±9.35E+05− 3.39E+01±9.89E+00≈ 3.13E+01±7.41E-03≈ 3.14E+01±2.02E-02≈ 3.13E+01±1.72E-05
C11 (0%)− (0%)− (0%)− (0%)− (0%)− -3.92E-04±3.11E-10
C12 (48%)− (0%)− (0%)− (0%)− (0%)− -1.99E-01±1.23E-06
C13 -6.80E+01±7.21E-01≈ -6.77E+01±1.43E+00≈ -6.83E+01±2.81E-01≈ -6.83E+01±3.38E-01≈ (0%)− -6.73E+01±1.60E+00
C14 2.99E-11±6.98E-11− 3.19E-01±1.10E+00− 1.59E-01±7.97E-01− 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C15 1.01E+11±3.81E+11− 2.26E+01±2.05E+00≈ 2.38E+01±1.09E+01≈ 2.16E+01±1.50E-04≈ 2.16E+01±1.16E-03≈ 2.18E+01±1.14E+00
C16 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C17 6.65E-02±1.46E-01≈ 1.64E-01±3.32E-01− 7.65E-02±1.81E-01≈ 7.99E-02±1.70E-01≈ 1.39E-02±3.41E-02≈ 4.48E-02±1.21E-01
C18 5.80E+00±7.77E+00− 5.31E+00±2.11E+01− 7.69E+00±3.84E+01− 2.28E-20±1.14E-19+ 8.44E-16±3.64E-15+ 3.03E-06±1.29E-05
− 13 14 10 7 5 /
+ 0 0 0 1 1 /
≈ 5 4 8 10 12 /

TABLE S-3
EXPERIMENTAL RESULTS OF DECODE AND OTHER SIX VARIANTS WITH DIFFERENT SEARCH ALGORITHMS OVER 25 INDEPENDENT RUNS ON THE 18

TEST FUNCTIONS WITH 30D FROM IEEE CEC2010. FR DENOTES THE FEASIBLE RATE.

IEEE CEC2010
with 30D

DeCODE-ConCon
Mean OFV±Std Dev

(FR))

DeCODE-ConObj
Mean OFV±Std Dev

(FR)

DeCODE-Con
Mean OFV±Std Dev

(FR)

DeCODE-Obj
Mean OFV±Std Dev

(FR)

DeCODE-Div
Mean OFV±Std Dev

(FR)

DeCoDE-rand1
Mean OFV±Std Dev

(FR)

DeCODE
Mean OFV±Std Dev

(FR)
C01 -8.19E-01±2.83E-03≈ -8.20E-01±2.11E-03≈ -8.14E-01±1.08E-02− -8.18E-01±3.04E-03≈ -4.71E-01±1.85E-02− -8.21E-01±1.36E-03≈ -8.19E-01±3.20E-03
C02 -2.17E+00±4.43E-02≈ -2.24E+00±2.48E-02≈ -2.02E+00±2.44E-01− -2.21E+00±5.79E-02≈ -2.00E+00±1.90E-01− -9.07E-01±1.34E-01− -2.23E+00±3.49E-02
C03 1.49E+01±1.46E+01≈ 1.84E+01±1.40E+01≈ 1.17E+06±1.62E+06− 4.59E+00±1.07E+01+ (0%)− 2.87E+01±3.39E-06≈ 2.06E+01±1.31E+01
C04 -3.33E-06±1.51E-09≈ -3.33E-06±5.00E-12≈ (20%)− (64%)− (0%)− 3.01E-03±9.52E-04− -3.33E-06±6.92E-12
C05 (88%)− -4.84E+02±2.81E-02≈ -2.24E+02±4.24E+01− -4.84E+02±2.94E-13≈ (4%)− (0%)− -4.83E+02±1.53E-01
C06 -5.19E+02±4.04E+00− -5.29E+02±8.54E-01≈ -2.49E+02±1.85E+02− -5.31E+02±9.60E-02≈ (13%)− (0%)− -5.28E+02±1.46E+00
C07 0.00E+00±0.00E+00≈ 5.43E-28±2.72E-27≈ 4.78E-01±1.32E+00− 3.19E-01±1.10E+00− 1.71E+06±2.20E+06− 4.21E-02±5.21E-02− 0.00E+00±0.00E+00
C08 3.93E+00±1.96E+01− 0.00E+00±0.00E+00≈ 9.35E+00±3.18E+01− 4.63E+00±1.85E+01− 1.53E+06±1.60E+06− 4.76E+00±1.09E+00− 0.00E+00±0.00E+00
C09 3.44E+01±3.41E+01− 5.71E+00±1.98E+01≈ 1.71E+01±3.43E+01− 7.57E+00±2.14E+01≈ 4.38E+08±3.98E+08− (40%)− 8.97E+00±2.32E+01
C10 3.13E+01±4.55E-05≈ 3.13E+01±1.87E-05≈ 3.02E+01±9.76E+00≈ 3.36E+01±9.00E+00≈ 3.83E+08±5.70E+08− (28%)− 3.13E+01±1.72E-05
C11 -3.92E-04±2.50E-10≈ -3.92E-04±1.47E-09≈ (24%)− (0%)− (0%)− (0%)− -3.92E-04±3.11E-10
C12 -1.99E-01±2.27E-08≈ (52%)− (96%)− (16%)− (0%)− (96%)− -1.99E-01±1.23E-06
C13 -6.75E+01±1.27E+00≈ -6.78E+01±1.18E+00≈ -6.74E+01±8.72E-01≈ -6.81E+01±4.75E-01≈ -3.62E+01±2.88E+00− -6.49E+01±9.87E-01− -6.73E+01±1.60E+00
C14 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 3.19E-01±1.10E+00− 1.59E-01±7.97E-01− 7.83E+09±1.77E+10− 1.10E+01±8.83E-01− 0.00E+00±0.00E+00
C15 2.16E+01±7.21E-07≈ 2.16E+01±6.04E-07≈ 2.16E+01±5.71E-07≈ 2.10E+01±4.52E+00≈ 7.24E+09±6.51E+09− 1.94E+11±1.80E+11− 2.18E+01±1.14E+00
C16 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 1.05E-03±3.64E-03− 7.08E-02±4.02E-02− 2.54E-05±5.16E-05− 0.00E+00±0.00E+00
C17 1.28E-01±2.15E-01− 5.45E+00±2.51E+01− 5.29E-01±4.26E-01− 2.16E-01±1.99E-01− (96%)− 5.56E+00±5.77E+00− 4.48E-02±1.21E-01
C18 6.69E+00±1.74E+01− 2.40E-17±9.60E-17+ 1.29E+01±3.85E+01− 3.25E-22±1.55E-21+ 3.63E+02±8.50E+02− 4.17E+03±3.21E+03− 3.03E-06±1.29E-05
− 6 2 14 8 18 16 /
+ 0 1 0 2 0 0 /
≈ 12 15 4 8 0 2 /
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TABLE S-4
EXPERIMENTAL RESULTS OF DECODE, DECODE-LIN, AND DECODE-EXP OVER 25 INDEPENDENT RUNS ON THE 36 TEST FUNCTIONS FROM IEEE

