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Abstract—When solving constrained optimization problems 

by evolutionary algorithms, an important issue is how to balance 
constraints and objective function. This paper presents a new 
method to address the above issue. In our method, after 
generating an offspring for each parent in the population by 
making use of differential evolution, the well-known feasibility 
rule is used to compare the offspring and its parent. Since the 
feasibility rule prefers constraints to objective function, the 
objective function information has been exploited as follows: if 
the offspring cannot survive into the next generation and if the 
objective function value of the offspring is better than that of the 
parent, then the offspring is stored into a predefined archive. 
Subsequently, the individuals in the archive are used to replace 
some individuals in the population according to a replacement 
mechanism. Moreover, a mutation strategy is proposed to help 
the population jump out of a local optimum in the infeasible 
region. Note that, in the replacement mechanism and the muta-
tion strategy, the comparison of individuals is based on objective 
function. In addition, the information of objective function has 
also been utilized to generate offspring in differential evolution. 
By the above processes, this paper achieves an effective balance 
between constraints and objective function in constrained 
evolutionary optimization. The performance of our method has 
been tested on two sets of benchmark test functions, namely, 24 
test functions at IEEE CEC2006, and 18 test functions with 10 
and 30 dimensions at IEEE CEC2010. The experimental results 
have demonstrated that our method shows better or at least 
competitive performance against other state-of-the-art methods. 
Furthermore, the advantage of our method increases with the 
increase of the number of decision variables. 
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I. INTRODUCTION 
Without loss of generality, constrained optimization pro-

blems (COPs) can be formulated as follows: 
minimize   ( )f xr , 1( ,..., )Dx x x S= ∈

r , i i iL x U≤ ≤  
subject to: ( ) 0,     1,...,jg x j l≤ =

r  
                           ( ) 0,     1,...,jh x j l m= = +

r  
where xr  is the decision vector, ix  is the ith decision variable, 

iL  and iU  are the lower and upper bounds of ix , respectively, 

D is the number of decision variables, 
1
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decision space, ( )f xr  is the objective function, ( )jg xr  is the 
jth inequality constraint, ( )jh xr  is the (j-l)th equality 
constraint, l  is the number of inequality constraints, and 
( )m l−  is the number of equality constraints. 

For COPs, the degree of constraint violation of a decision 
vector xr  on the jth constraint is computed via the following 
equation: 

max{0, ( )}, 1
( )

max{0,| ( ) | }, 1
j

j
j

g x j l
G x

h x l j mδ

≤ ≤⎧⎪= ⎨ − + ≤ ≤⎪⎩

r
r

r               (1) 

where δ is a positive tolerance value to relax equality 
constraints to a certain extent. Then, 1( ) ( )m

jjG x G x
=

= ∑r r  repre-

sents the degree of constraint violation of xr  on all constraints. 
In the context of equation (1), a decision vector xr  is called a 
feasible solution if ( ) 0,G x =

r  otherwise xr  is called an 
infeasible solution. The decision space of a COP is composed 
of the feasible region and the infeasible region. The former is 
the set of all feasible solutions and the latter is the set of all 
infeasible solutions. 

In the field of evolutionary computation, there has been a 
growing interest in applying evolutionary algorithms (EAs) to 
solve COPs. Due to the presence of constraints, many 
constrain-handling techniques have been suggested and 
integrated with EAs, and as a result, a variety of constrained 
optimization EAs (COEAs) have been proposed [1]-[3]. The 
current popular constraint-handling techniques can be briefly 
classified into three categories: methods based on penalty 
functions [4]-[6], methods based on the preference of feasible 
solutions over infeasible solutions [7]-[12], and methods 
based on multiobjective optimization [13]-[19]. Actually, 
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after producing an offspring population for the parent 
population by EAs, the purpose of constraint-handling techni-
ques is to determine a criterion to compare the individuals in 
the parent and offspring populations. The methods based on 
penalty functions construct a fitness function by adding a 
penalty term proportional to the constraint violation into 
objective function, and then uses this fitness function to 
compare the individuals. In the methods based on the 
preference of feasible solutions over infeasible solutions, the 
comparison of individuals is based on either the degree of 
constraint violation or objective function. Moreover, feasible 
solutions are always considered to be better than infeasible 
ones to a certain degree. In addition, the methods based on 
multiobjective optimization transform a COP into a multi-
objective optimization problem with two objectives (i.e., 
( ( ), ( )))f x G xr r  or a multiobjective optimization problem with 
(m+1) objectives (i.e., 1( ( ), ( ), , ( ))).mf x G x G xr r r

K  After the above 
transformation, Pareto dominance is usually employed to 
compare the individuals. 

In general, COEAs have two main tasks: 1) entering the 
feasible region rapidly, and 2) finding the optimal solution at 
the end. In order to accomplish the first task, the comparison 
of individuals is dependent mainly on constraints in most of 
constraint-handling techniques. As a result, the information 
of objective function has been neglected unreasonably, which 
has a negative effect on the achievement of the second task.  

Motivated by the above consideration, this paper proposes 
a new COEA. We call this approach as the feasibility rule 
with the incorporation of objective function information 
(FROFI). In FROFI, differential evolution (DE) [20] serves 
as the search engine and the well-known feasibility rule [7] is 
used to compare the individuals in the population. During the 
evolution, if an offspring generated by DE is worse than the 
parent according to the feasibility rule and if the offspring has 
a better objective function value than its parent, the offspring 
will be stored into a predefined archive. Afterward, the 
individuals in the archive are used to replace some 
individuals in the population by a replacement mechanism. In 
addition, a mutation strategy is proposed. It is noteworthy 
that the comparison of individuals is based on objective 
function in both the replacement mechanism and the mutation 
strategy. Moreover, the information of objective function has 
also been used to guide the search in DE. 

The main contributions of this paper can be summarized as: 
 Due to the fact that the feasibility rule prefers 

constraints to objective function, FROFI incorporates 
the objective function information into the feasibility 
rule by three processes, i.e., the DE operators, the 
replacement mechanism, and the mutation strategy. 
The purpose of the DE operators is to balance the 
exploration and exploitation abilities of FROFI. The 
replacement mechanism is able to diversify the 
population at the early stage of evolution and enhance 
the convergence speed at the middle and later stages 
of evolution. In addition, the mutation strategy aims at 
alleviating premature convergence in the infeasible 
region. By the above three processes, overall, FROFI 

reaches a reasonable tradeoff between constraints and 
objective function. 

 Systematic experiments have been conducted to 
compare FROFI with other well-established methods 
on two sets of benchmark test functions, namely, 24 
test functions at IEEE CEC2006 [21], and 18 test 
functions with 10 and 30 dimensions at IEEE 
CEC2010 [22]. The experimental results have 
indicated that FROFI is better than or at least 
comparable to other methods and has good scalability 
to the number of decision variables. Moreover, FROFI 
has also been applied to solve constrained mechanical 
design optimization problems and constrained multi-
objective optimization problems. 

 The effectiveness of the replacement mechanism and 
the mutation strategy and the sensitivity of the para-
meter associated with the replacement mechanism 
have been experimentally investigated. 

The rest of this paper is organized as follows. Section II 
introduces DE and the feasibility rule. Section III describes 
the related work. The proposed method, FROFI, is elaborated 
in Section IV. Section V presents the performance analysis 
and comparison, and more experimental studies on FROFI. 
Finally, Section VI concludes this paper. 

