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Abstract

For the classification of motor imagery brain-computer interface (BCI) based on
electroencephalography (EEG), appropriate features are crucial to obtain a high
classification accuracy. Considering the characteristics of the EEG signals, the
time-frequency-space three-dimensional features are extracted. Due to a con-
siderable number of the extracted features, the performance of a classifier will
degrade. Therefore, it is necessary to implement feature selection. However,
existing feature selection methods are easy to fall into a local optimum of a high-
dimensional feature selection problem. In this paper, a dimensionality reduction
mechanism (called DimReM) is proposed, which gradually reduces the dimen-
sion of the search space by removing some unimportant features. In principle,
DimReM transforms a high-dimensional feature selection problem into a low-
dimensional one. DimReM does not introduce any additional parameters and
its implementation is simple. To verify its effectiveness, DimReM is combined
with different evolutionary algorithms and different classifiers to select features
on various kinds of datasets. Compared with evolutionary algorithms without
dimensionality reduction, their augmented versions equipped with DimReM can
find feature subsets with higher classification accuracies while smaller numbers
of selected features.
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1. Introduction

Brain-computer interface (BCI) is a communication system that allows its
users to interact with external devices using the brain signal directly, and it does
not depend on the peripheral nerves and muscles [1, 2]. BCI analyzes the brain
signal data collected from specific tasks and converts the brain information in-
to control commands that can be used to control computers or communication
devices. It provides a new way of communication, which can help people who
suffer from devastating neuromuscular injuries and neurodegenerative diseases to
restore their communication ability to some extent, assist patients with epilepsy,
stroke, and other diseases to biofeedback treatment, and so on. The BCI technolo-
gy has attracted wide attention from many fields, such as neurology, rehabilitation
engineering, psychology, computer science, engineering, and mathematics.

Figure 1: Framework of BCI.

The basic framework of BCI is shown in Fig. 1, which includes five modules:
signal acquisition, preprocessing, feature extraction, classification, and control in-
terface. The electroencephalography (EEG) signal is one of the most common
bio-potential signals used in the signal acquisition module, because it is non-
implantable, non-invasive, inexpensive, and easy to use. The high temporal reso-
lution and multichannel of the EEG signals result in that a considerable number of
features will be extracted and some of these features may be redundant, irrelevant,
or trivial [3, 4].

Since the brain can be divided into various functional areas, some of the ac-
quired EEG signals from adjacent EEG electrodes may come from the same func-
tional area, and the features extracted from these signals may be redundant. For
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example, in BCI Competition III dataset IVa (http://www.bbci.de/competition/iii/),
the EEG signals xC1 and xC3 are acquired from ‘C1’ and ‘C3’, where ‘C1’ and
‘C3’ are the locations of EEG electrodes and they are close to the primary mo-
tor cortex. If five motor-related frequency features FiC1

(i = 1, . . . , 5) and FiC3

(i = 1, . . . , 5) are extracted from xC1 and xC3, respectively, by the same method,
then FiC1

will be similar to FiC3
(i = 1, . . . , 5), and thus they are redundant.

If some features have no relationship with the classification, then they are
called the irrelevant features. For example, in motor imagery BCI, the EEG sig-
nals from motor-related areas (e.g., the primary motor area, the pre-motor area,
and the supplementary motor area) are very important for classification. Howev-
er, the EEG signals derived from other functional areas (e.g., the auditory area)
may be independent of motor imagery. Under this condition, the extracted fea-
tures from these EEG signals have no relationship with the classification, and thus
cannot improve the classification performance.

In addition to the redundant and irrelevant features, it is necessary to note that
there may exist some trivial features, which have very little effect on improving
the classification accuracy, but will cause overfitting of a classifier.

Obviously, the redundant, irrelevant, and trivial features increase the compu-
tation burden of the training process of the classifier, degrade the generalization
ability of the classifier, and decrease the classification accuracy. Therefore, feature
selection should be employed before the classification, as shown in Fig. 1. The
task of feature selection is to select some important features from all features, with
the purpose of reducing the feature dimensionality, accelerating the training pro-
cess, simplifying the classifier model, and improving the classification accuracy
[5–7].

Feature selection is a challenging problem mainly due to the following two
issues: the large search space and the interference of redundant, irrelevant, and
trivial features [8]. Firstly, the search space grows exponentially with the increase
of the number of features. For example, the total number of possible feature sub-
sets is (2n−1) for n features. Secondly, in order to select some important features,
it is necessary to remove the redundant, irrelevant, and trivial features, since they
have side effects on the classification performance. According to whether it is
independent of the subsequent classifier, feature selection can be divided into two
categories [7]: filter methods and wrapper methods.

The filter methods do not depend on any classifier. They generally use the
statistical measures of the training data to evaluate a feature’s importance, which
include distance function [9], rough set [10], mutual information [11], fuzzy set
[12], statistical correlation coefficient [13], etc. However, they cannot guarantee
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the optimal feature subset.
The wrapper methods employ a classifier as a “black box” to evaluate the

feature subsets based on the classification performance. Although they are com-
putationally intensive and time-consuming, the wrapper methods have better per-
formance than the filter methods. It is because the wrapper methods consider the
performance of the selected features on a classifier, which is ignored by the fil-
ter methods [7]. So the wrapper methods have the potential to obtain a subset of
features with higher classification performance. The wrapper methods are cur-
rently a hot topic in the field of feature selection. This paper focuses mainly on
the application of the wrapper methods on the EEG signals.

In principle, the wrapper methods contain two important components: subset
search, the aim of which is to generate a candidate feature subset from the origi-
nal feature set, and subset evaluation, which makes use of a classifier to assess the
goodness of this feature subset. In recent years, evolutionary algorithms (EAs)
have become effective subset search methods. Moreover, various EAs, such as
differential evolution (DE) [14, 15], particle swarm optimization (PSO) [16–20],
and genetic algorithm (GA) [21–23], have achieved better performance than tradi-
tional subset search methods. Compared with traditional subset search methods,
EAs do not require domain knowledge and do not need any assumptions about the
search space, such as nonlinearity and separability. Another advantage is that EAs
are population-based search algorithms and have powerful search ability.

For the classification of motor imagery BCI based on EEG, proper features are
crucial to obtain a high classification accuracy. Considering the characteristics of
the EEG signals, the time-frequency-space three-dimensional features are extract-
ed, which forms a feature set with a considerable number of features. Under this
condition, feature selection should be carried out in a high-dimensional search s-
pace. Note, however, that EAs are easily trapped into a local optimum due to high
dimensionality.

To improve the performance of EAs on a high-dimensional feature selection
problem of motor imagery BCI based on EEG, the main idea of this paper is to
remove unimportant features (i.e., redundant, irrelevant, and trivial features) in
the iterative process of EAs. By doing this, the dimension of the search space
can be reduced and the important features can be maintained simultaneously. To
this end, we propose a dimensionality reduction mechanism (called DimReM) in
EAs-based feature selection.

The main contribution of this paper are summarized as follows:

• The current feature selection methods aim at directly selecting some im-

4



portant features. However, this paper proposes an opposite point of view.
DimReM first determines whether a feature is unimportant by taking advan-
tage of the information from evolution. Afterward, the unimportant features
are deleted generation by generation. As a result, the important features are
maintained.

• DimReM has a simple structure, and does not introduce any additional pa-
rameter and complicated operator.

• DimReM is readily embedded into different EAs. Moreover, we have suc-
cessfully integrated DimReM with three EAs and three classifiers.

• Systematic experiments have been conducted on the EEG datasets and three
datasets from other fields to verify the effectiveness of DimReM. The re-
sults verify that DimReM can find feature subsets with higher classification
accuracies while smaller numbers of features.

The rest of this paper is organized as follows. Section 2 introduces the relat-
ed work, including feature extraction and feature selection. In Section 3, three
EAs are briefly introduced. Section 4 gives the details of the proposed DimReM.
Section 5 presents the experimental results and discussions. Finally, Section 6
concludes this paper.

2. Related Work

2.1. Feature Extraction
Since the EEG signals are usually nonlinear and non-stationary, how to extract

their features is very important in BCI. Appropriate features are helpful to improve
the performance of BCI.

The physiological studies indicate that EEG power changes with imagined
movements in the motor cortex. This phenomenon is called sensorimotor rhythms
(SMRs). SMRs include event-related desynchronization (ERD) and event-related
synchronization (ERS) [24, 25], which are the basis of motor imagery BCI. In
motor imagery BCI, common spatial patterns (CSP) algorithm is a successful fea-
ture extraction method for detecting ERD and ERS [26–30]. The CSP algorithm
computes spatial filter that maximizes the variance of one class signals, and mean-
while minimizes the variance of another class signals [28–30]. For this reason, it
is easy to distinguish motor imagery activities.

5



Suppose that n trials are performed on the left and right hand movement im-
agery, respectively. Let an N × T matrix Ej,i describe the raw EEG data of the
ith trial, where j ∈ {L,R} denotes the left or right hand movement imagery, N
denotes the number of recording electrodes, and T denotes the number of samples
in each electrode.

The process of the CSP algorithm is introduced as follows:

1) Compute the normalized covariance of the ith trial of the jth type of motor
imagery signals:

Cj,i =
Ej,iE

T
j,i

trace(Ej,iET
j,i)

(1)

where T means the transpose operator and trace(Ej,iE
T
j,i) is the amount of the

diagonal elements of Ej,iE
T
j,i. Then, the spatial covariance of the left or right

hand motor imagery signals is

Cj =
1

n

n∑
i=1

Cj,i (2)

So the composite spatial covariance is

Cc = CL + CR (3)

2) Perform the eigen decomposition on Cc:

Cc = UcAcU
T
c (4)

where Uc denotes the matrix of eigenvectors and Ac means the diagonal ma-
trix of eigenvalues. Note that the eigenvalues are supposed to be sorted in
descending order for convenience.