CEC2010. FR DENOTES THE FEASIBLE RATE.

IEEE CEC2010

10D 30D
DeCODE

Mean OFV±Std Dev
(FR)

DeCODE-Lin
Mean OFV±Std Dev

(FR)

DeCODE-Exp
Mean OFV±Std Dev

(FR)

DeCODE
Mean OFV±Std Dev

(FR)

DeCODE-Lin
Mean OFV±Std Dev

(FR)

DeCODE-Exp
Mean OFV±Std Dev

(FR)
C01 -7.46E-01±5.02E-03 -7.47E-01±1.35E-03+ -7.47E-01±1.87E-03+ -8.19E-01±3.20E-03 -8.19E-01±3.63E-03≈ -8.19E-01±2.69E-03≈
C02 -2.18E+00±1.27E-01 -2.27E+00±7.10E-03+ (88%)− -2.23E+00±3.49E-02 -2.24E+00±3.29E-02≈ 3.31E+00±8.30E-01−
C03 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 2.06E+01±1.31E+01 1.72E+01±1.43E+01≈ 6.72E+14±1.12E+15−
C04 -1.00E-05±8.42E-16 -1.00E-05±0.00E+00≈ -1.00E-05±0.00E+00≈ -3.33E-06±6.92E-12 -3.33E-06±1.78E-11≈ 7.79E-02±2.15E-01−
C05 -4.84E+02±3.48E-13 -4.84E+02±3.48E-13≈ (88%)− -4.83E+02±1.53E-01 (96%)− 4.77E+02±5.25E+01−
C06 -5.79E+02±1.29E-13 -5.79E+02±1.29E-13≈ 3.84E+02±1.78E+02− -5.28E+02±1.46E+00 -5.07E+02±8.53E+00− 4.77E+02±9.01E+01−
C07 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 3.19E-01±1.10E+00− 1.59E-01±7.97E-01−
C08 8.56E+00±4.26E+00 8.06E+00±4.54E+00≈ 1.02E+01±2.25E+00− 0.00E+00±0.00E+00 1.06E+01±3.83E+01− 4.39E+00±2.20E+01−
C09 4.91E+00±1.82E+01 4.47E+00±1.60E+01≈ (64%)− 8.97E+00±2.32E+01 3.71E+02±4.60E+02− 4.72E+13±1.78E+13−
C10 4.17E+01±2.20E-14 3.84E+01±1.16E+01≈ (76%)− 3.13E+01±1.72E-05 4.95E+01±6.43E+01≈ (88%)−
C11 -1.52E-03±3.77E-18 -1.52E-03±3.54E-18≈ -1.52E-03±3.76E-18≈ -3.92E-04±3.11E-10 -3.92E-04±3.09E-10≈ -3.92E-04±1.64E-09≈
C12 -1.99E+00±4.81E-17 -2.19E+00±4.67E+00+ -6.98E-01±2.49E+00≈ -1.99E-01±1.23E-06 -1.99E-01±5.16E-09≈ -1.99E-01±1.46E-09≈
C13 -6.84E+01±2.90E-14 -6.84E+01±2.90E-14≈ -6.84E+01±2.97E-14≈ -6.73E+01±1.60E+00 -6.79E+01±7.60E-01≈ -6.76E+01±1.41E+00≈
C14 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈ 3.62E+03±1.80E+04− 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈ 4.86E-01±1.32E+00−
C15 2.94E+00±1.50E+00 2.06E+00±1.86E+00≈ 4.95E+13±3.69E+13− 2.18E+01±1.14E+00 2.18E+01±1.14E+00≈ 1.57E+14±6.46E+13−
C16 0.00E+00±0.00E+00 1.35E-03±4.73E-03− 5.33E-01±3.35E-01− 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈ 2.49E-01±2.68E-01−
C17 2.05E-11±4.44E-11 1.13E-11±3.99E-11≈ (92%)− 4.48E-02±1.21E-01 1.95E+01±9.73E+01− (96%)−
C18 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈ (96%)− 3.03E-06±1.29E-05 1.17E+00±3.60E+00− 2.71E+04±7.61E+03−
− / 1 10 / 7 4
+ / 3 1 / 0 0
≈ / 14 7 / 11 14

TABLE S-5
EXPERIMENTAL RESULTS OF DECODE AND DECODE-TCH OVER 25 INDEPENDENT RUNS ON THE 36 TEST FUNCTIONS FROM IEEE CEC2010. FR

DENOTES THE FEASIBLE RATE.