II. DIFFERENTIAL EVOLUTION AND THE FEASIBILITY RULE 

A. Differential Evolution 
Differential evolution (DE) was proposed by Storn and 

Price [20] in 1995. Like other EA paradigms, DE is a 
population-based optimization method. The population of DE 
can be expressed as follows: 

1, ,{ ,..., }t t NP tP x x=
r r                                    (2) 

where t is the generation number, NP is the population size, 
and , ,1, , ,( , , )i t i t i D tx x x=

r
K  is the ith individual. In DE, , ( {1,i tx i ∈

r  
, })NPK  is also called a target vector. 
DE includes three main evolutionary operators: mutation, 

crossover and selection. 
Mutation: The mutation operator creates a mutant vector 

for each target vector through utilizing the differential 
information of pairwise individuals. The following two 
mutation operators are adopted in this paper: 

 DE/current-to-rand/1: 
, , 1, , 2, 3,( ) ( )i t i t r t i t r t r tv x F x x F x x= + ⋅ − + ⋅ −
r r r r r r                     (3) 

 DE/rand-to-best/1: 
, 1, , 1, 2, 3,( ) ( )i t r t best t r t r t r tv x F x x F x x= + ⋅ − + ⋅ −
r r r r r r                 (4) 

where 1,..., ,i NP= 1,r 2,r and 3r are mutually different 
integers randomly chosen from [1, ] \ ,NP i ,best txr  is the best 
individual in the current population, F is the scaling factor, 
and , ,1, , ,( , , )i t i t i D tv v v=

r
K  is the mutant vector. 

Crossover: DE performs a crossover operator on the target 
vector ,i txr  and its mutant vector ,i tvr  to generate the trial 
vector , ,1, , ,( , , ).i t i t i D tu u u=

r
K  The binomial crossover is imple-

mented as follows: 
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where 1,..., ,i NP= 1,..., ,j D=  jrand  is a uniformly distributed 
random number on the interval [0,1] and regenerated for each 

,j randj  is an integer randomly chosen from [1, ],D  and CR  is 
the crossover control parameter. 

Selection: The target vector ,i txr  is compared with its trial 
vector , ,i tur  and the better one will be selected for the next 
generation: 

, , ,
, 1

,

,    if ( ) ( )
,    otherwise

i t i t i t
i t

i t

u f u f x
x

x+

≤⎧⎪= ⎨
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r r r
r

r                         (6) 

B. The Feasibility Rule 
The feasibility rule proposed by Deb [7] serves as the 

constraint-handling technique in this paper. This rule belongs 
to the methods based on the preference of feasible solutions 
over infeasible solutions mentioned in Section I, which 
compares pairwise individuals as follows: 

1) Between two infeasible solutions, the one with 
smaller degree of constraint violation is preferred; 

2) If one solution is infeasible and the other one is 
feasible, the feasible solution is preferred; 

3) Between two feasible solutions, the one with better 
objective function value is preferred. 

III. THE RELATED WORK 
Recent two decades have witnessed significant progress in 

the development of EAs for COPs. In 2011, Mezura-Montes 
and Coello Coello [3] carried out a comprehensive survey on 
constraint-handling in nature-inspired numerical optimization. 
Recent developments during the last four years are briefly 
outlined below. 

1) Methods based on penalty functions: Kusakci and Can 
[23] integrated a modified covariance matrix adaptation 
evolution strategy (CMA-ES) [24] with a penalty approach 
introduced in [4]. de Melo and Iacca [25] modified the 
stopping criteria and the sampling mechanism of CMA-ES 
[24], and introduced an adaptive penalty function into the 
modified CMA-ES. Ali and Zhu [26] proposed a constrained 
DE equipped with penalty function. Moreover, they provided 
theoretical results about the setting of the penalty coefficient. 
Hernández et al. [27] proposed a hybridization of DE and hill 
climbing, which employs static penalty to deal with 
constraints. In [28], a rough penalty method inspired by 
Pawlak’s rough set theory [29] is proposed and coupled with 
an improved genetic algorithm. Li and Zhang [30] proposed 
an interesting piece of work, in which the minimum penalty 
coefficient is estimated at each generation. Wang and Cai [31] 
proposed (μ+λ)-CDE, which divides the evolutionary process 
into three situations: infeasible situation, semi-feasible 
situation, and feasible situation. In the semi-feasible situation, 
an adaptive penalty function is devised. Based on the 
constraint-handling framework in [31], Gong et al. [32] 
proposed two improvements: a ranking-based mutation 
operator of DE and a dynamic diversity mechanism. 

2) Methods based on the preference of feasible solutions 
over infeasible solutions: At present, some researchers focus 
mainly on how to design the search algorithms and the 
feasibility rule is directly employed or slightly revised to 
handle constraints. For example, Gordián-Rivera and 
Mezura-Montes [33] proposed an approach to combine three 
DE variants, in which the three DE variants compete to 
generate offspring based on two performance measures. 
Mezura-Montes and Lopez-Davila [34] designed an adaptive 
stepsize control and a local search operator, and put them into 
the modified bacterial foraging algorithm (BFOA) [35]. 
Hernández-Ocaña et al. [36] added four stepsize control 
mechanisms into the modified BFOA [35]. Elsayed et al. 
carried out a series of work on combining multiple algorithms 
and/or multiple operators to tackle constrained search space, 
such as a self-adaptive multi-strategy DE [37] and an ada-
ptive configuration of EAs [38]. Sarker et al. [39] developed 
a DE with dynamic parameter selection. In this method, three 
sets of parameters are considered: the first set is for the 
scaling factor F, the second is for the crossover control 
parameter CR, and the third is for the population size NP. 
Zhang et al. [40] developed a constrained artificial immune 
system based on immune response principle, in which the 
population is classified into the feasible and infeasible groups. 
Tuba and Bacanin [41] hybridized improved seeker optimi-
zation algorithm [42] with firefly algorithm [43]. Sadollah et 
al. [44] introduced a new metaheuristic algorithm, called the 
mine blast algorithm. Mohamed and Sabry [45] implemented 
several modifications on DE, including the mutation operator, 
F, and CR. Recently, Dhadwal et al. [46] proposed an 
advanced particle swarm assisted genetic algorithm. 

The ε constrained method proposed by Takahama and 
Sakai [47] is another representative constraint-handling 
technique belonging to the methods based on the preference 
of feasible solutions over infeasible solutions. In 2012, 
Takahama and Sakai [48] selected different values of F and 
CR for each individual in DE according to the rank of the 
base vector, and proposed a rank-based εDE. In 2013, 
Takahama and Sakai [49] combined the ε constrained method 
with the estimated comparison using kernel regression. 
Recently, Bu et al. [50] implemented an improved version of 
εDEag [51] by utilizing the species based repair strategy. 
Dominguez-Isidro et al. [52] proposed a memetic algorithm, 
in which DE is used as the global search algorithm and the 
local search is implemented by a mathematical programming 
method. In addition, the ε constrained method is applied to 
compare the individuals. 

3) Methods based on multiobjective optimization: 
Currently, this kind of methods usually converts a COP into a 
biobjective optimization problem like ( ( ), ( )).f x G xr r  After the 
above transformation, Dong and Wang [53] constructed the 
achievement scalarizing function [54]: 

1 1 2 2( ) max{ ( ( ) ), ( ( ) )}F x f x z G x zω ω= − −
r r r                  (7) 

where 1 2( , )ω ω ω=
r  is a weighting vector and 1 2( , )z z z=r  is a 

reference point. They imposed preference to ( )f xr  and ( )G xr  
via different weighting vectors and reference points (i.e., a 
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preference based biobjective optimization). Jiao et al. [55] 
proposed a novel selection strategy. After combining the 
offspring population with the parent population, this selection 
strategy firstly eliminates the individuals with higher con-
straint violations than the maximum constraint violation of 
the last generation, and subsequently the nondominated indi-
viduals are chosen. Wang and Cai [56] presented a dynamic 
hybrid framework referred as DyHF, in which the global and 
local search models are dynamically implemented according 
to the feasibility proportion of the population. In the same 
year, Wang and Cai [57] proposed CMODE, which combines 
multiobjective optimization with DE. The above two methods 
adopts Pareto dominance to compare the individuals. 