3) Execute the whitening transformation as follows:

P = A
− 1

2
c UT

c (5)

Sj = PCjP
T (6)

SL and SR share common eigenvectors, i.e.,

if SL = BALB
T ,

then SR = BARB
T and AL + AR = I.
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where I is the identity matrix, B denotes the matrix of eigenvectors, and Aj

means the diagonal matrix of eigenvalues. The spatial filter after whitening is

W = (BTP )T (7)

So Ej,i after spatial filtering is:

Zj,i = WEj,i (8)

Note that Zj,i is an N × T matrix.
4) Calculate the feature value as follows:

fj,i,p = log

(
var(Zj,i,p)∑2M
t=1 var(Zj,i,t)

)
(9)

where Zj,i,p is the pth row of Zj,i, p ∈ {1, 2, . . . ,M,N −M + 1, . . . , N}, and
var(Zj,i,p) is the variance of Zj,i,p. Finally, f = [fj,i,1, fj,i,2, . . . , fj,i,2M ]T is the
extracted feature vector. Note that the value of M can be changed according
to the quality of the EEG signals and the requirement of the construction of a
classifier, but 2M should be smaller than N .

In motor imagery BCI, the useful frequency of the EEG signals is in the range
of 8-32 Hz. For different subjects, the reactive frequency bands are different. If
the features are directly extracted by the CSP algorithm from the raw EEG signals,
some unnecessary frequency signals may interfere with the feature extraction and
degrade the classification performance. Thus, the frequency band filters should
be employed before extracting the features by the CSP algorithm. Note that we
choose the frequency range of 4-36Hz for frequency band filtering to cover the
frequency range of 8-32Hz of the EEG signal in motor imagery BCI. In addition,
the reactive time of each subject is different for the indicator signal, so the time do-
main features should be considered. Based on the above considerations, this paper
extracts time-frequency-space three-dimensional features from the EEG signals.

The whole process of time-frequency-space feature extraction includes three
steps:

• Divide the EEG signals into multiple frequency band signals using bandpass
filters.

• Divide the frequency band signals of each trial into multiple time segments
by short-time windows.
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Figure 2: The time-frequency grids of time-frequency-space features.

• Finally, extract the features of the EEG signals by the CSP algorithm in each
time-frequency grid.

The time-frequency grids are shown in Fig. 2. In each grid, several features
can be extracted. In addition, the elliptic bandpass filter is used in the first step.
The elliptical bandpass filter is superior to other types of bandpass filters be-
cause its transition band is steeper and its ripples in the passband and stopband
are smaller. In the second step, the short-time sliding windows are employed,
where the size of the windows is 1s and their overlap size is 0.5s.

2.2. Feature Selection
After extracting the time-frequency-space three-dimensional features, there

are a large number of features which may lead to dimensionality curse. The di-
mensionality curse is that when the number of features exceeds a certain limit, the
performance of a classifier will significantly degrade as the number of features
increases. In addition, the higher the feature dimensionality, the greater the time
cost in the training process. To address this problem, one of effective ways is fea-
ture selection, the aim of which is to find the optimal feature subset. Due to the
powerful global search ability, EAs have been used in feature selection of motor
imagery BCI based on EEG.

In [21] and [23], GA is used to search the space of features, and the fitness
function is the weighted linear combination of the number of features and the
accuracy of support vector machine (SVM). In [20], PSO-based rough set feature
selection method is proposed to find the best subset of features, and the accuracy
of a neighborhood classifier is used as the evaluation criterion for feature subset.
Baig et al. [15] employed DE and Atyabi et al. [31] utilized PSO and GA to

8



discover the optimal feature subset, respectively. In [32], ant colony optimization,
simulated annealing, GA, PSO, and DE are adopted to select features for EEG-
based emotion recognition.

These EAs-based feature selection methods achieve promising performance.
However, in these methods, the size of the search space is fixed and it is necessary
to judge whether each feature should be selected or not in each iteration. Under
this condition, some redundant, irrelevant, and trivial features will waste the com-
putational resource. Besides, due to the large search space and the interference of
redundant, irrelevant, and trivial features, EAs easily converge to a local optimum.

In this paper, we design EAs-based feature selection methods for motor im-
agery BCI via dimensionality reduction.

3. EAs

DE, GA, and PSO are three main branches of EAs. Many attempts have been
made to improve their performance and expand their application fields. Since in
essence, the feature selection problem is a binary optimization problem. In this
section, we introduce three typical versions of DE, GA, and PSO to solve a binary
optimization problem, respectively.

3.1. Novel Modified Binary DE (NMBDE)
DE [33, 34] has a simple structure and is easy to implement. However, it

cannot solve the binary optimization problems directly since its crossover and
mutation operators are executed in the continuous space. To address this problem,
Wang et al. [35] proposed a new variant of DE, called NMBDE, which designs a
probability estimation operator.

In NMBDE, the population contains NP individuals at generation t: P t =
{−→x t

i = [xt
i,1, x

t
i,2, . . . , x

t
i,D]T , i = 1, 2, . . . ,NP}, where D is the number of vari-

ables. At generation (t + 1), for the jth (j ∈ {1, 2, . . . , D}) variable of the ith
individual, the probability estimation operator is defined as:{

P (xt+1
i,j ) = 1/(1 + e−2b∗(MO−0.5)/(1+2F ))

MO = xt
r1,j + F ∗ (xt

r2,j − xt
r3,j)

(10)

where F denotes the scaling factor, and xt
r1,j , x

t
r2,j , and xt

r3,j are the jth variable
of three mutual individuals randomly chosen from P t. In (10), b is a positive
real constant, which is called the bandwidth factor to tune the range and shape
of the probability distribution. An appropriate b value is beneficial to the search
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efficiency and population diversity. In (10), MO represents the mutation operator
of the standard DE, which is embedded into the probability estimation operator of
NMBDE. After implementing the probability estimation operator in (10), we can
obtain the probability of xt+1

i,j to be “1”, i.e., P (xt+1
i,j ).

Then, the binary mutation operator is executed on xt+1
i,j as:

mt+1
i,j =

{
1, if rand ≤ P (xt+1

i,j )
0, otherwise

(11)

where rand is a uniformly distributed random number between 0 and 1, mt+1
i,j de-

notes the mutant variable of xt+1
i,j , and −→mt+1

i = [mt+1
i,1 ,mt+1

i,2 , . . . ,mt+1
i,D ]T denotes

the binary-coded mutant individual.
The crossover operator and the selection operator of NMBDE are the same

with those of the standard DE.

3.2. GA
GA is derived from the Darwinian principle of “survival of the fittest” [36].

This principle implies that the fitter individuals can survive with a higher proba-
bility and are more likely to pass their good genetic features to the next generation
[37].

In GA, a chromosome with D bits represents an individual, which is associat-
ed with a fitness value. Based on this characteristic, GA can be used for feature
selection in a straightened way. For each bit of an individual, ‘1’ and “0” indi-
cate that the corresponding feature is selected or not selected, respectively. The
fitness value can assess the quality of each individual and is the basis for genetic
operations.

GA includes three genetic operators: selection, crossover, and mutation [38].
First, the roulette wheel selection is implemented, in which the probability of se-
lecting an individual is directly proportional to its fitness value. Subsequently, the
crossover operator splits up pair-wise individuals and recombines them. Specif-
ically, some parts of two individuals are exchanged and merged to produce two
new offspring. For example, the two-point crossover operator randomly generates
two crossover points cp1 and cp2, where cp1 < cp2. If rand < pc, then two indi-
viduals exchange the segments located between these two points, where rand is
a uniformly distributed random number between 0 and 1, and pc is the crossover
probability. Finally, the mutation operator randomly modifies some of bits with
the mutation probability pm, thus introducing new genetic structures.
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3.3. Binary PSO (BPSO)
PSO, motivated by the collective behavior of organisms such as bird flocks,

is a swarm intelligence method to solve continuous optimization problems [39].
PSO relies on the cooperation and information sharing among individuals in the
group to find the optimal solution. It involves two important updating equations:
the velocity updating equation and the position updating equation [40]. In order
to apply the standard PSO to a binary space, BPSO is proposed in [41]. For a
particle −→x t

i = [xt
i,1, x

t
i,2, . . . , x

t
i,D]T (i ∈ {1, 2, . . . ,NP}) at generation t, BPSO

first updates its velocity −→v t
i = [vti,1, v

t
i,2, . . . , v

t
i,D]T as follows:

vt+1
i,j = ω ∗ vti,j + c1 ∗ r1 ∗ (pbestti,j − xt

i,j) + c2 ∗ r2 ∗ (gbesttj − xt
i,j) (12)

where j ∈ {1, 2, . . . , D},
−−−→
pbestti = [pbestti,1, pbest

t
i,2, . . . , pbest

t
i,D]T is the pre-

vious best position of −→x t
i,
−−−→
gbestt = [gbestt1, gbest

t
2, . . . , gbest

t
D]T is the historical

best position of all particles, ω is the inertia weight, c1 and c2 are two acceleration
factors, and r1 and r2 are two random numbers uniformly distributed in [0, 1]. At
each generation, vt+1

i,j is limited to [−vmax, vmax].
Afterward, BPSO updates its position through the sigmoid function conver-

sion:
S(vt+1

i,j ) = 1/(1 + e−vt+1
i,j ) (13)

xt+1
i,j =

{
1, if rand ≤ S(vt+1

i,j )
0, otherwise

(14)

where rand is a uniformly distributed random number between 0 and 1, and S(·)
is the sigmoid function.