IEEE CEC2010

10D 30D
DeCODE

Mean OFV±Std Dev
(FR)

DeCODE-Tch
Mean OFV±Std Dev

(FR)

DeCODE
Mean OFV±Std Dev

(FR)

DeCODE-Tch
Mean OFV±Std Dev

(FR)
C01 -7.46E-01±5.02E-03 -7.46E-01±2.80E-03≈ -8.19E-01±3.20E-03 -8.18E-01±5.43E-03≈
C02 -2.18E+00±1.27E-01 (88%)− -2.23E+00±3.49E-02 -2.21E+00±2.88E-02≈
C03 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈ 2.06E+01±1.31E+01 1.49E+01±1.46E+01≈
C04 -1.00E-05±8.42E-16 -1.00E-05±0.00E+00≈ -3.33E-06±6.92E-12 -3.33E-06±9.28E-12≈
C05 -4.84E+02±3.48E-13 -4.84E+02±3.48E-13≈ -4.83E+02±1.53E-01 -4.81E+02±1.19E+01≈
C06 -5.79E+02±1.29E-13 -5.79E+02±1.41E-13≈ -5.28E+02±1.46E+00 -5.27E+02±1.30E+00≈
C07 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 6.38E-01±1.49E+00−
C08 8.56E+00±4.26E+00 9.22E+00±3.73E+00− 0.00E+00±0.00E+00 3.67E+00±1.84E+01−
C09 4.91E+00±1.82E+01 3.94E+00±1.61E+01≈ 8.97E+00±2.32E+01 1.05E+01±2.00E+01≈
C10 4.17E+01±2.20E-14 4.17E+01±5.96E-11≈ 3.13E+01±1.72E-05 3.13E+01±3.27E-05≈
C11 -1.52E-03±3.77E-18 -1.52E-03±3.29E-18≈ -3.92E-04±3.11E-10 -3.92E-04±1.24E-09≈
C12 -1.99E+00±4.81E-17 -6.30E-01±2.15E+00− -1.99E-01±1.23E-06 (96%)−
C13 -6.84E+01±2.90E-14 -6.84E+01±2.90E-14≈ -6.73E+01±1.60E+00 -6.79E+01±7.57E-01≈
C14 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈
C15 2.94E+00±1.50E+00 3.38E+00±1.02E+00≈ 2.18E+01±1.14E+00 2.16E+01±8.05E-07≈
C16 0.00E+00±0.00E+00 2.60E-03±6.23E-03− 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈
C17 2.05E-11±4.44E-11 1.14E-10±1.65E-10− 4.48E-02±1.21E-01 7.60E+00±3.72E+01−
C18 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈ 3.03E-06±1.29E-05 2.62E-04±8.83E-04−
− / 5 / 5
+ / 0 / 0
≈ / 13 / 13
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TABLE S-6
EXPERIMENTAL RESULTS OF DECODE WITH FIVE VARYING α OVER 25 INDEPENDENT RUNS ON THE 18 TEST FUNCTIONS WITH 30D FROM IEEE

CEC2010

IEEE CEC2010 with 30D α = 0.0
Mean OFV±Std Dev

α = 0.25
Mean OFV±Std Dev

α = 0.5
Mean OFV±Std Dev

α = 1.0
Mean OFV±Std Dev

α = 0.75
Mean OFV±Std Dev

C01 -8.18E-01±4.50E-03≈ -8.18E-01±5.85E-03≈ -8.19E-01±4.54E-03≈ -8.19E-01±3.61E-03≈ -8.19E-01±3.20E-03
C02 1.90E+00±1.26E+00− -1.61E+00±5.62E-01− -2.16E+00±8.40E-02≈ -2.24E+00±3.10E-02≈ -2.23E+00±3.49E-02
C03 4.61E+13±1.82E+12− 2.29E+01±1.17E+01− 2.87E+01±3.18E-08≈ 1.95E+01±1.37E+01≈ 2.06E+01±1.31E+01
C04 2.34E-01±3.18E-01− -3.33E-06±1.22E-09≈ -3.33E-06±5.64E-12≈ -3.33E-06±5.64E-12≈ -3.33E-06±6.92E-12
C05 3.90E+02±5.34E+02− -2.63E+02±2.33E+02− -4.82E+02±6.97E-01≈ -4.84E+02±4.97E-02≈ -4.83E+02±1.53E-01
C06 4.12E+02±1.26E+02− -4.35E+02±1.94E+02− -5.26E+02±2.25E+00≈ -5.29E+02±8.69E-01≈ -5.28E+02±1.46E+00
C07 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C08 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C09 1.67E+13±1.11E+13− 4.32E+12±1.22E+13− 2.75E+03±7.30E+03− 7.04E+00±1.65E+01≈ 8.97E+00±2.32E+01
C10 2.26E+13±1.23E+13− 1.81E+12±8.67E+12− 5.91E+01±5.56E+01− 3.13E+01±7.03E-04≈ 3.13E+01±1.72E-05
C11 -3.92E-04±1.64E-07≈ -3.92E-04±4.21E-10≈ -3.92E-04±1.87E-10≈ -3.92E-04±1.39E-10≈ -3.92E-04±3.11E-10
C12 -1.99E-01±1.14E-16≈ -1.99E-01±7.02E-09≈ -1.99E-01±4.72E-04≈ -1.99E-01±2.06E-08≈ -1.99E-01±1.23E-06
C13 -6.78E+01±9.04E-01≈ -6.78E+01±1.09E+00≈ -6.79E+01±9.91E-01≈ -6.78E+01±8.80E-01≈ -6.73E+01±1.60E+00
C14 5.01E-08±2.35E-07− 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C15 3.01E+13±2.06E+13− 5.86E+07±2.45E+08− 2.16E+01±1.23E-06≈ 2.16E+01±5.68E-07≈ 2.18E+01±1.14E+00
C16 1.03E-02±1.82E-02− 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C17 2.12E+00±2.84E+00− 4.84E+00±1.77E+00− 8.00E-01±2.67E+00− 2.44E+04±1.21E+02− 4.48E-02±1.21E-01
C18 1.21E+04±7.56E+03− 1.92E+02±3.49E+02− 6.20E+00±1.87E+01− 1.13E-06±5.64E-06≈ 3.03E-06±1.29E-05
− 12 9 4 1 /
+ 0 0 0 0 /
≈ 6 9 14 17 /