4) Methods based on hybrid constraint-handling tech-
niques: Deb and Datta [58] proposed a hybrid evolutionary 
and penalty function method. This method firstly converts a 
COP into a biobjective optimization problem. Afterward, 
NSGA-II [59] is used to solve the converted problem and the 
nondominated front is applied to estimate the penalty coeffi-
cient. In [60], the main framework is inherited from [58], but 
the previous gradient-based approach is replaced with a 
gradient-free pattern search approach. Datta and Deb [61] 
studied on the scaling issue in constrained optimization and 
proposed an adaptive normalization technique for constraints. 
Subsequently, this technique is integrated with a hybrid 
method similar to [58]. Cai et al. [62] introduced a novel 
memetic algorithm called IWO-DE. In IWO-DE, an adaptive 
fitness function is designed to determine the reproduction 
ability of each weed in IWO [63]. If the population size of 
IWO reaches the permissible maximum, some worst indivi-
duals are removed by the nondominated sorting [59]. Later, 
Hu et al. [64] extended the above work by making use of a 
ring neighborhood topology as the population structure. Li 
and Yin [65] proposed a self-adaptive constrained artificial 
bee colony algorithm, in which the employed bee colony 
based on the feasibility rule is responsible for global search 
and the onlooker bee colony based on multiobjective optimi-
zation is treated as the local search model. 

IV. PROPOSED APPROACH 

A. Motivation 
Balancing constraints and objective function is a 

fundamental issue in constrained evolutionary optimization. 
The methods based on penalty functions attempt to address 
this issue by introducing appropriate penalty coefficients into 
the penalty term. In addition, the methods based on 
multiobjective optimization tend to strike a balance by 
converting a COP into a multiobjective optimization problem. 
However, in the methods based on the preference of feasible 
solutions over infeasible solutions, this issue has not been 
well studied. For example, despite the feasibility rule being 
the most popular constraint-handling technique during the 
last four years, more focus has been put on the search 
algorithms when using it to solve COPs as pointed out 
previously. The reason seems straightforward: the feasibility 
rule prefers constraints to objective function and may cause 

problems such as premature convergence, especially when 
solving complex COPs, and as a result, it is expected to 
design more powerful search algorithms to overcome its 
limitation to a certain degree. In principle, the feasibility rule 
is a relatively greedy constrain-handling technique. Note, 
however, that its greedy property also leads to some attracted 
advantages over other kinds of constraint-handling techniques, 
such as the capabilities to rapidly motivate the population 
toward the feasible region and to speed up the optimization in 
the promising directions. 

In view of the fast but less reliable constraint-handling 
performance of the feasibility rule, a new method named 
FROFI is proposed which utilizes the information provided 
by objective function to alleviate the greediness and improve 
the robustness. Moreover, by incorporating the objective 
function information into the feasibility rule, FROFI can 
reach an effective balance between constraints and objective 
function. 

B. FROFI 
At each generation ,t  FROFI maintains: 

Input: :NP  the  population size 
            :poolF  the pool of the scaling factor F  

            :poolCR  the pool of the crossover control parameter CR  

            :MaxFEs  maximum number of fitness evaluations 
1: 1t = ;  /* t  denotes the generation number */ 
2: Randomly generate an initial population 1, ,{ , , }t t NP tP x x=

r r
K  from the 

decision space ;S  
3: Evaluate the f  value and the G  value for each individual in ;tP  

 /* f  and G  denote the objective function and the degree of 
constraint violation, respectively */ 

4: ;FEs NP=       /* FEs  denotes the number of fitness evaluations */ 
5: 1tP+ = Ø and A = Ø; 

6: For each individual ,i txr  (also called a target vector) in tP   
/* {1, 2,..., }i NP= */ 

7: Randomly select a value from poolF  for the scaling factor ,F  

randomly select a value from poolCR  for the crossover control 

parameter ,CR  and implement the mutation and crossover 
operators of DE introduced in Fig. 2 to generate the trial vector , ;i tur

8: Evaluate the f  value and the G  value for ,i tur  and set 

1;FEs FEs= +  

9: Compare ,i txr  with ,i tur  according to the feasibility rule and store the 

better one into 1;tP+  

10: If ,i tur  cannot survive into 1tP+  and if , ,( ) ( ),i t i tf u f x<
r r  then 

, ;i tA A u=
r

U  
11: End For 
12: Replace some individuals in 1tP+  with the individuals in A  according 

to the replacement mechanism introduced in Fig. 4; 
13: Implement the mutation strategy introduced in Fig. 5 and set 

1;FEs FEs= +  
14: 1;t t= +  
15: Stopping Criterion: If ,FEs MaxFEs≥ then stop and output the best 

individual in ,tP  otherwise go to step 5. 

Fig. 1. The framework of FROFI 
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 a population of NP  individuals: 1, ,{ , , };t t NP tP x x=
r r

K   
 the objective function values of :tP 1, ,( ), , ( );t NP tf x f xr r

K   
 the degree of constraint violation of :tP 1,( ), ,tG xr K  

,( ).NP tG xr  
COEAs include two main components, i.e., the constraint-

handling technique and the search algorithm. Due to its 
numerous advantages, including simplicity, efficiency, and 
ease of implementation, DE has been utilized as the search 
algorithm in FROFI. The framework of FROFI has been 
given in Fig. 1. During the evolution, for each individual ,i txr  
(also called a target vector) in ,tP  a trial vector ,i tur  is gene-
rated by making use of the mutation and crossover operators 
of DE. Afterward, ,i txr  is compared with ,i tur  based on the 
feasibility rule, and the better one is selected and put into the 
next population 1.tP+  If ,i tur  cannot survive into 1tP+  and if 

, ,( ) ( ),i t i tf u f x<
r r  then ,i tur  will be stored into a predefined 

archive .A  Under this condition, the properties of ,i tur  can be 
summarized as follows. 

Theorem 1: ,i tur  is an infeasible individual. 
Proof: Assume that ,i tur  is a feasible individual. Since 

,i tur  is worse than ,i txr  based on the feasibility rule, the 
following condition holds: ,i txr  is also a feasible individual 
and , ,( ) ( ).i t i tf x f u<

r r  This is in contradiction to the fact that 

, ,( ) ( ).i t i tf u f x<
r r  
After the update of 1tP+  has been completed, the indivi-

duals in A  are used to replace some individuals in 1tP+  by a 
replacement mechanism. Subsequently, a mutation strategy is 
implemented. The above procedure is repeated until the 
maximum number of fitness evaluations (FEs) is reached. 

Next, we will explain the DE operators, the replacement 
mechanism, and the mutation strategy in detail. 

C. DE operators 
In FROFI, two DE mutation operators introduced in 

Section II-A (i.e., DE/current-to-rand/1 and DE/rand-to-
best/1) are adopted, each of which is applied with the same 
probability (i.e., 0.5) when producing the mutant vector ,i tvr  
for a target vector , .i txr  In DE/current-to-rand/1, the current 

individual learns the information from other randomly chosen 
individuals. However, in DE/rand-to-best/1 the information 
of the best individual in the population is also utilized. In 
order to further improve the search performance, the first 
scaling factor in both of them is set to a uniformly distributed 
random number between 0 and 1. Note that after mutation, 
the binomial crossover of DE is only applied to DE/rand-to-
best/1. DE/current-to-rand/1 without the binomial crossover 
is a rotation-invariant process and very effective for solving 
the rotated problems [66]. The details of the DE mutation and 
crossover operators have been given in Fig. 2. 