4. Proposed Method

4.1. Motivation
As introduced above, current EAs-based feature selection methods aim to se-

lect some important features from all features, which means that they focus on
“selection”. However, they will face the following two great challenges in motor
imagery BCI based on EEG:

• The number of features extracted from the EEG signals is large, which leads
to a high-dimensional search space. It is not an easy task to search for the
important features in a high-dimensional search space.
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• There exist interferences from some unimportant features (i.e., redundant,
irrelevant, and trivial features), which causes the significant degradation of
the search ability of EAs.

Recognizing these challenges, we deal with the feature selection problem from
an opposite point of view. To be specific, we focus on “deletion” 1. Although it
is difficult to select some important features accurately, it is relatively easy to
determine which features are unimportant. Along this line, we propose a dimen-
sionality reduction mechanism, called DimReM, in EAs-based feature selection
for motor imagery BCI based on EEG. DimReM first detects whether a feature is
unimportant by utilizing the feedback information from evolution. If it has been
detected, then we delete it. By deleting the unimportant features generation by
generation, the important features are preserved in the end and the dimension of
the search space reduces gradually during the search process. Note that the di-
mension of the search space in current EAs-based feature selection methods is
fixed during the evolution.

4.2. DimReM
For each individual −→x t

i = [xt
i,1, x

t
i,2, . . . , x

t
i,D]T (i ∈ {1, 2, . . . ,NP}) in P t,

xt
i,j = 1 (j ∈ {1, 2, . . . , D}) represents that the jth feature is selected, and xt

i,j = 0
represents that the jth feature is not selected. Suppose that −→x t

best is the best indi-
vidual in P t, f t

best is the fitness value of−→x t
best, and Sj is the number of individuals

which do not select the jth feature:

Sj =
NP∑
i=1

(xt
i,j = 0), j = 1, 2, . . . , D (15)

Algorithm 1 gives the framework of DimReM. First, we find the maximum
value of {S1, . . . , SD}, denoted as Smax (Step 3). If only one element in {S1, . . . , SD}
is equal to Smax, then the index of this element is denoted as k; else we randomly
select one of the elements whose values are equal to Smax, and its index is denoted
as k (Steps 4-8). If the kth bit of −→x t

best is ‘0’, then the kth bit of P t is directly
deleted and P t

DimReM ← P t (Steps 9-11). Otherwise, the following attempt is
made: 1) Qt ← P t and delete the kth bit of Qt (Steps 13-14); 2) evaluate Qt and
the best fitness value is denoted as f̂ t

best (Step 15); and 3) if f̂ t
best is better than f t

best,

1As introduced in Section 1, there are certainly some redundant, irrelevant, and trivial features
after feature extraction which should be deleted.
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Algorithm 1 DimReM
Input: Pt, −→x t

best, and f t
best, where −→x t

best is the best individual in Pt and f t
best is the

fitness value of −→x t
best

1: Pt
DimReM = ∅;

2: Calculate Sj (j = 1, 2, . . . , D) based on (15);
3: Smax = max{S1, . . . , SD};
4: if only one element in {S1, . . . , SD} is equal to Smax then
5: The index of this element is denoted as k;
6: else
7: Randomly select one of the elements whose values are equal to Smax, and its index

is denoted as k;
8: end if
9: if xtbest,k = 0 then

10: Delete the kth bit of Pt;
11: Pt

DimReM ← Pt;
12: else
13: Qt ← Pt;
14: Delete the kth bit of Qt;
15: Evaluate Qt and the best fitness value is denoted as f̂ t

best;
16: if f̂ t

best is better than f t
best then

17: Pt
DimReM ← Qt;

18: else
19: Pt

DimReM ← Pt;
20: end if
21: end if
Output: Pt

DimReM

then P t
DimReM ←Qt; else P t

DimReM ← P t (Steps 16 − 20). Finally, P t
DimReM is

the output of DimReM.
In Algorithm 1, we first focus on the feature which is not selected by the most

individuals in the population, and consider that this feature is an unimportant fea-
ture with the highest probability among all features. Subsequently, if this feature
is also not selected by the best individual in the population, which means that this
feature is really an unimportant feature, then it is deleted. However, if this feature
is selected by the best individual in the population, a further test will be carried
out. We make an attempt to delete this feature from the population and, as a result,
obtain a new population. If the best fitness value of the new population is better
than or equal to that of the old population, which means that deleting this feature
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Figure 3: Illustration of DimReM.

has no side effect on the performance, then this feature is deleted since it is un-
important; otherwise, this feature is an important feature and should be reserved
since deleting it will cause performance degradation.

From the above introduction, it is clear that in DimReM, the information of
population is used to identify a potentially unimportant feature in each iteration.
Moreover, the best individual is regarded as the feedback information from evo-
lution to determine whether this feature should be deleted or not. As a result,
DimReM gradually removes the unimportant features and finally achieves the di-
mensionality reduction of features.

The main characteristics of DimReM are summarized as follows:

• DimReM provides an effective way to identify and delete unimportant fea-
tures by taking advantage of the information from evolution.

• DimReM does not introduce any additional parameter and complicated op-
erator. Its implementation is simple.
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• By deleting unimportant features, the search space becomes smaller, which
is beneficial for EAs to enhance the search efficiency. Meanwhile, the num-
ber of dimensions of a feature subset also becomes smaller, which reduces
the difficulty of the training task in a classifier.

• Due to the re-evaluation of population, DimReM ensures that the classifica-
tion performance never gets worse when a feature is deleted in each time.

4.3. Principle Analysis
In this subsection, we analyze the principle of DimReM. An example of Dim-

ReM is shown in Fig. 3. Suppose that there are four individuals (i.e., NP = 4) in
the population, each individual comprises of six features (i.e., D = 6): F1, . . . ,
F6, and the second individual is the best individual −→x best.

The implementation of DimReM is explained as follows. Firstly, we calculate
Sj (j = 1, 2, . . . , 6) based on (15) and obtain the maximum value Smax. In this
example, Smax = max{S1, S2, . . . , S6} = max{1, 3, . . . , 1} = 3. Obviously,
S2 = S5 = Smax as shown in Fig. 3. Therefore, it is necessary to randomly select
one feature from F2 and F5 and to check whether it should be deleted or not. Fig.
3(a) and Fig. 3(b) depict what happens if F2 or F5 is selected, respectively:

• As shown in Fig. 3(a), F2 is not selected by −→x best since xbest,2 = 0.
Thus, F2 is directly removed from the population. As a consequence, a
six-dimensional feature subset is changed to a five-dimensional one.

• As shown in Fig. 3(b), F5 is selected by −→x best since xbest,5 = 1. Therefore,
it needs a further judgment by re-evaluating the population after F5 has been
removed. After re-evaluation, if the best fitness value does not get worse,
then F5 is deleted and the number of features is reduced from six to five.
Otherwise, F5 is reserved.

1 0 1 1 0 0 1 0 1An individual

Selected Unselected

...

Figure 4: Encoding of an individual
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Algorithm 2 Framework of DimReM-EAs
1: t = 0;
2: Initialize the population P0;
3: Evaluate P0;
4: while the stopping criterion is not met do
5: P t

DimReM ← DimReM(P t) // see Algorithm 1;
6: Implement the evolutionary operators of EAs on P t

DimReM to obtain P t+1;
7: t = t + 1;
8: end while

4.4. EAs-Based Feature Selection with DimReM
In this paper, EAs are employed as the search engine to find the optimal feature

subset. To test the effectiveness of DimReM, it is embedded into the three repre-
sentative EAs introduced in Section 3 (i.e., NMBDE, GA, and BPSO) to solve the
high-dimensional feature selection problem in motor imagery BCI based on EEG.
For the sake of convenience, DimReM-embedded EAs are denoted as DimReM-
EAs. In this paper, three DimReM-EAs are DimReM-NMBDE, DimReM-GA,
and DimReM-BPSO. Next, we introduce how to embed DimReM into EAs.

4.4.1. Encoding
A feature selection problem can be regarded as a binary optimization problem,

so an individual is represented by a binary-coded vector, which is shown in Fig.
4.

4.4.2. Fitness Function
The aim of the fitness function is to evaluate the quality of a feature subset.

This paper makes use of the classification accuracy as the fitness function:

fitness =
TP + TN

NP + NN

∗ 100% (16)

where TP is the number of samples that are actually positive and are classified as
positive by the classifier; TN is the number of samples that are actually negative
and are classified as negative by the classifier; NP is the total number of positive
samples; and NN is the total number of negative samples.

4.4.3. DimReM-EAs
Firstly, the initial population P0 inducing NP binary-coded individuals is ran-

domly generated. Then, DimReM is executed to obtain P t
DimReM . Afterward,
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Table 1: Parameter Settings for Three DimReM-EAs and Their Original EAs
Algorithm Parameter Setting

NMBDE and DimReM-NMBDE F = 0.8,CR = 0.2, b = 20

GA and DimReM-GA pc = 0.6, pm = 0.03

BPSO and DimReM-BPSO ω = 1, c1 = 2, c2 = 1.5

the evolutionary operators of EAs are implemented on P t
DimReM to produce P t+1.

Obviously, the dimension of P t+1 is smaller than or equal to that of P t. The above
process repeats until the stopping criterion is met. The framework of DimReM-
EAs for feature selection is shown in Algorithm 2.

It should be noted that DimReM does not increase any significant time com-
plexity to the original EAs since DimReM does not affect the evolutionary opera-
tors of the original EAs.

5. Experimental Results and Analysis

To demonstrate the effectiveness of DimReM, the performance of three DimReM-
EAs (i.e., DimReM-NMBDE, DimReM-GA, and DimReM-BPSO) was compared
with that of their original EAs (i.e., NMBDE, GA, and BPSO) for feature sele-
ction, respectively. In this paper, the classification accuracy was used as the e-
valuation criterion and three different classifiers were employed to compute the
classification accuracy, namely SVM, K-nearest neighbor (KNN) [42], and dis-
criminant analysis (DA) [43]. Note that different EAs and different classifiers
were combined in pairs. Our experiments were conducted on two types of data-
sets: 1) the EEG datasets of motor imagery BCI, and 2) other datasets of machine
learning. For each pair which combined a EA with a classifier, 25 independent
runs were executed on each dataset.