TABLE S-7
EXPERIMENTAL RESULTS OF DECODE WITH FIVE VARYING Γ OVER 25 INDEPENDENT RUNS ON THE 18 TEST FUNCTIONS WITH 30D FROM IEEE

CEC2010

IEEE CEC2010 with 30D Γ = 10
Mean OFV±Std Dev

Γ = 20
Mean OFV±Std Dev

Γ = 40
Mean OFV±Std Dev

Γ = 50
Mean OFV±Std Dev

Γ = 30
Mean OFV±Std Dev

C01 -8.19E-01±2.65E-03≈ -8.20E-01±3.09E-03≈ -8.19E-01±3.52E-03≈ -8.19E-01±3.57E-03≈ -8.19E-01±3.20E-03
C02 -2.27E+00±1.31E-02≈ -2.25E+00±1.92E-02≈ -2.24E+00±2.66E-02≈ -2.24E+00±2.16E-02≈ -2.23E+00±3.49E-02
C03 2.06E+01±1.31E+01≈ 1.72E+01±1.43E+01≈ 2.41E+01±1.07E+01≈ 1.84E+01±1.40E+01≈ 2.06E+01±1.31E+01
C04 -3.33E-06±5.91E-12≈ -3.33E-06±6.91E-12≈ -3.33E-06±6.23E-11≈ -3.33E-06±1.14E-11≈ -3.33E-06±6.92E-12
C05 -4.83E+02±2.07E-01≈ -4.83E+02±1.53E-01≈ -4.83E+02±1.51E-01≈ -4.83E+02±8.77E-02≈ -4.83E+02±1.53E-01
C06 -5.26E+02±1.87E+00≈ -5.27E+02±1.83E+00≈ -5.27E+02±1.67E+00≈ -5.27E+02±1.19E+00≈ -5.28E+02±1.46E+00
C07 3.19E-01±1.10E+00− 1.65E-27±4.56E-27≈ 1.59E-01±7.97E-01− 1.59E-01±7.97E-01− 0.00E+00±0.00E+00
C08 8.95E+00±4.47E+01− 4.39E+00±2.20E+01− 1.95E+01±6.79E+01− 3.19E-01±1.10E+00− 0.00E+00±0.00E+00
C09 5.80E+00±1.91E+01≈ 3.45E+00±1.46E+01≈ 1.76E-01±8.80E-01+ 5.28E-01±1.46E+00+ 8.97E+00±2.32E+01
C10 3.06E+01±3.72E+00≈ 3.13E+01±1.52E-05≈ 3.13E+01±9.08E-06≈ 3.13E+01±3.01E-05≈ 3.13E+01±1.72E-05
C11 -3.92E-04±3.36E-08≈ -3.92E-04±1.74E-10≈ -3.92E-04±3.88E-10≈ -3.92E-04±2.75E-10≈ -3.92E-04±3.11E-10
C12 -1.99E-01±9.41E-08≈ -1.99E-01±1.51E-08≈ -1.99E-01±1.93E-08≈ -1.99E-01±8.17E-09≈ -1.99E-01±1.23E-06
C13 -6.79E+01±8.06E-01≈ -6.78E+01±1.02E+00≈ -6.78E+01±8.80E-01≈ -6.77E+01±1.02E+00≈ -6.73E+01±1.60E+00
C14 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C15 2.16E+01±4.36E-07≈ 2.16E+01±3.82E-07≈ 2.16E+01±1.22E-06≈ 2.16E+01±9.40E-07≈ 2.18E+01±1.14E+00
C16 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C17 9.05E-02±1.51E-01≈ 8.56E-02±1.41E-01≈ 8.46E-02±1.40E-01≈ 6.37E-02±1.36E-01≈ 4.48E-02±1.21E-01
C18 1.49E-01±7.45E-01− 3.01E-02±1.50E-01− 6.29E-07±3.14E-06+ 9.80E-11±4.50E-10+ 3.03E-06±1.29E-05
− 3 2 2 2 /
+ 0 0 2 2 /
≈ 15 16 14 14 /
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TABLE S-8
EXPERIMENTAL RESULTS OF DECODE WITH SIX VARYING p OVER 25 INDEPENDENT RUNS ON THE 18 TEST FUNCTIONS WITH 30D FROM IEEE

CEC2010. FR DENOTES THE FEASIBLE RATE.

IEEE CEC2010 with 30D
p = 0.45

Mean OFV±Std Dev
(FR)

p = 0.55
Mean OFV±Std Dev

(FR)

p = 0.65
Mean OFV±Std Dev

(FR)

p = 0.75
Mean OFV±Std Dev

(FR)

p = 1.0
Mean OFV±Std Dev

(FR)