As shown in Fig. 2, the best individual (i.e., , )best txr  in 
DE/rand-to-best/1 is determined according to objective func-
tion. The reasons are listed as follows: 

 At the early stage of evolution, the population may 
contain only infeasible solutions. Due to that fact that 
in this scenario the population should continuously 
approach the feasible region to find a feasible solution, 
the infeasible individual with the best objective 
function value may change from generation to 
generation in the evolutionary process. As a result, 

,best txr somehow likes a randomly selected individual. 
Under this condition, both DE/rand-to-best/1 and DE/ 
current-to-rand/1 play a similar role, i.e., promoting 
the global exploration ability of the population. 

 At the middle and later stages of evolution, more and 
more individuals in the population become feasible. If 
a feasible individual has the best objective function 
value, then the population will be promptly guided 
toward this promising solution. On the other hand, if 
an infeasible individual near the feasible region has 
the best objective function value, it is very likely that 
the optimal solution is located on the boundary of the 
feasible region. In this case, by utilizing such 
infeasible individual, a lot of potential infeasible 
individuals may be generated near the feasible region, 
which provides an advantage to search for the optimal 
solution by surrounding the boundary of the feasible 
region from both the feasible and infeasible sides. A 
COP has been taken as an example in Fig. 3, where *xr  
denotes the optimal solution located on the boundary 

The feasible region 

*xr

**xr

^xr    

Fig. 3. Schematic diagram of a COP. The dashed ellipses display the 
contours of objective function, *xr denotes the optimal solution of this COP 
which is located on the boundary of the feasible region, **xr denotes the 
unconstrained optimal solution, circles denote the feasible individuals, ^xr

denotes the infeasible individual with the best objective function value, and 
triangles denote some potential infeasible individuals near the feasible region 
which are generated through exploiting ^.xr  

1: If 0.5rand <     /* rand is a uniformly distributed  
random number between 0 and 1 */ 

2: , , 1, , 2, 3,( ) ( );i t i t r t i t r t r tv x rand x x F x x= + ⋅ − + ⋅ −
r r r r r r  
/* DE/current-to-rand/1 */ 

3: , , ;i t i tu v=
r r  

4: Else 
5: , 1, , 1, 2, 3,( ) ( ),i t r t best t r t r t r tv x rand x x F x x= + ⋅ − + ⋅ −

r r r r r r  where ,best txr  is the 
best individual of the population in terms of objective 
function;  /* DE/rand-to-best/1 */ 

6: Execute the binomial crossover of DE on ,i txr  and ,i tvr  to 

generate the trial vector , ;i tur  
7: End If 

Fig. 2. The mutation and crossover operators of DE in FROFI 
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of the feasible region and ^xr  denotes the infeasible 
individual with the best objective function value. As 
shown in Fig. 3, some potential infeasible individuals 
near the feasible region (denoted as triangles) may be 
generated via making use of ^.xr  

Based on the above discussion, it is beneficial to use the 
information provided by objective function to guide the 
search in DE. By doing this, the global search ability can be 
strengthened at the early stage and the local exploitation can 
be encouraged at the middle and later stages. 

D. Replacement Mechanism 
The replacement mechanism aims at alleviating the 

greediness of the feasibility rule by replacing some indivi-
duals in the population with the individuals in the archive .A  

In order to avoid the replacement occurrence only in a 
small area of the decision space, a simple way is proposed in 
which we divide the population into MRN parts with the same 
size, after sorting it based on the objective function values in 
descending order. This way can be regarded as a very simple 
and cheap niching technique [67] because the objective 
function values of the neighboring individuals may be very 
similar. Subsequently, we choose the individual with the 
maximum degree of constraint violation from the first part 
(denoted as )axr  and the individual with the minimum degree 
of constraint violation from A  (denoted as ),bxr  respectively. 
If ( ) ( ),b af x f x<

r r  bxr  is stored into the population by replacing 

axr  and then deleted from .A  
Next, the individual with the maximum constraint violation 

value in the second part (also denoted as )axr and the 
individual with the minimum constraint violation value in A  
(also denoted as bxr ) are selected. Similarly, if ( ) ( ),b af x f x<

r r  

axr  is replaced with bxr  and bxr  is subsequently removed from 
.A  The above process continues until all the MRN parts are 

updated or A  becomes an empty set. Therefore, MRN 
determines the maximum replacement number. Fig. 4 shows 
the implementation of the replacement mechanism.  

The advantages of the replacement mechanism are twofold: 

 If the population contains only infeasible individuals, 
it is helpful to maintain the diversity of the population 
and guide the population toward the feasible region 
from diverse directions, by making use of the 
individuals in A  to replace some individuals of the 
population located in different areas based on 
objective function. 

 For a kind of COPs in which one or several constraints 
are active at the optimal solution, the optimal solution 
is located precisely on the boundary of the feasible 
region. Under this condition, by comparing the 
individuals based on objective function in the 
replacement mechanism, the infeasible individuals in 
the vicinity of the optimal solution are very likely to 
enter the next population, provided that the objective 
function values of such infeasible individuals are less 
than those of the feasible individuals. As pointed out 
by Mezura-Montes and Coello Coello [8], it is very 
promising to quickly find the optimal solution located 
on the boundary of the feasible region by combining 
the infeasible individuals with the feasible individuals 
close to the optimal solution. 

E. Mutation Strategy 
The constraints of some COPs exhibit nonlinear and 

multimodal properties. As a result, if only the information of 
constraints is considered, the population will be easily 
trapped into a local optimum in the infeasible region and fea-
sible solutions cannot be found when the iteration terminates. 
In this case, the objective function information may be useful 
for the population to jump out of a local optimal basin in the 
infeasible region. 

Based on the above consideration, a simple mutation 
strategy is proposed. It is necessary to emphasize that this 
mutation strategy is only applied to the situation that all the 
individuals in the population are infeasible. Firstly, let cxr  be 
an individual chosen from the population at random, exr  the 
individual with the maximum degree of constraint violation 
in the population, and k  an integer number randomly 
selected from [1, ].D  Then, a random number between kL  and 

kU  is assigned to the kth dimension of cxr  and thus a mutated 

1: Sort 1tP+  in descending order according to the objective function 
values and divide it into MRN parts with the same size; 

2: 1;i =  
3: While 0A >  and i MRN≤  

/* A  denotes the cardinality of A  */ 
4: Select the individual with the maximum degree of constraint 

violation (denoted as axr ) from the ith part of 1;tP+  
5: Select the individual with the minimum degree of constraint 

violation (denoted as bxr ) from ;A  

6: If ( ) ( )b af x f x<
r r  

7: 1 1 \t t aP P x+ +=
r  and 1 1 ;t t bP P x+ +=

r
U  

8: \ ;bA A x=
r  

9: End If 
10: 1;i i= +  
11: End While 

Fig. 4. The replacement mechanism in FROFI 

1: If all the individuals in the population are infeasible 
2: Randomly select an individual (denoted as cxr ) from 1;tP+  
3: Generate a random integer number (denoted as )k  between 1 

and ,D  and let the kth dimension of cxr  be equal to a value 

randomly chosen from [ , ].k kL U  Thus, a mutated individual dxr  
is obtained; 

4: Evaluate the f  value and the G  value for ;dxr  
5: Choose the individual with the maximum degree of constraint 

violation (denoted as exr ) in 1;tP+  

6: If ( ) ( )d ef x f x<
r r  

7: 1 1 \t t eP P x+ +=
r  and 1 1 ;t t dP P x+ +=

r
U  

8: End If 
9: End If 

Fig. 5. The mutation strategy in FROFI 
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individual is generated (denoted as dxr ). Afterward, if ( )df x <
r  

( ),ef xr  dxr  will enter the population by replacing .exr  Fig. 5 
presents the detailed explanations of the mutation strategy. 