5.1. Parameter Settings
The parameter settings of three DimReM-EAs and their original EAs are giv-

en in Table 1. For NMBDE and DimReM-NMBDE, the scaling factor F and
the crossover control parameter CR were set to 0.8 and 0.2, respectively, and the
bandwidth factor b was set to 20. For GA and DimReM-GA, the crossover prob-
ability pc and mutation probability pm were set to 0.6 and 0.03, respectively. For
BPSO and DimReM-BPSO, the inertia weight ω was set to 1, and the accelera-
tion factors c1 and c2 were set to 2 and 1.5, respectively. In this paper, for each
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Figure 5: Timing scheme of the BCI paradigm.

algorithm, the population size NP was set to 100, and the maximum number of fit-
ness evaluations was set to 20,000. In order to ensure a fair comparison, the three
DimReM-EAs and their original EAs had the same stopping criterion, i.e., the
maximum number of fitness evaluations. All experiments were run on a PC with
Intel(R) Core(TM) i5-7500 CPU @ 3.40GHZ and 8.00GB RAM using MATLAB
R2014a.

5.2. EEG Datasets
The EEG datasets can be divided into two groups: the first group and the sec-

ond group come from BCI Competition III dataset IVa and BCI Competition IV
dataset IIb, respectively. The EEG signal acquisition process of these datasets are
shown in Fig. 5. The subject sits in front of a display screen, and keeps quiet
between 0-2s. At 2s, a beep sound stimulus reminds the subject to concentrate,
and a cross symbol appears on the display screen between 2-3s. At 3s, the cross
symbol is replaced with a left or right arrow, and the subject imagines the move-
ment according to the direction of the arrow. The entire trial process lasts about
9s. These two groups of datasets are slightly different, and are briefly introduced
in the following.

5.2.1. The First Group of Datasets
The first group of datasets is recorded from five healthy subjects with 118

electrodes on the motor imagery of the right-hand task and the right-foot task.
The sampling rate is 1000 Hz, and the signals are band-pass filtered between 0.05
and 200 Hz. For each subject, there are 280 trials in total and there are 140 tri-
als per task. The datasets of five subjects are denoted as “aa”, “al”, “av”, “aw”,
and “ay”. Moreover, each dataset is divided into the training trials and the test
trials. In these datasets, 288 features are obtained after the time-frequency-space

18



Table 2: Classification Accuracy (%) of NMBDE and DimReM-NMBDE with Three Different
Classifiers on the EEG Datasets. “Mean CA” and “Std Dev” Indicate the Average and Standard
Deviation of the Classification Accuracy over 25 Runs, Respectively, and “AN” in Parentheses
Means the Average Number of the Selected Features over 25 Runs.

Dataset
SVM KNN DA

NMBDE DimReM-NMBDE NMBDE DimReM-NMBDE NMBDE DimReM-NMBDE

Mean CA±Std Dev (AN) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN)

aa 71.43±1.41 (125) 79.46±0.63 (103) 70.89±2.06 (142) 76.25±1.85 (134) 75.36±1.74 (142) 77.68±2.53 (121)
al 90.36±0.98 (142) 95.00±1.49 (114) 88.93±1.49 (145) 93.57±1.60 (124) 84.64±0.98 (141) 94.29±2.33 (105)
av 73.06±1.59 (137) 78.67±0.84 (114) 67.45±0.91 (143) 73.16±1.82 (130) 70.51±0.76 (142) 73.06±1.82 (130)
aw 84.20±0.51 (143) 87.41±0.37 (115) 71.79±0.66 (142) 72.32±1.18 (130) 76.25±0.37 (147) 79.82±0.66 (122)
ay 49.29±0.18 (124) 54.13±2.49 (85) 69.21±1.36 (139) 75.95±1.14 (109) 74.21±0.56 (141) 79.05±0.43 (101)

B0103T 92.00±0.68 (187) 95.25±0.84 (141) 91.75±0.52 (195) 94.25±0.81 (164) 91.00±1.63 (185) 94.00±1.22 (178)
B0203T 75.13±0.52 (188) 79.00±0.56 (154) 72.50±0.77 (191) 77.38±1.73 (169) 77.88±1.63 (187) 82.75±1.57 (171)
B0303T 66.13±0.68 (179) 71.88±0.99 (140) 67.88±0.56 (180) 73.25±0.81 (166) 71.00±0.71 (183) 76.50±1.91 (163)
B0403T 100.0±0.00 (194) 100.0±0.00 (112) 100.0±0.00 (198) 100.0±0.00 (110) 100.0±0.00 (204) 100.0±0.00 (153)
B0503T 98.13±0.00 (190) 99.13±0.34 (130) 98.13±0.00 (181) 99.00±0.34 (137) 97.50±0.44 (195) 98.50±0.34 (176)
B0603T 87.75±0.95 (181) 92.25±0.71 (131) 84.88±1.02 (194) 87.75±1.14 (164) 84.00±1.44 (191) 89.13±3.32 (171)
B0703T 94.38±0.00 (189) 96.38±0.28 (129) 94.00±0.34 (191) 95.88±0.56 (162) 97.00±0.52 (200) 97.13±0.71 (175)
B0803T 96.50±0.34 (182) 98.63±0.52 (131) 94.50±0.52 (190) 96.25±0.00 (145) 96.38±0.28 (201) 98.00±0.68 (174)
B0903T 94.88±0.28 (181) 96.88±0.00 (124) 94.75±0.56 (185) 96.75±0.52 (155) 95.00±1.17 (195) 97.25±0.71 (172)

three-dimensional feature extraction, and the performance is evaluated by the clas-
sification accuracy of the test trials.

5.2.2. The Second Group of Datasets
The second group of datasets is recorded from nine healthy subjects at C3,

Cz, and C4 electrodes on the motor imagery of the right-hand task and the left-
hand task. The sampling rate is 250 Hz, and the signals are band-pass filtered
between 0.5 and 100 Hz. There are five session records for each subject (i.e.,
session 1, . . . , session 5). In this paper, we only used the datasets of the third
session as a representative, namely “B0103T”, “B0203T”, . . . , “B0903T”. For
each subject, there are 160 trials in total and there are 80 trials per task. After
the time-frequency-spatial three-dimensional feature extraction, 384 features are
obtained. Due to the fact that this group of datasets is not divided into the training
trials and the test trials, the average classification accuracy of 10×10-fold cross-
validation is employed to evaluate the performance, which is different from the
evaluation scheme of the first group of datasets.

5.3. Experiments on the EEG Datasets
Table 2 presents the results of NMBDE and DimReM-NMBDE with three

different classifiers, in which “Mean CA” and “Std Dev” indicate the average and
standard deviation of the classification accuracy over 25 runs, respectively, and
the number in parentheses means the average size of the final feature subsets over
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Table 3: Classification Accuracy (%) of GA and DimReM-GA with Three Different Classifiers on
the EEG Datasets. “Mean CA” and “Std Dev” Indicate the Average and Standard Deviation of the
Classification Accuracy over 25 Runs, Respectively, and “AN” in Parentheses Means the Average
Number of the Selected Features over 25 Runs.

Dataset
SVM KNN DA

GA DimReM-GA GA DimReM-GA GA DimReM-GA

Mean CA±Std Dev (AN) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN)

aa 76.96±2.92 (134) 80.18±0.40 (107) 80.18±3.54 (138) 84.64±3.91 (130) 77.32±2.41 (144) 82.14±1.26 (127)
al 93.93±0.98 (141) 96.43±1.26 (90) 95.36±0.98 (139) 97.50±1.59 (123) 90.71±1.49 (145) 95.71±2.71 (95)
av 77.76±1.38 (140) 80.20±1.04 (123) 73.88±1.11 (143) 78.38±0.58 (104) 76.02±2.70 (140) 78.98±2.48 (125)
aw 86.52±1.68 (144) 89.73±1.45 (123) 77.05±3.05 (141) 82.59±1.05 (123) 81.07±0.87 (149) 82.77±1.43 (115)
ay 55.87±1.03 (100) 65.24±2.61 (57) 76.43±2.15 (135) 79.44±3.88 (115) 78.65±0.76 (135) 80.32±1.14 (111)

B0103T 94.75±0.84 (182) 97.63±0.81 (105) 94.38±1.17 (187) 95.38±0.56 (171) 98.38±1.22 (178) 100.0±0.00 (153)
B0203T 77.75±1.37 (184) 81.13±1.79 (121) 78.63±1.68 (179) 81.13±2.48 (176) 95.38±2.36 (173) 97.25±1.30 (156)
B0303T 71.13±1.28 (178) 74.38±0.99 (118) 74.13±1.29 (187) 76.25±2.65 (167) 90.38±3.44 (167) 98.00±1.49 (150)
B0403T 100.0±0.00 (196) 100.0±0.00 (99) 100.0±0.00 (198) 100.0±0.00 (100) 100.0±0.00 (201) 100.0±0.00 (155)
B0503T 98.63±0.28 (181) 99.25±0.28 (99) 98.88±0.28 (184) 99.13±0.56 (111) 100.0±0.00 (184) 100.0±0.00 (154)
B0603T 91.25±1.25 (170) 93.00±1.73 (113) 89.00±1.63 (189) 91.25±1.53 (169) 97.25±2.34 (173) 99.50±0.81 (155)
B0703T 95.63±0.00 (185) 97.00±0.28 (102) 96.13±0.81 (193) 96.88±0.77 (137) 99.88±0.30 (182) 100.0±0.00 (156)
B0803T 97.88±0.34 (177) 99.00±0.34 (99) 96.63±0.34 (184) 97.38±0.68 (123) 99.75±0.34 (187) 100.0±0.00 (158)
B0903T 96.13±0.28 (179) 97.13±0.34 (103) 96.50±0.34 (196) 97.63±0.52 (136) 99.88±0.28 (190) 100.0±0.00 (157)

Table 4: Classification Accuracy (%) of BPSO and DimReM-BPSO with Three Different Classi-
fiers on the EEG Datasets. “Mean CA” and “Std Dev” Indicate the Average and Standard Deviation
of the Classification Accuracy over 25 Runs, Respectively, and “AN” in Parentheses Means the
Average Number of the Selected Features over 25 Runs.