p = 0.85
Mean OFV±Std Dev

(FR)
C01 -8.19E-01±2.97E-03≈ -8.20E-01±2.15E-03≈ -8.18E-01±3.30E-03≈ -8.19E-01±3.37E-03≈ -8.19E-01±3.78E-03≈ -8.19E-01±3.20E-03
C02 -1.84E+00±2.14E-01− -1.97E+00±1.10E-01− -2.10E+00±9.56E-02− -2.22E+00±4.60E-02≈ -2.25E+00±1.79E-02≈ -2.23E+00±3.49E-02
C03 1.72E+01±1.43E+01− 2.06E+01±1.31E+01≈ 2.06E+01±1.31E+01≈ 2.06E+01±1.31E+01≈ 1.95E+01±1.37E+01≈ 2.06E+01±1.31E+01
C04 -3.33E-06±5.05E-12≈ -3.33E-06±2.71E-11≈ -3.33E-06±7.47E-12≈ -3.33E-06±2.85E-12≈ -3.33E-06±2.22E-11≈ -3.33E-06±6.92E-12
C05 2.14E+02±3.53E+02− -3.06E+02±3.04E+02− -4.83E+02±2.44E-01≈ -4.83E+02±2.50E-01≈ -4.83E+02±1.60E-01≈ -4.83E+02±1.53E-01
C06 -4.56E+02±2.32E+02− -5.27E+02±1.60E+00≈ -5.28E+02±1.27E+00≈ -5.28E+02±1.03E+00≈ -5.28E+02±1.32E+00≈ -5.28E+02±1.46E+00
C07 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C08 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C09 (72%)− 5.89E+02±1.06E+03− 2.28E+01±3.10E+01− 1.92E+01±4.30E+01− 7.83E+00±1.98E+01≈ 8.97E+00±2.32E+01
C10 (96%)− 1.12E+03±5.45E+03− 3.13E+01±6.91E-06≈ 3.13E+01±4.71E-05≈ 3.13E+01±1.32E-05≈ 3.13E+01±1.72E-05
C11 -3.92E-04±4.71E-09≈ -3.92E-04±1.71E-10≈ -3.92E-04±4.05E-10≈ -3.92E-04±6.15E-09≈ (0%)− -3.92E-04±3.11E-10
C12 -1.99E-01±1.32E-14≈ -1.99E-01±1.04E-07≈ -1.99E-01±1.03E-04≈ -1.99E-01±2.13E-04≈ (0%)− -1.99E-01±1.23E-06
C13 -6.77E+01±8.87E-01≈ -6.76E+01±1.19E+00≈ -6.77E+01±1.05E+00≈ -6.79E+01±8.82E-01≈ -6.70E+01±1.40E+00≈ -6.73E+01±1.60E+00
C14 0.00E+00±0.00E+00≈ 5.57E-29±2.78E-28≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C15 2.16E+01±4.51E-07≈ 2.16E+01±3.84E-07≈ 2.16E+01±5.72E-07≈ 2.16E+01±5.59E-07≈ 2.16E+01±9.77E-07≈ 2.18E+01±1.14E+00
C16 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C17 4.26E+01±1.66E+02− 7.56E+00±3.73E+01− 2.49E+01±1.24E+02− 8.93E-02±1.69E-01≈ 1.37E-01±1.69E-01− 4.48E-02±1.21E-01
C18 1.07E+02±1.97E+02− 6.99E+00±3.49E+01− 2.16E+00±7.72E+00− 1.04E-05±5.10E-05≈ 9.78E-05±3.39E-04≈ 3.03E-06±1.29E-05
− 8 6 4 1 3 /
+ 0 0 0 0 0 /
≈ 10 12 14 17 15 /

TABLE S-9
EXPERIMENTAL RESULTS OF DECODE WITH FIVE VARYING β OVER 25 INDEPENDENT RUNS ON THE 18 TEST FUNCTIONS WITH 30D FROM IEEE

CEC2010. FR DENOTES THE FEASIBLE RATE.

IEEE CEC2010 with 30D
β = 0

Mean OFV±Std Dev
(FR)

β = 3
Mean OFV±Std Dev

(FR)

β = 9
Mean OFV±Std Dev

(FR)

β = 12
Mean OFV±Std Dev

(FR)

β = 6
Mean OFV±Std Dev

(FR)
C01 -8.18E-01±5.13E-03≈ -8.19E-01±3.76E-03≈ -8.19E-01±3.39E-03≈ -8.18E-01±3.72E-03≈ -8.19E-01±3.20E-03
C02 -2.24E+00±1.73E-02≈ -2.24E+00±2.45E-02≈ -2.24E+00±2.34E-02≈ -2.23E+00±3.57E-02≈ -2.23E+00±3.49E-02
C03 2.29E+01±1.17E+01≈ 1.84E+01±1.40E+01≈ 1.72E+01±1.43E+01≈ 2.18E+01±1.25E+01≈ 2.06E+01±1.31E+01
C04 -3.33E-06±4.72E-12≈ -3.33E-06±5.54E-11≈ -3.33E-06±8.50E-11≈ -3.33E-06±1.42E-11≈ -3.33E-06±6.92E-12
C05 -4.83E+02±1.50E-01≈ -4.83E+02±3.27E-01≈ -4.83E+02±2.26E-01≈ -4.82E+02±9.16E+00≈ -4.83E+02±1.53E-01
C06 -5.27E+02±1.48E+00≈ -5.27E+02±1.73E+00≈ -5.28E+02±1.12E+00≈ -5.27E+02±1.72E+00≈ -5.28E+02±1.46E+00
C07 3.19E-01±1.10E+00− 1.59E-01±7.97E-01− 1.59E-01±7.97E-01− 6.29E-28±2.73E-27≈ 0.00E+00±0.00E+00
C08 5.43E-28±2.72E-27≈ 5.43E-28±2.72E-27≈ 3.93E+00±1.96E+01− 4.72E+00±2.36E+01− 0.00E+00±0.00E+00
C09 3.59E+00±1.44E+01≈ 4.68E+00±1.64E+01≈ 1.09E+01±3.89E+01≈ 5.28E-01±1.46E+00+ 8.97E+00±2.32E+01
C10 3.13E+01±9.49E-06≈ 3.13E+01±5.71E-05≈ 3.13E+01±2.68E-05≈ 3.13E+01±1.61E-05≈ 3.13E+01±1.72E-05
C11 -3.92E-04±6.29E-10≈ -3.92E-04±9.36E-08≈ -3.92E-04±8.10E-09≈ -3.92E-04±4.61E-10≈ -3.92E-04±3.11E-10
C12 -1.99E-01±3.23E-06≈ -1.99E-01±7.10E-09≈ (96%)− (96%)− -1.99E-01±1.23E-06
C13 -6.76E+01±1.14E+00≈ -6.75E+01±1.58E+00≈ -6.77E+01±1.13E+00≈ -6.73E+01±1.39E+00≈ -6.73E+01±1.60E+00
C14 0.00E+00±0.00E+00≈ 5.57E-29±2.78E-28≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C15 2.16E+01±5.01E-07≈ 2.16E+01±1.15E-06≈ 2.18E+01±1.14E+00≈ 2.16E+01±3.07E-07≈ 2.18E+01±1.14E+00
C16 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C17 9.34E-02±1.55E-01≈ 7.74E-02±1.42E-01≈ 1.44E-01±1.70E-01− 6.26E-02±1.31E-01− 4.48E-02±1.21E-01
C18 5.38E-1±2.69E-0− 5.70E-01±2.85E+00− 1.10E-14±5.40E-14+ 8.97E-08±4.49E-07+ 3.03E-06±1.29E-05
− 2 2 4 3 /
+ 0 0 1 2 /
≈ 16 16 13 13 /
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TABLE S-10
EXPERIMENTAL RESULTS OF DECODE WITH FIVE VARYING εL OVER 25 INDEPENDENT RUNS ON THE 18 TEST FUNCTIONS WITH 10D FROM IEEE