Remark: From the above introduction, the implementation 
of FROFI is simple and it does not impose any com-
putationally expensive operations. The computational time 
complexity of FROFI is ( log( )),O NP NP  which is governed 
by the sorting in the replacement mechanism. 

F. Analysis of the Principle 
As introduced previously, the feasibility rule and multi-

objective optimization are two kinds of popular constraint-
handling techniques, and the aim of FROFI is to incorporate 
the objective function information into the feasibility rule. 
Indeed, the above three methods have a similarity, i.e., they 
treat the constraints and objective function separately. Table I 
discusses the principles of the feasibility rule, multiobjective 
optimization, and FROFI when comparing a parent ixr  with 
an offspring .iur  Note that Pareto dominance is used to 
compare ixr  and iur  when a COP is transformed into a 
multiobjective optimization problem. 

As shown in Table I, if both ixr  and iur  are feasible 
solutions, then all the above three methods put the importance 
of 100% on the objective function and the constraint violation 
can be ignored. However, if one of ixr  and iur  is infeasible or 
both of them are infeasible, the feasibility rule lies on one 
extreme, i.e., minimizing the constraint violation is consi-
dered more important than minimizing the objective function. 
Meanwhile, multiobjective optimization lies on the other 
extreme, i.e., the constraint violation and objective function 
are of equal importance. Under this condition, FROFI first 
compares iur  with ixr  based on the feasibility rule. Afterward, 
if iur  is worse than ixr  in terms of the constraint violation and 
better than ixr  in terms of the objective function, iur  will be 
stored into the archive and utilized in the subsequent 
evolution, which means that the constraint violation plays a 
primary role and the objective function plays an auxiliary role. 
Therefore, FROFI lies between the above two extremes, 
which is an advantage of FROFI in principle as compared to 
the feasibility rule and mutiobjective optimization. 

V. EXPERIMENTAL STUDY 

A. Proof-of-Principle Results 
Firstly, three artificial test functions are constructed to 

capture some important characteristics of introducing the 
objective function information into the feasibility rule in 
FROFI. These test functions contain two decision variables, 
and consequently, are easy to visualize. In order to further 
compare FROFI with the feasibility rule and multiobjective 
optimization, two FROFI variants referred as FROFI_FR and 
FROFI_MO are designed. In FROFI_FR and FROFI_MO, 
the comparison of individuals is based on the feasibility rule 
and Pareto dominance, respectively. For both of them, the 
following two steps ae implemented: 1) the archiving and 
replacement are removed from FROFI, and 2) the mutation 
strategy is removed from FROFI. In addition, ,best txr  of DE/ 
rand-to-best/1 in Fig. 2 represents the best individual in the 
population based on the feasibility rule for FROFI_FR, and 
one of the nondominated individuals in the population for 
FROFI_MO. Moreover, DE/current-to-rand/1 in Fig. 2 is kept 
unchanged for FROFI_FR and FROFI_MO. 

The three artificial test functions have the following 
formulations: 
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Fig. 6. The search space, the contours of objective function, the feasible 
region, and the optimal solution of the three artificial test functions 

TABLE I 
 THE PRINCIPLES OF THE FEASIBILITY RULE, MULTIOBJECTIVE OPTIMIZATION, AND FROFI WHEN COMPARING A PARENT ixr  WITH AN OFFSPRING iur  

Comparison of ixr  and iur  The feasibility rule Multiobjective optimization FROFI  

ixr  & iur  are infeasible 
One is feasible and the other 

one is infeasible 

The importance of the constraint 
violation is 100% and the importance 

of the objective function is 0% 

The importance of both the 
constraint violation and objective 

function is 50% 

The constraint violation plays a 
primary role and the objective 
function plays an auxiliary role 

ixr  & iur  are feasible 
The importance of the objective 

function is 100% and the importance 
of the constraint violation is 0% 

The importance of the objective 
function is 100% and the importance 

of the constraint violation is 0% 

The importance of the objective 
function is 100% and the importance 

of the constraint violation is 0% 
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It is evident that these three test functions have the same 
objective function, which is the Rastrigin function with 2D 
[68]. The search space, the contours of objective function, the 
feasible region, and the optimal solution of them have been 
presented in Fig. 6. 

When solving these three test functions, the population size 
NP was set to 40 and other parameter settings were kept 
unchanged which will be specified in Section V-B. Moreover, 
FROFI, FROFI_FR, and FROFI_MO used the same initial 
population to ensure the comparison fair. Figs. 7-15 provide a 
typical run derived from them on ATF1, ATF2, and ATF3. 
From Figs. 7-15, we can observe: 

 As depicted in Fig. 7, FROFI_FR approaches the 
feasible region of ATF1 from only one side along with 
the evolution. In contrast, FROFI is able to approach 
the feasible region of ATF1 from both sides as shown 
in Fig. 9.  

 From Fig. 10, FROFI_FR concentrates its search 
around the feasible area with a relatively larger size of 
ATF2 and runs the risk of getting stuck at a local 
feasible optimal solution. On the contrary, the search 
of FROFI is carried out around the two parts of the 
feasible region of ATF2 and finally the global optimal 
solution can be found as shown in Fig. 12. 

 It is clear from Fig. 13 that FROFI_FR enters the 
feasible region of ATF3 with a very fast speed and all 
the individuals in the population promptly become 
feasible. Due to the lack of sufficient sampling in the 
area including the optimal solution, FROFI_FR is 
prone to converge to a local attraction basin of the 
feasible region. As shown in Fig. 15, a lot of effort has 
been made by FROFI on both the feasible and infea-
sible areas around the optimal solution, and as a result, 
FROFI succeeds in locating the optimal solution. 

 When comparing two infeasible individuals based on 
Pareto dominance, they may be frequently nondo-
minated with each other. Due to such low selection 
pressure, it is a very challenging task for FROFI_MO 
to find feasible solutions, see, for example, Fig. 8, Fig. 
11, and Fig. 14. Specifically, for ATF1, FROFI_MO 
cannot find a feasible solution even the generation 
number is equal to 500. For ATF2, FROFI_MO fails 
to find a feasible solution in the small part of the 
feasible region. In addition, FROFI_MO is unable to 
provide a feasible solution for ATF3. As pointed out 
in [12], a search bias toward the feasible region should 
be introduced into multiobjective optimization for 
locating feasible solutions of COPs. 

 Overall, by incorporating the objective function infor-
mation into the feasibility rule, FROFI is capable of 
enhancing the diversity of the population and steering 
the population toward the feasible region from diverse 
directions (for instance ATF1 and ATF2). Moreover, 
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Fig. 7. The evolution of FROFI_FR over a typical run on ATF1. 
Hereinafter, t denotes the generation number. 
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Fig. 9. The evolution of FROFI over a typical run on ATF1 
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Fig. 10. The evolution of FROFI_FR over a typical run on ATF2 
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Fig. 11. The evolution of FROFI_MO over a typical run on ATF2 
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Fig. 12. The evolution of FROFI over a typical run on ATF2 
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Fig. 13. The evolution of FROFI_FR over a typical run on ATF3 
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Fig. 14. The evolution of FROFI_MO over a typical run on ATF3 
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it is an effective method to find the optimal solution 
located on the boundary of the feasible region from 
both feasible and infeasible parts (for instance ATF3). 

To summarize, the above experiments present detailed 
insights into why FROFI is able to overcome the weaknesses 
of the two extremes in the feasibility rule and multiobjective 
optimization. The experiment comparisons among FROFI, 
FROFI_FR, and FROFI_MO on the benchmark test functions 
introduced in Section V-B have been summarized in the 
supplemental file (Tables S1-S3). 