Dataset
SVM KNN DA

BPSO DimReM-BPSO BPSO DimReM-BPSO BPSO DimReM-BPSO

Mean CA±Std Dev (AN) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN)

aa 77.86±0.75 (128) 82.32±0.98 (97) 76.61±2.04 (142) 83.04±1.89 (108) 77.50±1.60 (141) 85.00±0.75 (117)
al 94.28±0.80 (137) 95.71±0.98 (122) 96.07±0.80 (147) 98.21±1.26 (116) 94.64±2.82 (140) 96.79±1.96 (117)
av 76.94±1.11 (145) 81.63±1.35 (106) 74.49±0.95 (143) 79.18±2.17 (113) 76.12±0.67 (147) 79.29±1.38 (116)
aw 87.23±1.12 (134) 90.09±0.86 (112) 80.00±1.59 (147) 85.36±1.43 (109) 81.52±1.08 (147) 84.46±0.86 (112)
ay 57.30±1.55 (95) 60.63±3.35 (70) 71.59±1.33 (141) 80.79±2.20 (103) 77.62±0.35 (126) 83.73±1.92 (102)

B0103T 96.38±0.81 (173) 97.50±0.44 (127) 95.38±1.14 (192) 96.00±1.05 (159) 97.00±0.52 (186) 98.63±0.52 (161)
B0203T 79.38±0.99 (171) 82.00±1.03 (135) 78.13±1.40 (189) 82.38±1.89 (155) 86.75±1.56 (181) 93.38±0.95 (162)
B0303T 72.50±0.44 (164) 76.38±1.73 (130) 72.75±0.84 (186) 78.63±2.48 (154) 81.38±2.55 (179) 89.13±2.85 (158)
B0403T 100.0±0.00 (188) 100.0±0.00 (148) 100.0±0.00 (190) 100.0±0.00 (146) 100.0±0.00 (206) 100.0±0.00 (158)
B0503T 98.75±0.00 (186) 98.88±0.28 (123) 99.25±0.28 (189) 99.25±0.28 (139) 99.88±0.28 (190) 100.0±0.00 (163)
B0603T 91.88±0.77 (168) 93.13±0.88 (135) 88.50±1.30 (191) 90.13±0.68 (166) 92.50±1.59 (180) 97.63±1.03 (164)
B0703T 96.38±0.52 (183) 96.50±0.34 (126) 95.63±0.00 (191) 96.88±0.76 (149) 99.63±0.34 (191) 100.0±0.00 (162)
B0803T 98.00±0.28 (177) 98.38±0.34 (131) 96.50±0.34 (182) 96.88±0.44 (145) 99.63±0.34 (196) 99.88±0.28 (162)
B0903T 96.50±0.34 (180) 96.88±0.00 (129) 97.25±0.71 (185) 97.38±0.52 (141) 99.13±0.71 (191) 100.0±0.00 (164)

25 runs (i.e., the average number of the selected features). It can be seen from
Table 2 that DimReM-NMBDE is able to find the feature subsets with higher
average classification accuracies than NMBDE on all the datasets except dataset
“B0403T”. For dataset “B0403T”, both NMBDE and DimReM-NMBDE achieve
100% average classification accuracy. On the other hand, the average numbers of
features selected by DimReM-NMBDE are consistently smaller than those select-
ed by NMBDE on all the datasets. For example, on dataset “al”, the following
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phenomena can be observed:

• In terms of DimReM-NMBDE, the average classification accuracies of the
three classifiers are 95.00%, 93.57%, and 94.29%, respectively. In contrast,
in terms of NMBDE, the average classification accuracies of the three clas-
sifiers are 90.36%, 88.93%, and 84.64%, respectively.

• The average numbers of features selected by DimReM-NMBDE with the
three classifiers are 114, 124, and 105, respectively. However, when NMBDE
is combined with the three classifiers, the average numbers of the selected
features are 142, 145, and 141, respectively.

• Overall, after embedding DimReM, the average classification accuracies of
the three classifiers are increased by 4.64%, 4.64%, and 9.65%, respectively,
and the average numbers of features are reduced by 28, 21, and 36 at the
same time.

Tables 3 and 4 present the results of GA and DimReM-GA and the results
of BPSO and DimReM-BPSO, respectively. Similar to 2, it can also be observed
from Tables 3 and 4 that DimReM-GA and DimReM-BPSO have the capability to
find the feature subsets with higher average classification accuracies than GA and
BPSO on all the datasets except dataset “B0403T” and dataset “B0503T”. Further-
more, the average numbers of features selected by DimReM-GA and DimReM-
BPSO are consistently smaller than those selected by GA and BPSO, respectively.

As shown in Tables 2, 3, and 4, different classifiers produce different average
classification accuracies on different datasets. For example, for dataset “ay” in
Table 2, according to the average classification accuracy, the best, median, and
worst classifiers with NMBDE are DA, KNN, and SVM, respectively. However,
for dataset “B0603T” in Table 2, SVM, KNN, and DA combined with NMBDE
rank the first, second, and third, respectively, according to the average classifi-
cation accuracy. So it is necessary to employ multiple classifiers to verify the
effectiveness of DimReM. From Tables 2, 3, and 4, one can conclude that no mat-
ter which classifier is used, DimReM-EAs is capable of finding feature subsets
with higher or equal average classification accuracies against their original EAs.
The above discussion demonstrates that DimReM-EAs are insensitive to classi-
fiers. The reasons are twofold: 1) in each iteration, DimReM-EAs can ensure that
the classification accuracy of a classifier will not decrease after deleting a feature,
and 2) the evolutionary operators of EAs can guide the selected features toward a
higher classification accuracy.
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Figure 6: Evolution of the classification accuracy for dataset ‘aa’.

It is also necessary to emphasize that in some scenarios, despite the average
classification accuracies are not improved, the average numbers of features select-
ed by DimReM-EAs are smaller than those selected by their original EAs. In the
context of the same classification accuracy, the smaller number of features can
improve the generalization and robustness of a classifier.

Figs. 6 and 7 provide the evolution of the classification accuracy of each
classifier on dataset “aa” and dataset “B0603T” in a typical run, respectively. As
shown in these two figures, DimReM-EAs consistently keep higher classification
accuracies than their original EAs after some generations for each classifier.

22



0 5000 10000 15000 20000
50

60

70

80

90

100

Number of Fitness Evaluations

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)

 

 

DimReM−NMBDE
NMBDE

(a) NMBDE & DimReM-NMBDE
with SVM

0 5000 10000 15000 20000
50

60

70

80

90

100

Number of Fitness Evaluations

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)

 

 

DimReM−NMBDE
NMBDE

(b) NMBDE & DimReM-NMBDE
with KNN

0 5000 10000 15000 20000
50

60

70

80

90

100

Number of Fitness Evaluations

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)

 

 

DimReM−NMBDE
NMBDE
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with DA
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(d) GA & DimReM-GA with SVM
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(e) GA & DimReM-GA with KNN
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(f) GA & DimReM-GA with DA
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Figure 7: Evolution of the classification accuracy for dataset ‘B0603T’.

5.4. Further Experiments on Three Other Datasets
To further test the effectiveness of the proposed DimReM, we carried out com-

parative experiments on three datasets in other fields, including Madelon, Musk
(Version 1), and hERG.

5.4.1. Description of Three Other Datasets
Both the Madelon and Musk (Version 1) datasets are from the UCI dataset

repository. The Madelon dataset is a machine-learning dataset which is a two-
class classification problem with continuous input variables. The difficulty of this
problem is multivariate and highly nonlinear. This dataset has 500 features, and
its provider divides the dataset into a training set consisting of 2000 samples and
a verification set consisting of 600 samples. For this dataset, the performance is
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Table 5: Classification Accuracy (%) of NMBDE and DimReM-NMBDE with Three Different
Classifiers on Three Other Datasets. “Mean CA” and “Std Dev” Indicate the Average and Standard
Deviation of the Classification Accuracy over 25 Runs, Respectively, and “AN” in Parentheses
Means the Average Number of the Selected Features over 25 Runs.

Dataset
SVM KNN DA

NMBDE DimReM-NMBDE NMBDE DimReM-NMBDE NMBDE DimReM-NMBDE

Mean CA±Std Dev (AN) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN)

Madelon 69.41±0.57 (253) 70.03±1.50 (238) 65.73±0.28 (239) 67.47±0.56 (224) 65.60±0.37 (247) 68.63±0.66 (219)
Musk (V1) 97.10±1.81 (73) 98.23±0.17 (53) 93.95±0.28 (81) 95.59±0.58 (64) 88.44±0.46 (86) 89.34±0.40 (72)

hERG 87.01±0.40 (36) 88.84±0.46 (27) 83.88±0.38 (56) 86.53±0.61 (39) 86.02±0.33 (53) 87.56±0.50 (41)

Table 6: Classification Accuracy (%) of GA and DimReM-GA with Three Different Classifiers on
Three Other Datasets. “Mean CA” and “Std Dev” Indicate the Average and Standard Deviation
of the Classification Accuracy over 25 Runs, Respectively, and “AN” in Parentheses Means the
Average Number of the Selected Features over 25 Runs.