CEC2010. FR DENOTES THE FEASIBLE RATE.

IEEE CEC2010 with 10D
εL = 101

Mean OFV±Std Dev
(FR)

εL = 103

Mean OFV±Std Dev
(FR)

εL = 107

Mean OFV±Std Dev
(FR)

εL = 109

Mean OFV±Std Dev
(FR)

εL = 105

Mean OFV±Std Dev
(FR)

C01 -7.47E-01±1.87E-03+ -7.47E-01±2.25E-03+ -7.46E-01±1.35E-03≈ -7.47E-06±1.87E-03≈ -7.46E-01±5.02E-03
C02 -1.96E+00±4.06E-01− (96%)− -2.13E+00±1.92E-01≈ -1.91E+00±1.09E+00− -2.18E+00±1.27E-01
C03 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 4.62E+00±4.53E+00− 5.33E+00±4.44E+00− 0.00E+00±0.00E+00
C04 -1.00E-05±0.00E+00≈ -1.00E-05±0.00E+00≈ -1.00E-05±9.80E-12≈ 2.71E-02±1.36E-01− -1.00E-05±8.42E-16
C05 (92%)− -4.84E+02±3.48E-13≈ -4.84E+02±3.48E-13≈ -4.84E+02±3.48E-13≈ -4.84E+02±3.48E-13
C06 3.93E+02±1.82E+02− -5.79E+02±1.23E-13≈ -5.79E+02±1.29E-13≈ -5.79E+02±1.23E-13≈ -5.79E+02±1.29E-13
C07 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C08 9.04E+00±4.03E+00≈ 7.79E+00±4.57E+00≈ 7.95E+00±4.76E+00≈ 9.47E+00±3.57E+00≈ 8.56E+00±4.26E+00
C09 (84%)− 9.94E+00±2.53E+01≈ 9.82E+00±2.61E+01≈ 3.70E+00±1.49E+01≈ 4.91E+00±1.82E+01
C10 (84%)− 4.17E+01±2.07E-14≈ 4.17E+01±3.96E-14≈ 4.01E+01±8.35E+00≈ 4.17E+01±2.20E-14
C11 -1.52E-03±3.54E-18≈ -1.52E-03±4.36E-18≈ -1.52E-03±3.16E-18≈ -1.52E-03±8.14E-16≈ -1.52E-03±3.77E-18
C12 -1.99E-01±5.92E-17≈ -5.26E+00±2.29E+01+ -6.30E-01±2.15E+00≈ -1.99E-01±3.58E-17≈ -1.99E+00±4.81E-17
C13 -6.84E+01±2.90E-14≈ -6.84E+01±2.90E-14≈ -6.84E+01±2.90E-14≈ -6.84E+01±2.90E-14≈ -6.84E+01±2.90E-14
C14 1.59E-01±7.97E-01− 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C15 5.78E+13±5.10E+13− 1.91E+13±2.43E+13− 2.94E+00±1.50E+00≈ 3.38E+00±1.02E+00− 2.94E+00±1.50E+00
C16 8.71E-01±1.79E-01− 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C17 3.73E-10±3.94E-10≈ 2.27E-10±3.55E-10≈ 6.93E-11±2.54E-10≈ 4.40E-11±8.58E-11≈ 2.05E-11±4.44E-11
C18 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
− 8 2 1 4 /
+ 1 2 0 0 /
≈ 9 14 17 14 /

TABLE S-11
EXPERIMENTAL RESULTS OF DECODE WITH FIVE VARYING FP OVER 25 INDEPENDENT RUNS ON THE 18 TEST FUNCTIONS WITH 30D FROM IEEE