B. Benchmark Test Functions and Parameter Settings 
Next, we employed two sets of benchmark test functions to 

thoroughly evaluate the performance of FROFI and to 
compare FROFI with other state-of-the-art COEAs. The first 
set is the 24 benchmark test functions collected in IEEE 
CEC2006 [21], and the second set is the 18 benchmark test 
functions with 10 dimensions (10D) and 30 dimensions (30D) 
developed in IEEE CEC2010 [22]. Note that the objective 
function of all the test functions should be minimized. The 
details of these test functions can be found in [21] and [22]. 

In the experimental study of FROFI, the maximum number 
of FEs MaxFEs  and the population size NP  were given in 
Table II. Note that a proper setting of the population size is 
related to the dimension of an optimization problem. As 

shown in Table II, for the 10D test functions, a slightly 
smaller population size was adopted to make FROFI more 
efficient. In addition, 25 independent runs were performed for 
each test function and the tolerance value δ for equality 
constraints was set to 0.0001. It is necessary to point out that 
the settings of ,MaxFEs  the number of runs, and the tolerance 
value δ are based on the suggestions in [21] and [22], and 
kept the same in all the compared methods. Inspired by [66], 
we established a scaling factor pool (i.e., poolF =  [0.6,0.8,1.0])  
and a crossover control parameter pool (i.e., [0.1,0.2,poolCR =  
1.0])  in DE. At each generation, we randomly chose a value 
from poolF  for F and a value from poolCR  for CR. Then, the 
mutation and crossover operators of DE were implemented 
based on the chosen F and CR values. FROFI introduces a 
maximum replacement number MRN in the replacement 
mechanism. In all simulations, MRN=max(5,D/2) which 
implies that when D>10, MRN=D/2, otherwise MRN=5. 

C. Experiments on the 24 Benchmark Test Functions 
Collected in IEEE CEC2006 

For the 24 benchmark test functions (denoted as g01-g24) 
collected in IEEE CEC2006, the performance of FROFI was 
compared with that of five state-of-the-art methods: εDE [47], 
APF-GA [69], (μ+λ)-CDE [31], DyHF [56], and CMODE 
[57]. The experimental results of these five methods were 
directly taken from the original papers for fair comparison. 

For each test function, a run is successful if the following 
success condition is satisfied: *( ) ( ) 0.0001bestf x f x− ≤

r r  and 

bestxr  is feasible, where *xr  is the best known solution and bestxr  
is the best solution provided by an algorithm. Similar to [31], 
[56], and [57], FROFI finds an improved best known solution 
for g17, the objective function value of which is 
8853.53387481. Therefore, this improved best known 
solution is used to compute the success condition for g17. 
Regarding g20, no feasible solution has been reported by the 
existing algorithms. Moreover, the decrease of constraint 
violation of an individual in the vicinity of the optimal 
solution will result in the increase of its objective function 
value. Thus, for g20 the success condition is revised to 

*| ( ) ( ) | 0.0001.bestf x f x− ≤
r r  

According to the suggestion in [21], we used the success 
rate and the success performance as the performance 
indicators to compare εDE, APF-GA, (μ+λ)-CDE, DyHF, 
CMODE, and FROFI. The success rate is the percentage of 
successful runs, and the success performance is the mean 
number of FEs for successful runs divided by the success rate. 
The success rates resulting from the six compared methods 
are summarized in the supplemental file (Table S4). As 
shown in the supplemental file, εDE, APF-GA, (μ+λ)-CDE, 
DyHF, CMODE, and FROFI achieve 100% success rate on 
22, 12, 21, 22, 22, and 23 test functions, respectively. In this 
regard, FROFI shows the most stable performance. Moreover, 
FROFI provides the highest mean success rate (i.e., 95.83%). 

The success performance of the six compared methods is 
also summarized in the supplemental file (Table S5), in 

TABLE II 
THE MAXIMUM NUMBER OF FES MaxFEs AND THE POPULATION SIZE NP  

 
Test Function MaxFEs  NP  

24 test functions from 
IEEE CEC2006 5.0E+05 80 

18 test functions with 10D from 
 IEEE CEC2010 2.0E+05 60 

18 test functions with 30D from 
 IEEE CEC2010 6.0E+05 80 

 
TABLE III 

RESULTS OF THE MULTIPLE-PROBLEM WILCOXON’S TEST BASED ON THE 
SUCCESS PERFORMANCE FOR εDE [47], APF-GA [69], (μ+λ)-CDE [31], 
DYHF [56], CMODE [57], AND FROFI ON 24 TEST FUNCTIONS FROM 

IEEE CEC2006 
 

Algorithm R+ R- p-value α=0.05 α=0.1 
FROFI vs εDE 203.0 73.0 4.84E-02 Yes Yes 

FROFI vs AGF-GA 269.0 7.0 4.53E-06 Yes Yes 
FROFI vs (μ+λ)-CDE 245.0 31.0 5.52E-04 Yes Yes 

FROFI vs DyHF 208.5 67.5 3.14E-02 Yes Yes 
FROFI vs CMODE 245.5 30.5 5.14E-04 Yes Yes 

 
TABLE IV 

RANKING OF εDE [47], APF-GA [69], (μ+λ)-CDE [31], DYHF [56], 
CMODE [57], AND FROFI BY THE FRIEDMAN’S TEST IN TERMS OF THE 
SUCCESS PERFORMANCE ON 24 TEST FUNCTIONS FROM IEEE CEC2006 

 
Algorithm Ranking 

FROFI 2.2708 
εDE 2.75 

DyHF 2.8542 
CMODE 3.6458 

(μ+λ)-CDE 4.0833 
AGF-GA 5.3958 
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which “NA” denotes the success performance of the 
corresponding method cannot be available since the success 
rate is equal to zero. To detect the statistical differences 
systematically, the multiple-problem Wilcoxon’s test and the 
Friedman’s test [70] were carried out by making use of keel 
software [71]. In the Friedman’s test, the Bonferroni-Dunn 
method was chosen for the post-hoc test. Tables III and IV 
summarize the statistical test results based on the success 
performance. From Table III, we can observe that FROFI 
provides higher R+ values than R- values in all the cases. 
Moreover, the p values of all the cases are less than 0.05, 
which indicates that FROFI exhibits statistically superior 
convergence performance against the five competitors. In 
addition, it can be seen from Table IV that FROFI works best, 
followed by εDE. 

The above comparison verifies that FROFI is better than 
the five competitors on the 24 benchmark test functions from 
IEEE CEC2006, in terms of the success rate and the success 
performance. 

D. Experiments on the 18 Benchmark Test Functions with 
10D and 30D Designed in IEEE CEC2010 

In this subsection, we compared FROFI against six 
competitive methods on the 18 test functions (denoted as 
C01-C18) with 10D and 30D from IEEE CEC2010 to 
validate its performance: εDEag [51], SRS-εDEag [50], 
ECHT-DE [72], AIS-IRP [40], DyHF [56], and CMODE [57]. 

Unlike the test functions in Section V-C, the optimal 
solutions of these 18 test functions cannot be known a priori. 
Consequently, the average and standard deviation of the 
objective function values obtained in 25 runs were considered 
as the performance indicator. The supplemental file (Tables 
S6-S9) summarizes the experimental results provided by the 

six compared methods. Herein, “*” denotes that feasible 
solutions cannot be consistently found by the corresponding 
method in all runs, and (#) denotes the feasible rate which is 
the percentage of runs where at least one feasible solution is 
found when the evolution halts. The experimental results of 
εDEag, SRS-εDEag, ECHT-DE, and AIS-IRP were directly 
taken from the original papers. For DyHF and CMODE, we 
run the source codes provided by the authors in [56] and [57] 
to produce the experimental results due to the fact that the 
experimental results cannot be obtained from [56] and [57]. 