Dataset
SVM KNN DA

GA DimReM-GA GA DimReM-GA GA DimReM-GA

Mean CA±Std Dev (AN) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN)

Madelon 73.37±1.92 (248) 74.83±1.22 (227) 69.37±1.66 (240) 71.20±1.77 (216) 69.00±0.68 (251) 70.57±0.84 (223)
Musk (V1) 97.85±0.34 (70) 98.15±0.23 (43) 95.25±0.51 (87) 95.88±0.46 (64) 90.71±0.58 (88) 91.01±0.57 (56)

hERG 87.62±0.91 (38) 88.42±0.89 (31) 85.72±1.19 (54) 86.22±0.54 (39) 87.55±0.74 (55) 88.06±0.38 (36)

Table 7: Classification Accuracy (%) of BPSO and DimReM-BPSO with Three Different Clas-
sifiers on Three Other Datasets. “Mean CA” and “Std Dev” Indicate the Average and Standard
Deviation of the Classification Accuracy over 25 Runs, Respectively, and “AN” in Parentheses
Means the Average Number of the Selected Features over 25 Runs.

Dataset
SVM KNN DA

BPSO DimReM-BPSO BPSO DimReM-BPSO BPSO DimReM-BPSO

Mean CA±Std Dev (AN) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN)

Madelon 72.39±0.26 (247) 74.45±1.89 (221) 68.83±0.79 (241) 71.33±0.55 (205) 69.53±0.57 (243) 71.97±0.62 (219)
Musk (V1) 97.98±0.17 (68) 98.53±0.39 (47) 95.42±0.64 (79) 96.52±0.48 (65) 90.05±0.19 (83) 91.48±0.51 (63)

hERG 88.08±0.75 (36) 89.14±0.23 (29) 85.87±0.43 (50) 86.42±0.42 (41) 87.34±0.63 (54) 88.42±0.29 (35)

evaluated by the classification accuracy of the verification set.
The Musk (Version 1) dataset is used to judge whether the new molecule is

musk or non-musk. This dataset has 166 features and 476 conformations (or sam-
ples) from 92 molecules. Due to the fact that a molecule has multiple conforma-
tions, the relationship between feature vectors and molecules is a many-to-one re-
lationship. If any conformation of the molecule is judged as a musk, the molecule
should be classified as “musk”. If none conformation of the molecule is judged
as a musk, the molecule is classified as “non-musk”. For this dataset, the aver-
age classification accuracy of 10×10-fold cross-validation is used to evaluate the
performance. For details, please refer to http://archive.ics.uci.edu/ml/index.php.

The hERG dataset is from molecule pharmacy. A voltage-gated potassium
channel, which is encoded by the human ether-à-go-go-related gene (hERG or

24



0 5000 10000 15000 20000
50

60

70

80

90

100

Number of Fitness Evaluations

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)

 

 

DimReM−NMBDE
NMBDE

(a) NMBDE & DimReM-NMBDE
with SVM

0 5000 10000 15000 20000
50

60

70

80

90

100

Number of Fitness Evaluations

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)

 

 

DimReM−NMBDE
NMBDE

(b) NMBDE & DimReM-NMBDE
with KNN

0 5000 10000 15000 20000
50

60

70

80

90

100

Number of Fitness Evaluations

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)

 

 

DimReM−NMBDE
NMBDE

(c) NMBDE & DimReM-NMBDE
with DA

0 5000 10000 15000 20000
50

60

70

80

90

100

Number of Fitness Evaluations

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)

 

 

DimReM−GA
GA

(d) GA & DimReM-GA with SVM
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(e) GA & DimReM-GA with KNN
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(f) GA & DimReM-GA with DA
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Figure 8: Evolution of the classification accuracy for dataset ‘hERG’.

Kv11.1), plays a significant role in regulating the exchange of cardiac action po-
tential and resting potential during cardiac depolarization and repolarization [44].
So assessing hERG-associated cardiotoxicity is an essential stage during the drug
design or discovery process. The hERG dataset consists of 392 molecules (or
samples) and 131 descriptors (or features). For this dataset, we used the aver-
age classification accuracy of 10×10-fold cross-validation to evaluate the perfor-
mance.

5.4.2. Experimental Result on Three Other Datasets
The results of three DimReM-EAs and their original EAs integrated with three

different classifiers are presented in Tables 5, 6, and 7, which again indicate that
DimReM-EAs have better overall performance than EAs in terms of the average
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Table 8: Classification Accuracy (%) of DimReM-NMBDE and NA-DimReM-NMBDE on the
EEG Datasets. “Mean CA” and “Std Dev” Indicate the Average and Standard Deviation of the
Classification Accuracy over 25 Runs, Respectively, and “AN” in Parentheses Means the Average
Number of the Selected Features over 25 Runs.

Dataset
SVM KNN DA

NA-DimReM-NMBDE DimReM-NMBDE NA-DimReM-NMBDE DimReM-NMBDE NA-DimReM-NMBDE DimReM-NMBDE

Mean CA±Std Dev (AN) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN)

aa 85.89±1.16 (87) 79.46±0.63 (103) 84.11±1.94 (88) 76.25±1.85 (134) 84.28±1.35 (88) 77.68±2.53 (121)

al 97.14±2.04 (81) 95.00±1.49 (114) 97.14±0.98 (90) 93.57±1.60 (124) 97.14±2.04 (82) 94.29±2.33 (105)

av 78.47±0.43 (92) 78.67±0.84 (114) 72.02±1.30 (92) 73.16±1.82 (130) 74.39±0.66 (103) 73.06±1.82 (130)

aw 84.46±0.97 (83) 87.41±0.37 (115) 71.91±1.67 (94) 72.32±1.18 (130) 81.07±0.59 (97) 79.82±0.66 (122)

ay 49.92±0.86 (70) 54.13±2.49 (85) 76.27±0.81 (88) 75.95±1.14 (109) 78.57±0.74 (87) 79.05±0.43 (101)

B0103T 95.25±0.84 (127) 95.25±0.84 (141) 95.38±0.56 (131) 94.25±0.81 (164) 94.13±1.69 (154) 94.00±1.22 (178)

B0203T 80.38±0.71 (136) 79.00±0.56 (154) 80.88±1.05 (142) 77.38±1.73 (169) 81.63±0.71 (165) 82.75±1.57 (171)

B0303T 74.00±0.71 (131) 71.88±0.99 (140) 72.00±1.44 (135) 73.25±0.81 (126) 75.75±2.27 (155) 76.50±1.91 (163)
B0403T 100.0±0.00 (114) 100.0±0.00 (112) 100.0±0.00 (115) 100.0±0.00 (110) 100.0±0.00 (153) 100.0±0.00 (153)

B0503T 99.00±0.34 (121) 99.13±0.34 (120) 98.38±0.00 (135) 99.00±0.34 (134) 98.38±0.34 (164) 98.50±0.34 (176)

B0603T 92.25±0.71 (131) 92.35±0.71 (131) 87.13±0.56 (137) 87.75±1.14 (164) 88.25±2.18 (167) 89.13±3.32 (171)

B0703T 97.00±0.28 (131) 96.38±0.28 (129) 95.00±0.34 (127) 95.88±0.56 (162) 97.63±0.68 (167) 97.13±0.71 (175)

B0803T 98.75±0.44 (127) 98.63±0.52 (131) 97.00±0.52 (135) 96.25±0.00 (145) 98.00±1.12 (167) 98.00±0.68 (174)

B0903T 96.88±0.00 (122) 96.88±0.00 (124) 97.00±0.52 (128) 96.75±0.52 (155) 95.75±0.68 (161) 97.25±0.71 (172)

classification accuracy and the average number of the selected features. Taking
the Madelon dataset in Table 5 as an example, after embedding DimReM, the
average classification accuracies of the three classifiers are increased by 0.62%,
1.74%, and 3.03%, respectively, and the average numbers of features are reduced
by 15, 15, and 28 at the same time.

Fig. 8 plots the evolution of the classification accuracy of each classifier on the
hERG dataset in a typical run. Similar to Figs. 6 and 7, DimReM-EAs consistently
maintain higher classification accuracies after some iterations than EAs for each
classifier.

5.5. Experiments of DimReM with and without a Further Attempt
As introduced in Section 4.2, when a feature is not selected by the most indi-

viduals but is selected by the best individual, a further attempt will be carried out:
we judge whether this feature should be deleted or not. The aim of this subsection
is to verify the effectiveness of this further attempt.

We conducted the experiments of DimReM with and without this further at-
tempt on the EEG datasets. For the sake of convenience, the prefix “NA-” denotes
that DimReM directly deletes a feature without this further attempt. Tables 8, 9,
and 10 present the results of NA-DimReM-EAs and DimReM-EAs.

As can be seen from Table 8, when NMBDE is considered as the search algo-
rithm, NA-DimReM-NMBDE is better than and worse than DimReM-NMBDE
on 20 cases and 17 cases, respectively, which means that NA-DimReM-NMBDE
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Table 9: Classification Accuracy (%) of DimReM-GA and NA-DimReM-GA on the EEG Data-
sets. “Mean CA” and “Std Dev” Indicate the Average and Standard Deviation of the Classification
Accuracy over 25 Runs, Respectively, and “AN” in Parentheses Means the Average Number of the
Selected Features over 25 Runs.