CEC2010

IEEE CEC2010 with 30D FP = 0.55
Mean OFV±Std Dev

FP = 0.65
Mean OFV±Std Dev

FP = 0.75
Mean OFV±Std Dev

FP = 0.95
Mean OFV±Std Dev

FP = 0.85
Mean OFV±Std Dev

C01 -8.18E-01±6.29E-03≈ -8.19E-01±3.04E-03≈ -8.20E-01±2.01E-03≈ -8.13E-01±9.94E-03− -8.19E-01±3.20E-03
C02 -2.24E+00±1.70E-02≈ -2.25E+00±1.82E-02≈ -2.25E+00±1.65E-02≈ -2.25E+00±1.61E-02≈ -2.23E+00±3.49E-02
C03 1.95E+01±1.37E+01≈ 1.72E+01±1.43E+01≈ 2.18E+01±1.25E+01≈ 2.41E+01±1.07E+01≈ 2.06E+01±1.31E+01
C04 -3.33E-06±9.84E-12≈ -3.33E-06±1.45E-11≈ -3.33E-06±2.18E-12≈ -3.33E-06±2.75E-12≈ -3.33E-06±6.92E-12
C05 -4.83E+02±1.37E-01≈ -4.83E+02±1.37E-01≈ -4.83E+02±1.43E-01≈ -4.83E+02±1.99E-01≈ -4.83E+02±1.53E-01
C06 -5.27E+02±1.60E+00≈ -5.27E+02±1.30E+00≈ -5.27E+02±1.97E+00≈ -5.27E+02±1.24E+00≈ -5.28E+02±1.46E+00
C07 1.59E-01±7.97E-01− 5.43E-28±2.72E-27≈ 1.59E-01±7.97E-01− 1.30E-27±4.55E-27≈ 0.00E+00±0.00E+00
C08 5.43E-28±2.72E-27≈ 2.34E+01±1.17E+02− 7.34E+00±2.54E+01− 8.53E-29±4.27E-28≈ 0.00E+00±0.00E+00
C09 1.38E+01±3.96E+01− 6.20E+00±1.95E+01≈ 3.75E+00±1.48E+01≈ 7.04E+00±1.65E+00≈ 8.97E+00±2.32E+01
C10 3.13E+01±4.03E-05≈ 3.13E+01±3.19E-05≈ 3.13E+01±2.45E-05≈ 3.01E+01±6.26E+00≈ 3.13E+01±1.72E-05
C11 -3.92E-04±4.13E-08≈ -3.92E-04±4.03E-10≈ -3.92E-04±3.75E-10≈ -3.92E-04±2.40E-10≈ -3.92E-04±3.11E-10
C12 -1.99E-01±7.14E-09≈ -1.99E-01±1.79E-08≈ -1.99E-01±9.29E-08≈ -1.99E-01±3.66E-08≈ -1.99E-01±1.23E-06
C13 -6.78E+01±1.15E+00≈ -6.77E+01±1.02E+00≈ -6.74E+01±1.32E+00≈ -6.71E+01±1.50E+00≈ -6.73E+01±1.60E+00
C14 3.63E-27±1.60E-26≈ 1.59E-01±7.97E-01− 1.27E-29±6.37E-29≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C15 2.16E+01±5.28E-07≈ 2.16E+01±2.97E-07≈ 2.16E+01±8.49E-07≈ 2.18E+01±1.14E+00≈ 2.18E+01±1.14E+00
C16 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C17 8.54E-02±1.52E-01≈ 6.26E-02±1.38E-01≈ 4.60E-02±9.46E-02≈ 1.16E-01±1.59E-01− 4.48E-02±1.21E-01
C18 2.67E+00±1.33E+01− 1.52E+00±7.27E+00− 9.10E-04±4.55E-03− 1.89E-09±9.44E-09+ 3.03E-06±1.29E-05
− 3 3 3 2 /
+ 0 0 0 1 /
≈ 15 15 15 15 /
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TABLE S-12
EXPERIMENTAL RESULTS OF DECODE WITH SIX VARYING ηL OVER 25 INDEPENDENT RUNS ON THE 18 TEST FUNCTIONS WITH 30D FROM IEEE

CEC2010. FR DENOTES THE FEASIBLE RATE.

IEEE CEC2010 with 30D
ηL = 10−6

Mean OFV±Std Dev
(FR)

ηL = 10−10

Mean OFV±Std Dev
(FR)

ηL = 10−14

Mean OFV±Std Dev
(FR)

ηL = 10−22

Mean OFV±Std Dev
(FR)

ηL = 10−26

Mean OFV±Std Dev
(FR)

ηL = 10−18

Mean OFV±Std Dev
(FR)

C01 -8.11E-01±9.73E-03− -8.19E-01±4.09E-03≈ -8.19E-01±3.90E-03≈ -8.19E-01±4.12E-03≈ -8.18E-01±6.28E-03≈ -8.19E-01±3.20E-03
C02 -2.25E+00±2.40E-02≈ -2.25E+00±1.60E-02≈ -2.25E+00±2.17E-02≈ -2.25E+00±2.56E-02≈ -2.25E+00±1.47E-02≈ -2.23E+00±3.49E-02
C03 1.38E+01±1.46E+01≈ 2.18E+01±1.25E+01≈ 2.29E+01±1.17E+01≈ 2.29E+01±1.17E+01≈ 2.41E+01±1.07E+01≈ 2.06E+01±1.31E+01
C04 -3.33E-06±1.32E-11≈ -3.33E-06±6.90E-12≈ -3.33E-06±4.38E-12≈ -3.33E-06±1.49E-11≈ -3.33E-06±1.34E-11≈ -3.33E-06±6.92E-12
C05 (96%)− -4.83E+02 ±1.38E-01≈ -4.83E+02±1.44E-01≈ -4.83E+02±2.70E-01≈ -4.83E+02±1.30E-01≈ -4.83E+02±1.53E-01
C06 -5.27E+02±2.05E+00≈ -5.27E+02±1.92E+00≈ -5.27E+02±2.10E+00≈ -5.28E+02±1.15E+00≈ -5.28E+02±1.55E+00≈ -5.28E+02±1.46E+00
C07 5.43E-28±2.72E-27≈ 1.59E-01±7.97E-01− 6.38E-01±1.49E+00− 3.19E-01±1.10E+00− 6.38E-01±2.30E+00− 0.00E+00±0.00E+00
C08 7.60E+00±2.63E+01− 2.15E+01±7.65E+01− 1.09E-27±3.76E-27≈ 1.14E-27±3.95E-27≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C09 3.47E+00±1.47E+01≈ 4.76E+00±8.80E+00≈ 6.87E+00±1.92E+01≈ 2.77E+00±1.39E+01≈ 3.59E+00±1.44E+01≈ 8.97E+00±2.32E+01
C10 3.13E+01±1.68E-05≈ 3.13E+01±3.86E-05≈ 3.13E+01±2.13E-05≈ 3.13E+01±4.56E-05≈ 3.13E+01±1.46E-05≈ 3.13E+01±1.72E-05
C11 -3.92E-04±8.82E-08≈ -3.92E-04±5.74E-09≈ -3.92E-04±4.13E-10≈ -3.92E-04±2.29E-10≈ -3.92E-04±2.05E-10≈ -3.92E-04±3.11E-10
C12 -1.98E-01±7.87E-03≈ -1.99E+00±4.58E-06≈ -1.99E-01±6.12E-09≈ -1.97E-01±9.65E-03≈ -1.96E-01±1.33E-02≈ -1.99E-01±1.23E-06
C13 -6.76E+01±1.31E+00≈ -6.75E+01±1.41E+00≈ -6.79E+01±8.42E-01≈ -6.78E+01±1.16E+00≈ -6.77E+01±1.05E+00≈ -6.73E+01±1.60E+00
C14 1.59E-01±7.97E-01− 2.22E-28±1.11E-27≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 5.57E-29±2.78E-28≈ 0.00E+00±0.00E+00
C15 2.16E+01±3.68E-07≈ 2.16E+01±2.99E-07≈ 2.16E+01±5.39E-07≈ 2.16E+01±3.46E-07≈ 2.16E+01±3.27E-07≈ 2.18E+01±1.14E+00
C16 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C17 5.73E-02±1.22E-01≈ 9.00E-02±1.57E-01≈ 2.41E-01±5.95E-01− 8.58E-02±3.37E-01≈ 7.80E-02±1.48E-01≈ 4.48E-02±1.21E-01
C18 1.22E-14±5.98E-14+ 3.83E-11±1.92E-10+ 7.48E-12±3.74E-11+ 6.01E-05±3.00E-04− 1.48E-14±5.31E-14+ 3.03E-06±1.29E-05
− 4 2 2 2 1 /
+ 1 1 1 0 1 /
≈ 13 15 15 16 16 /