To test the statistical significance, t-test at a 0.05 
significance level was conducted between FROFI and each of 
εDEag, SRS-εDEag, ECHT-DE, and AIS-IRP. In addition, 
Wilcoxon’s rank sum test at a 0.05 significance level is 
implemented between FROFI and each of DyHF and 
CMODE. Further, by making use of KEEL software [71], the 
multiple-problem Wilcoxon’s test and the Friedman’s test 
were carried out based on the average objective function 
values. 

In the case of D=10, the supplemental file (Tables S6 and 
S7) show that FROFI has an edge over εDEag, SRS-εDEag, 
ECHT-DE, AIS-IRP, DyHF, and CMODE on six, four, 10, 
nine, 15, and 14 test functions, respectively. In contrast, 
εDEag, SRS-εDEag, ECHT-DE, AIS-IRP, DyHF, and 
CMODE perform better than FROFI on four, two, four, five, 
one, and one test function, respectively. Therefore, we can 
conclude that, overall, the performance of FROFI is superior 
to that of the other six competitors. 

Table V and Table VI report the statistical test results 
based on the multiple-problem Wilcoxon’s test and the 
Friedman’s test when D=10. As shown in Table V, FROFI 
provides higher R+ values than R– values in all the cases. In 

TABLE VII 
RESULTS OF THE MULTIPLE-PROBLEM WILCOXON’S TEST FOR εDEAG [51], 

SRS-εDEAG [50], ECHT-DE [72], AIS-IRP [40], DYHF [56], CMODE 
[57], AND FROFI ON 18 TEST FUNCTIONS WITH 30D FROM IEEE CEC2010 

 
Algorithm R+ R- p-value α=0.05 α=0.1

FROFI vs εDEag 161.5 9.5 2.899E-04 Yes Yes 
FROFI vs SRS-εDEag 133.5 37.5 3.637E-02 Yes Yes 
FROFI vs ECHT-DE 147.5 5.5 1.831E-04 Yes Yes 
FROFI vs AIS-IRP 133.0 20.0 5.57E-03 Yes Yes 
FROFI vs DyHF 153.0 0.0 1.526E-05 Yes Yes 

FROFI vs CMODE 169.5 1.5 1.907E-05 Yes Yes 
 

TABLE VIII 
RANKING OF εDEAG [51], SRS-εDEAG [50], ECHT-DE [72], AIS-IRP 

[40], DYHF [56], CMODE [57], AND FROFI BY THE FRIEDMAN’S TEST ON 
18 TEST FUNCTIONS WITH 30D FROM IEEE CEC2010 

 
Algorithm Ranking 

FROFI 1.8611 
SRS-εDEag 2.6944 

AIS-IRP 3.6389 
εDEag 3.75 

ECHT-DE 4.5556 
CMODE 5.25 

DyHF 6.25 
 

TABLE V 
RESULTS OF THE MULTIPLE-PROBLEM WILCOXON’S TEST FOR εDEAG [51], 

SRS-εDEAG [50], ECHT-DE [72], AIS-IRP [40], DYHF [56], CMODE 
[57], AND FROFI ON 18 TEST FUNCTIONS WITH 10D FROM IEEE CEC2010 

 
Algorithm R+ R- p-value α=0.05 α=0.1 

FROFI vs εDEag 106.0 65.0 3.193E-01 No No 
FROFI vs SRS-εDEAG 101.0 70.0 4.811E-01 No No 
FROFI vs ECHT-DE 135.0 36.0 3.036E-02 Yes Yes 
FROFI vs AIS-IRP 124.0 47.0 9.874E-02 No Yes 
FROFI vs DyHF 166.5 4.5 6.485E-05 Yes Yes 

FROFI vs CMODE 148.0 5.0 1.526E-04 Yes Yes 
 

TABLE VI 
RANKING OF εDEAG [51], SRS-εDEAG [50], ECHT-DE [72], AIS-IRP 

[40], DYHF [56], CMODE [57], AND FROFI BY THE FRIEDMAN’S TEST ON 
18 TEST FUNCTIONS WITH 10D FROM IEEE CEC2010 

 
Algorithm Ranking 

FROFI 2.8611 
SRS-εDEAG 3.0833 
εDEag 3.3333 

AIS-IRP 3.5278 
ECHT-DE 4.3333 
CMODE 5.2222 

DyHF 5.6389 
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terms of the multiple-problem Wilcoxon’s test at α=0.1, 
significant difference can be observed in four cases (i.e., 
FROFI versus ECHT-DE, FROFI versus AIS-IRP, FROFI 
versus DyHF, and FROFI versus CMODE), which signifies 
that FROFI performs much better than ECHT-DE, AIS-IRP, 
DyHF, and CMODE at α=0.1. In addition, we can observe 
from Table VI that FROFI has the best ranking, followed by 
SRS-εDEag. 

In [22], the 18 test functions have been generalized into 
30D. Compared with the test functions with 10D, the test 
functions with 30D have more complex characteristics, which 
can be used to test the scalability of a COEA. 

In the case of D=30, as shown in the supplemental file 
(Tables S8 and S9), FROFI is remarkably better than the six 
competitors on a vast majority of test functions. More 
specifically, FROFI beats εDEag, SRS-εDEag, ECHT-DE, 
AIS-IRP, DyHF, and CMODE on 14, 10, 14, 14, 17, and 16 
test functions, respectively. Nevertheless, εDEag, SRS-εDEag, 
ECHT-DE, and AIS-IRP outperform FROFI only on two, two, 
one, and three test functions, respectively. Moreover, DyHF 
and CMODE cannot surpass FROFI on any test functions. 

Table VII and Table VIII summarize the statistical test 
results based on the multiple-problem Wilcoxon’s test and the 
Friedman’s test when D=30. From Table VII, it is obvious 
that FROFI provides higher R+ values than R– values in all 
the cases. Furthermore, the p values of all the cases are less 
than 0.05, which means that FROFI significantly outperforms 
the other six competitors. In addition, it can be observed from 
Table VIII that FROFI has the best ranking, followed by 
SRS-εDEag. 

The above experimental results reveal that FROFI has the 
increasing advantage over the other compared methods for 
complex high-dimensional COPs, which also implies that 
FROFI could be more effective for solving large-scale COPs. 

E. Discussion 
In this subsection, additional experiments were carried out 

on the 18 benchmark test functions with 10D and 30D from 

IEEE CEC2010. For all the experiments, 25 independent runs 
were executed and all the parameter settings were kept 
unchanged unless otherwise specified.  

1) Effectiveness of the replacement mechanism: In FROFI, 
the external archive stores some infeasible solutions carrying 
valuable information of objective function. Moreover, such 
infeasible solutions have been reemployed through the 
replacement mechanism. We implemented a variant of 
FROFI, called FROFI_WoR, in which the replacement 
mechanism has been discarded. The average and standard 
deviation of the objective function values obtained from 
FROFI and FROFI_WoR have been given in the supple-
mental file (Tables S10-S11). Table IX reports the statistical 
test results according to the multiple-problem Wilcoxon’s test. 

As shown in the supplemental file (Tables S10-S11), when 
D=10 and 30, FROFI performs better than FROFI_WoR on 
12 and 15 test functions, respectively. However, FROFI_ 
WoR outperforms FROFI only on two and one test function, 
respectively. Moreover, we can observe from Table IX that 
FROFI provides higher R+ values than R– values in all the 
cases and the p values of all the cases are less than 0.05. 