Dataset
SVM KNN DA

NA-DimReM-GA DimReM-GA NA-DimReM-GA DimReM-GA NA-DimReM-GA DimReM-GA

Mean CA±Std Dev (AN) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN)

aa 86.43±1.47 (88) 80.18±0.40 (107) 85.89±2.13 (110) 84.64±3.91 (130) 84.11±2.92 (102) 82.14±1.26 (127)

al 95.71±3.24 (60) 96.43±1.26 (90) 96.78±2.93 (103) 97.50±1.59 (123) 95.35±2.71 (81) 95.71±2.71 (95)

av 78.77±1.06 (106) 80.20±1.04 (123) 78.98±2.61 (121) 78.38±0.58 (104) 79.49±1.32 (113) 78.98±2.48 (125)

aw 82.68±2.43 (93) 89.73±1.45 (123) 80.00±2.57 (126) 82.59±1.05 (123) 83.66±1.03 (105) 82.77±1.43 (115)

ay 53.73±3.94 (55) 65.24±2.61 (57) 78.65±2.96 (111) 79.44±3.88 (115) 78.81±1.33 (99) 80.32±1.14 (111)

B0103T 97.13±0.84 (113) 97.63±0.81 (105) 96.13±0.93 (154) 95.38±0.56 (171) 100.0±0.00 (154) 100.0±0.00 (153)

B0203T 81.63±1.22 (124) 81.13±1.79 (121) 81.13±1.68 (168) 81.13±2.48 (176) 98.13±2.99 (155) 97.25±1.30 (156)

B0303T 75.13±0.81 (126) 74.38±0.99 (118) 75.50±1.03 (174) 76.25±2.65 (167) 97.88±1.04 (151) 98.00±1.49 (150)
B0403T 100.0±0.00 (102) 100.0±0.00 (99) 100.0±0.00 (98) 100.0±0.00 (100) 100.0±0.00 (159) 100.0±0.00 (155)

B0503T 99.13±0.34 (97) 99.25±0.28 (99) 99.38±0.00 (112) 99.13±0.56 (111) 100.0±0.00 (156) 100.0±0.00 (154)

B0603T 92.50±0.94 (108) 93.00±1.73 (113) 89.75±1.14 (170) 91.25±1.53 (169) 99.63±0.56 (154) 99.50±0.81 (155)

B0703T 97.63±0.28 (104) 97.00±0.28 (102) 97.63±0.28 (104) 96.88±0.77 (137) 100.0±0.00 (157) 100.0±0.00 (156)

B0803T 98.50±0.56 (100) 99.00±0.34 (99) 97.63±1.12 (114) 97.38±0.68 (123) 100.0±0.00 (159) 100.0±0.00 (158)

B0903T 97.00±0.53 (103) 97.13±0.34 (103) 98.00±0.52 (123) 97.63±0.52 (136) 100.0±0.00 (155) 100.0±0.00 (157)

Table 10: Classification Accuracy (%) of DimReM-BPSO and NA-DimReM-BPSO on the EEG
Datasets. “Mean CA” and “Std Dev” Indicate the Average and Standard Deviation of the Classifi-
cation Accuracy over 25 Runs, Respectively, and “AN” in Parentheses Means the Average Number
of the Selected Features over 25 Runs.

Dataset
SVM KNN DA

NA-DimReM-BPSO DimReM-BPSO NA-DimReM-BPSO DimReM-BPSO NA-DimReM-BPSO DimReM-BPSO

Mean CA±Std Dev (AN) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN)

aa 86.07±1.85 (95) 82.32±0.98 (97) 85.18±4.07 (107) 83.04±1.89 (108) 88.21±2.85 (92) 85.00±0.75 (117)

al 95.71±2.04 (88) 95.71±0.98 (122) 97.86±1.49 (104) 98.21±1.26 (116) 96.43±1.13 (97) 96.79±1.96 (117)

av 80.71±0.84 (106) 81.63±1.35 (106) 80.92±2.29 (111) 79.18±2.17 (113) 78.47±1.38 (111) 79.29±1.38 (116)

aw 85.89±1.32 (92) 90.09±0.86 (112) 82.50±1.02 (106) 85.36±1.43 (109) 83.57±1.59 (105) 84.46±0.86 (112)

ay 48.65±0.35 (84) 60.63±3.35 (70) 80.32±2.13 (103) 80.79±2.20 (103) 80.24±1.17 (97) 83.73±1.92 (102)

B0103T 95.88±0.56 (126) 97.50±0.44 (127) 96.38±1.20 (145) 96.00±1.05 (159) 99.50±0.52 (161) 98.63±0.52 (161)

B0203T 81.50±0.56 (138) 82.00±1.03 (135) 82.75± 1.51 (149) 82.38±1.89 (155) 93.50±2.28 (161) 93.38±0.95 (162)

B0303T 75.25±0.56 (131) 76.38±1.73 (130) 77.13±2.92 (154) 78.63±2.48 (154) 87.88±4.06 (158) 89.13±2.85 (158)

B0403T 100.0±0.00 (148) 100.0±0.00 (148) 100.0±0.00 (115) 100.0±0.00 (149) 100.0±0.00 (156) 100.0±0.00 (158)

B0503T 98.50±0.34 (125) 98.88±0.28 (123) 99.25±0.28 (139) 99.25±0.28 (139) 100.0±0.00 (160) 100.0±0.00 (163)

B0603T 93.00±0.36 (129) 93.13±0.88 (135) 90.38±2.19 (154) 90.13±0.68 (166) 97.25±0.71 (160) 97.63±1.03 (164)

B0703T 96.63±0.71 (132) 96.50±0.34 (126) 97.25±0.71 (152) 96.88±0.76 (149) 100.0±0.00 (162) 100.0±0.00 (162)

B0803T 98.13±0.44 (123) 98.38±0.34 (131) 96.75±0.52 (145) 96.88±0.44 (145) 100.0±0.00 (159) 99.88±0.28 (162)

B0903T 96.50±0.34 (124) 96.88±0.00 (129) 97.38±0.28 (143) 97.38±0.52 (141) 100.0±0.00 (164) 100.0±0.00 (164)

is slightly superior to DimReM-NMBDE. However, from Tables 9 and 10, DimReM-
EAs outperform NA-DimReM-EAs. Specifically, DimReM-GA and DimReM-
BPSO surpass NA-DimReM-GA and NA-DimReM-BPSO on 18 cases and 21
cases, respectively, and lose on 15 cases and 11 cases, respectively.

From the above discussion, one can conclude that, overall, the performance
of DimReM with this further attempt is better than the performance of DimReM
without this further attempt.
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Table 11: Classification Accuracy (%) of the Seven Methods with SVM on the EEG Datasets.
“Acc” and “Num” Denotes the Classification Accuracy and the Number of Features Obtained by
PCA, ICA, and NCA, respectively. “Mean CA” and “Std Dev” Indicate the Average and Standard
Deviation of the Classification Accuracy over 25 Runs, Respectively, and “AN” in Parentheses
Means the Average Number of the Selected Features over 25 Runs.

Dataset
PCA ICA NCA VLPSO DimReM-NMBDE DimReM-GA DimReM-BPSO

Acc (Num) Acc (Num) Acc (Num) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN)

aa 64.28 (41) 65.18 (45) 61.60 (11) 69.64±1.38 (154) 79.46±0.63 (103) 80.18±0.40 (107) 82.32±0.98 (97)

al 71.42 (37) 75.00 (103) 67.86 (17) 80.36±1.18 (145) 95.00±1.49 (114) 96.43±1.26 (90) 95.71±0.98 (122)

av 59.69 (33) 61.22 (49) 57.14 (12) 63.27±1.98 (149) 78.67±0.84 (114) 80.20±1.04 (123) 81.63±1.35 (106)

aw 65.18 (15) 68.30 (38) 63.39 (29) 66.97±0.96 (142) 87.41±0.37 (115) 89.73±1.45 (123) 90.09±0.86 (112)

ay 54.36 (27) 56.75 (103) 60.32 (28) 67.06±3.64 (131) 54.13±2.49 (85) 65.24±2.61 (57) 60.63±3.35 (70)

B0103T 87.50 (16) 87.50 (89) 90.62 (50) 88.13±0.75 (186) 95.25±0.84 (141) 97.63±0.81 (105) 97.50±0.44 (127)

B0203T 61.25 (21) 65.00 (109) 71.88 (16) 67.50±1.31 (167) 79.00±0.56 (154) 81.13±1.79 (121) 82.00±1.03 (135)

B0303T 60.00 (28) 60.62 (17) 61.88 (13) 61.88±1.83 (181) 71.88±0.99 (140) 74.38±0.99 (118) 76.38±1.73 (130)

B0403T 98.75 (10) 99.37 (20) 100.00 (76) 100.0±0.00 (182) 100.0±0.00 (112) 100.0±0.00 (99) 100.0±0.00 (148)

B0503T 94.37 (10) 95.00 (17) 98.75 (44) 97.50±0.33 (188) 99.13±0.34 (130) 99.25±0.28 (99) 98.88±0.28 (123)

B0603T 79.37 (13) 81.87 (204) 89.37 (12) 88.13±1.24 (194) 92.25±0.71 (131) 93.00±1.73 (113) 93.13±0.88 (135)

B0703T 90.00 (14) 93.12 (17) 91.25 (12) 91.88±0.57 (187) 96.38±0.28 (129) 97.00±0.28 (102) 96.50±0.34 (126)

B0803T 93.75 (18) 93.12 (54) 96.88 (27) 96.25±0.76 (199) 98.63±0.52 (131) 99.00±0.34 (99) 98.38±0.34 (131)

B0903T 90.00 (10) 90.62 (70) 93.75 (22) 94.38±0.12 (186) 96.88±0.00 (124) 97.13±0.34 (103) 96.88±0.00 (129)

5.6. Comparison among PCA, ICA, NCA, VLPSO, and DimReM-EAs
To further demonstrate the performance of DimReM-EAs, we compared DimReM-

EAs with two traditional methods, i.e., principal component analysis (PCA) [45]
and independent component analysis (ICA) [46], and two state-of-the-art meth-
ods, i.e., neighborhood component analysis (NCA) [47] and variable-length PSO
(VLPSO) [48]. It is worth noting that PCA and ICA implement feature selection
by dimensionality reduction. Therefore, by comparing with PCA and ICA, we
can ascertain the effectiveness of our dimensionality reduction in DimReM-EAs.