TABLE S-13
EXPERIMENTAL RESULTS OF DECODE WITH FIVE VARYING µ OVER 25 INDEPENDENT RUNS ON THE 18 TEST FUNCTIONS WITH 30D FROM IEEE

CEC2010. FR DENOTES THE FEASIBLE RATE.

IEEE CEC2010 with 30D
µ = 100

Mean OFV±Std Dev
(FR)

µ = 10−3

Mean OFV±Std Dev
(FR)

µ = 10−9

Mean OFV±Std Dev
(FR)

µ = 10−12

Mean OFV±Std Dev
(FR)

µ = 10−6

Mean OFV±Std Dev
(FR)

C01 -8.17E-01±5.91E-03≈ -8.18E-01±4.87E-03≈ -8.17E-01±5.70E-03≈ -8.19E-01±3.64E-03≈ -8.19E-01±3.20E-03
C02 (0%)− -2.24E+00±2.21E-02≈ -2.25E+00±.92E-02≈ -2.25E+00±2.05E-02≈ -2.23E+00±3.49E-02
C03 (0%)− (0%)− 2.41E+01±1.07E+01≈ 2.06E+01±1.31E+01≈ 2.06E+01±1.31E+01
C04 (0%)− (0%)− -3.33E-06±3.13E-12≈ -3.33E-06±4.58E-12≈ -3.33E-06±6.92E-12
C05 (0%)− (76%)− -4.83E+02±1.91E-01≈ -4.83E+02±1.98E-01≈ -4.83E+02±1.53E-01
C06 (0%)− -5.27E+02±1.43E+00≈ -5.28E+02±1.17E+00≈ -5.26E+02±1.99E+00≈ -5.28E+02±1.46E+00
C07 1.59E-01±7.97E-01− 5.43E-28±2.72E-27≈ 1.59E-01±7.97E-01− 1.59E-01±7.97E-01− 0.00E+00±0.00E+00
C08 6.28E-28±2.73E-27≈ 7.84E+00±2.72E+01− 1.59E-01±7.97E-01− 1.11E-27±3.83E-27≈ 0.00E+00±0.00E+00
C09 (32%)− 9.36E+00±2.43E+01≈ 3.24E+00±1.44E+01≈ 3.09E+00±1.36E+01≈ 8.97E+00±2.32E+01
C10 (40%)− 3.13E+01±2.12E-05≈ 3.13E+01±2.21E-05≈ 3.13E+01±2.52E-05≈ 3.13E+01±1.72E-05
C11 (0%)− (0%)− -3.92E-04±.06E-10≈ -3.92E-04±1.21E-10≈ -3.92E-04±3.11E-10
C12 (0%)− (0%)− -1.99E-01±9.12E-09≈ -1.99E-01±2.00E-05≈ -1.99E-01±1.23E-06
C13 -6.80E+01±8.56E-01≈ -6.75E+01±1.15E+00≈ -6.76E+01±9.38E-01≈ -6.77E+01±9.25E-01≈ -6.73E+01±1.60E+00
C14 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 5.57E-29±2.78E-28≈ 0.00E+00±0.00E+00
C15 2.16E+01±5.88E-07≈ 2.16E+01±3.61E-07≈ 2.18E+01±1.14E+00≈ 2.16E+01±4.33E-07≈ 2.18E+01±1.14E+00
C16 (92%)− 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
C17 (52%)− 2.36E-01±6.44E-01− 3.48E+01±1.20E+02≈ (88%)− 4.48E-02±1.21E-01
C18 1.95E+0±1.24E+04− 1.41E-02±5.04E-02− 4.17E-06±1.97E-06≈ 4.12E-11±2.06E-10+ 3.03E-06±1.29E-05
− 13 8 2 2 /
+ 0 0 0 1 /
≈ 5 10 16 15 /
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