Tables 11, 12, and 13 provide the results of PCA, ICA, NCA, VLPSO, DimReM-
NMBDE, DimReM-GA, and DimReM-BPSO on the EEG datasets with the three
classifiers, respectively. Note that since PCA, ICA and NCA are deterministic
methods, “Acc” denotes the classification accuracy obtained by PCA, ICA, and
NCA, and “Num” denotes the corresponding number of features.

From Tables 11, 12, and 13, although the numbers of features selected by
PCA and NCA are smaller than those derived from DimReM-EAs, their classifi-
cation accuracies are consistently lower than DimReM-EAs. Similar to PCA and
NCA, the numbers of features selected by ICA are smaller than those provided
by DimReM-EAs on all cases except datasets ’ay’, ’ay’, and ’B0603T’; however,
the classification accuracies of ICA are consistently lower than DimReM-EAs. In
addition, VLPSO is inferior to DimReM-EAs in terms of both the classification
accuracy and the number of features. We can also observe from Tables 11, 12
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Table 12: Classification Accuracy (%) of the Seven Methods with KNN on the EEG Datasets.
“Acc” and “Num” Denotes the Classification Accuracy and the Number of Features Obtained by
PCA, ICA, and NCA, Respectively. “Mean CA” and “Std Dev” Indicate the Average and Standard
Deviation of the Classification Accuracy over 25 Runs, Respectively, and “AN” in Parentheses
Means the Average Number of the Selected Features over 25 Runs.

Dataset
PCA ICA NCA VLPSO DimReM-NMBDE DimReM-GA DimReM-BPSO

Acc (Num) Acc (Num) Acc (Num) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN)

aa 59.82 (27) 59.82 (107) 58.04 (105) 66.97±1.97 (145) 76.25±1.85 (134) 84.64±3.91 (130) 83.04±1.89 (108)

al 69.64 (36) 69.64 (56) 73.21 (19) 78.57±1.34 (153) 93.57±1.60 (124) 97.50±1.59 (123) 98.21±1.26 (116)

av 59.18 (43) 59.18 (23) 59.69 (78) 64.29±2.54 (152) 73.16±1.82 (130) 78.38±0.58 (104) 79.18±2.17 (113)

aw 60.27 (42) 62.50 (256) 61.16 (21) 67.41±1.72 (149) 72.32±1.18 (130) 82.59±1.05 (123) 85.36±1.43 (109)

ay 54.37 (22) 57.54 (140) 57.14 (208) 65.87±2.43 (153) 75.95±1.14 (109) 79.44±3.88 (115) 80.79±2.20 (103)

B0103T 88.75 (13) 86.87 (14) 91.25 (61) 89.38±1.62 (192) 94.25±0.81 (164) 95.38±0.56 (171) 96.00±1.05 (159)

B0203T 58.75 (64) 63.12 (2) 73.12 (137) 68.16±2.03 (211) 77.38±1.73 (169) 81.13±2.48 (176) 82.38±1.89 (155)

B0303T 55.62 (36) 58.12 (161) 65.00 (109) 64.38±2.77 (201) 73.25±0.81 (166) 76.25±2.65 (167) 78.63±2.48 (154)

B0403T 100.00 (13) 100.00 (13) 100.00 (12) 100.0±0.00 (197) 100.0±0.00 (110) 100.0±0.00 (100) 100.0±0.00 (146)

B0503T 95.00 (10) 95.62 (67) 96.87 (32) 96.88±0.67 (193) 99.00±0.34 (137) 99.13±0.56 (111) 99.25±0.28 (139)

B0603T 73.12 (81) 76.25 (39) 82.50 (13) 80.00±1.04 (204) 87.75±1.14 (164) 91.25±1.53 (169) 90.13±0.68 (166)

B0703T 90.00 (12) 92.50 (24) 92.50 (43) 91.25±1.31 (195) 95.88±0.56 (162) 96.88±0.77 (137) 96.88±0.76 (149)

B0803T 89.37 (16) 90.62 (163) 91.87 (15) 92.50±0.76 (186) 96.25±0.00 (145) 97.38±0.68 (123) 96.88±0.44 (145)

B0903T 90.62 (12) 91.25 (49) 92.50 (12) 93.13±1.02 (203) 96.75±0.52 (155) 97.63±0.52 (136) 97.38±0.52 (141)

Table 13: Classification Accuracy (%) of the Seven Methods with DA on the EEG Datasets. “Acc”
and “Num” Denotes the Classification Accuracy and the Number of Features Obtained by PCA,
ICA, and NCA, Respectively. “Mean CA” and “Std Dev” Indicate the Average and Standard
Deviation of the Classification Accuracy over 25 Runs, Respectively, and “AN” in Parentheses
Means the Average Number of the Selected Features over 25 Runs.

Dataset
PCA ICA NCA VLPSO DimReM-NMBDE DimReM-GA DimReM-BPSO

Acc (Num) Acc (Num) Acc (Num) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN) Mean CA±Std Dev (AN)

aa 59.82 (37) 63.39 (10) 56.25 (13) 67.86±0.99 (134) 77.68±2.53 (121) 82.14±1.26 (127) 85.00±0.75 (117)

al 75.00 (93) 75.00 (47) 67.86 (15) 80.38±2.38 (158) 94.29±2.33 (105 95.71±2.71 (95) 96.79±1.96 (117)

av 60.20 (17) 61.22 (18) 61.22 (174) 64.29±1.76 (156) 73.06±1.82 (130) 78.98±2.48 (125) 79.29±1.38 (116)

aw 63.83 (35) 63.39 (15) 60.71 (39) 66.52±1.12 (134) 79.82±0.66 (122) 82.77±1.43 (115) 84.46±0.86 (112)

ay 55.56 (27) 62.70 (80) 60.31 (37) 67.46±2.07 (155) 79.05±0.43 (101) 80.32±1.14 (111) 83.73±1.92 (102)

B0103T 86.87 (13) 86.87 (13) 86.25 (15) 83.75±1.45 (192) 94.00±1.22 (178) 100.0±0.00 (153) 98.63±0.52 (161)

B0203T 59.37 (60) 66.25 (58) 70.00 (18) 70.00±1.17 (195) 82.75±1.57 (171) 97.25±1.30 (156) 93.38±0.95 (162)

B0303T 60.00 (142) 61.25 (100) 59.37 (11) 63.13±3.31 (184) 76.50±1.91 (163) 98.00±1.49 (150) 89.13±2.85 (158)

B0403T 100.0 (19) 99.37 (12) 99.37 (14) 100.0±0.00 (211) 100.0±0.00 (153) 100.0±0.00 (155) 100.0±0.00 (158)

B0503T 94.37 (16) 94.37 (20) 95.00 (10) 90.63±0.45 (181) 98.50±0.34 (176) 100.0±0.00 (154) 100.0±0.00 (163)

B0603T 81.87 (69) 79.37 (21) 85.62 (15) 77.50±1.47 (199) 89.13±3.32 (171) 99.50±0.81 (155) 97.63±1.03 (164)

B0703T 90.62 (14) 91.50 (12) 91.25 (12) 90.00±0.73 (208) 97.13±0.71 (175) 100.0±0.00 (156) 100.0±0.00 (162)

B0803T 92.50 (22) 92.50 (20) 94.37 (12) 90.62±0.56 (196) 98.00±0.68 (174) 100.0±0.00 (158) 99.88±0.28 (162)

B0903T 90.00 (10) 89.37 (12) 90.00 (17) 88.13±0.69 (204) 97.25±0.71 (172) 100.0±0.00 (157) 100.0±0.00 (164)

and 13 that DimReM-GA and DimReM-BPSO achieve the highest classification
accuracy on 16 cases and 19 cases, respectively.

Therefore, DimReM-EAs are not only better than the traditional dimensional-
ity reduction methods, but also outperform the state-of-the-art methods.

Remark 1: Based on the experiments on the EEG datasets and three oth-
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er datasets, the performance improvement of DimReM-EAs against EAs can be
achieved on different types of datasets and is insensitive to the classifier. Thus,
DimReM is an effective and generic dimensionality reduction mechanism for
EAs-based feature selection in a high-dimensional search space. The performance
superiority of DimReM-EAs can be attributed the following fact: by removing
unimportant features, the dimension of the search space has been reduced and the
interference of unimportant features has been alleviated.

Remark 2: For a practical BCI system, the classification accuracy of a us-
er’s intention is the most important indicator. The purpose of feature selection
is to improve the classification accuracy in the BCI system. If the classification
accuracy and the number of features are considered as two objectives, we should
make a tradeoff between them, which means that the classification accuracy will
become lower with the decrease of the number of features. So, we consider the
feature selection of the BCI system as a single-objective optimization problem to
improve the classification accuracy.

6. Conclusion

In this paper, we introduced DimReM for EAs-based feature selection in motor
imagery BCI based on EEG. DimReM takes advantage of the feedback informa-
tion of population to identify and delete unimportant features gradually, thus trans-
forming a high-dimensional feature selection problem into a low-dimensional one.
DimReM does not add any significant burden, and does not require any additional
control parameter. Its implementation is simple and it is easy to be embedded into
EAs.

In the experiments, DimReM was combined with three different EAs and three
different classifiers to solve the feature selection problems on the EEG datasets
and three other datasets. The results suggest that DimReM is an effective way
to assist EAs in finding a feature subset with a higher classification accuracy and
smaller number of features simultaneously.

In the future, we plan to apply DimReM to deal with the feature selection
problems in medical big data.
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