Based on the above comparison, one can conclude that the 
replacement mechanism does play a crucial role in FROFI. 

2) Effectiveness of the mutation strategy: We also 
considered another variant of FROFI, called FROFI_WoM, 
in which the mutation strategy has been removed. Table X 
summarizes the experimental results of FROFI and FROFI_ 
WoM for C11 with 10D, C12 with 10D, and C11 with 30D, 
which means that FROFI and FROFI_WoM achieved quite 
similar performance on the remaining test functions. After a 
careful observation, we found that both C11 and C12 use the 
Ronsenbrock function [68] as the constraint. The global 
minimum of the Ronsenbrock function is inside a long, 

TABLE IX 
RESULTS OF THE MULTIPLE-PROBLEM WILCOXON’S TEST FOR FROFI 
AND FROFI_WOR ON 18 TEST FUNCTIONS WITH 10D AND 30D FROM 

IEEE CEC2010 
 

Algorithm R+ R- p-value α=0.05 α=0.1
FROFI vs 

FROFI_WoR 
(10D) 

145.0 26.0 7.69E-03 Yes Yes 

FROFI vs 
FROFI_WoR 

(30D) 
159.0 12.0 5.34E-04 Yes Yes 

 
TABLE X 

COMPARISON OF FROFI WITH FROFI_WOM ON C11 WITH 10D, C12 
WITH 10D, AND C11 WITH 30D IN TERMS OF THE FEASIBLE RATE 

 
Feasible Rate 

Test Function 
FROFI FROFI_WoM 

C11 with 10D 100% 48% 
C12 with 10D 100% 84% 
C11 with 30D 100% 16% 

TABLE XI 
RESULTS OF THE MULTIPLE-PROBLEM WILCOXON’S TEST FOR 

FROFI_13, FROFI_14, FROFI_15, FROFI_16, AND FROFI_17 ON 18 
TEST FUNCTIONS WITH 30D FROM IEEE CEC2010 

 
Algorithm R+ R- p-value α=0.05 α=0.1

FROFI_15 vs 
FROFI_13 132.0 21.0 8.03E-03 Yes Yes 

FROFI_15 vs 
FROFI_14 100.5 62.5 3.42E-01 No No 

FROFI_15 vs 
FROFI_16 86.5 84.5 1.00E+00 No No 

FROFI_15 vs 
FROFI_17 98.5 72.5 5.57E-01 No No 

 
TABLE XII 

RANKING OF FROFI_13, FROFI_14, FROFI_15, FROFI_16, AND 
FROFI_17 BY THE FRIEDMAN’S TEST ON 18 TEST FUNCTIONS WITH 30D 

FROM IEEE CEC2010 
 

Algorithm Ranking 
FROFI_15 2.6944 
FROFI_16 2.7778 
FROFI_17 2.8883 
FROFI_14 2.9644 
FROFI_13 3.5 
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narrow, and parabolic shaped flat valley, and as a result, it is 
very difficult to find the global minimum. Due to the above 
property, when using the Ronsenbrock function as the con-
straint, it is not strange that some methods tend to converge to 
a local optimum in the infeasible region. For example, εDEag, 
SRS-εDEag, ECHT-DE, DyHF, and CMODE are incapable 
of consistently finding feasible solutions on C11 and C12 as 
shown in the supplemental file (Tables S6-S9). 

In Table X, the feasible rate was taken as the performance 
indicator. From Table X, the feasible rate drastically de-
creases when implementing FROFI_WoM on C11 with 10D, 
C12 with 10D, and C11 with 30D. One may be interested in 
why FROFI and FROFI_WoM show the similar performance 
on C12 with 30D. This is not difficult to understand because 
the relatively bigger FEs (i.e., 6×105 FEs) has been specified. 

The above comparison corroborates that the use of the 
objective function information in the mutation strategy is 
helpful for FROFI to avoid premature convergence in the 
complex constrained search space. 

3) Sensitivity in relation to the parameter associate with 
the replacement mechanism: FROFI introduces its own 
parameter (i.e., MRN) which determines the maximum 
replacement number in the replacement mechanism. To study 
how the performance of FROFI is sensitive to this parameter, 
we have tried different values of MRN. The performance 
analysis was performed via the multiple-problem Wilcoxon’s 
test and the Friedman’s test based on the mean objective 
function value. 

According to our observation, FROFI is not sensitive to 
MRN on the 18 test functions with 10D in IEEE CEC2010, 
and MRN can be set to a value in a large range. Therefore, we 
only reported the statistical test results for the 18 test 
functions with 30D from IEEE CEC2010 in Tables XI and 
XII. For these test functions, we tested five different values of 
MRN: 13, 14, 15, 16, and 17. FROFI with the above five 
values are denoted as FROFI_13, FROFI_14, FROFI_15, 
FROFI_16, and FROFI_17, respectively. Note that FROFI_ 
15 is equivalent to the original FROFI. The average and 
standard deviation of the objective function values resulting 
from the compared methods are reported in the supplemental 
file (Table S12). 

From Table XI, FROFI_13 suffers from performance 
degradation since the p value is less than 0.05 when 
comparing FROFI_13 with FROFI_15. Moreover, FROFI_13 
gets the worst ranking as shown in Table XII. On the other 
hand, it seems that FROFI_14, FROFI_15, FROFI_16, and 

FROFI_17 have similar overall performance. Thus, we could 
claim that FROFI is not very sensitive to the setting of MRN 
for the 18 test functions with 30D in IEEE CEC2010. 

The above discussion demonstrates that MRN is a problem 
insensitive parameter in FROFI. 

F. FROFI for Constrained Mechanical Design Optimization 
Problems 

In the previous subsections, the performance of FROFI has 
been assessed by benchmark test functions. One may be 
interested in the performance of FROFI in practical app-
lications. To this end, three constrained mechanical design 
optimization problems introduced in [73] are adopted. We 
used the same maximum number of FEs as in [73] for these 
three optimization problems. 

Table XIII summarizes the experimental results of ABC, 
TLBO, and FROFI. Note that the experimental results of 
ABC and TLBO were directly taken from [73] for fair 
comparison. From Table XIII, it can be observed that FROFI 
provides better average results than the two competitors on 
these three optimization problems, which verifies the 
effectiveness of FROFI in the practical applications. 

G. Is Our Idea Applicable to Constrained Multiobjective 
Optimization Problems (CMOPs)?  

In [59], NSGA-II has been integrated with a constrained-
domination rule which is an extension of the feasibility rule 
[7] for solving CMOPs. In NSGA-II, the parent population tP  
and the offspring population tQ  are sorted based on the 
constrained-domination rule, and then all the individuals in 

t tP QU are partitioned into several nondominated levels. 
Finally, the individuals in t tP QU are put into the next 
population 1tP+  level by level. 

In this paper, according to the characteristics of CMOPs, 
the objective function information has been incorporated into 
NSGA-II as follows: 1) the individuals in tQ  are resorting 
based only on the objective functions and divided into several 
nondominated levels, 2) if some individuals in the best 
nondominated level have not been put into 1tP+ , then they are 
stored into an archive, and 3) the individual with the 
minimum constraint violation in the archive (denoted as axr ) 
is used to replace the individual with the maximum constraint 
violation in 1tP+  (denoted as bxr ) if axr  Pareto dominates 

.bxr The improved NSGA-II is called INSGA-II in this paper. 

TABLE XIII 
EXPERIMENTAL RESULTS OF ABC, TLBO, AND FROFI OVER 100 INDEPENDENT RUNS ON THREE CONSTRAINED MECHANICAL DESIGN OPTIMIZATION 

PROBLEMS 
Problem The maximum number of FEs Criteria ABC TLBO FROFI 

Step-cone pulley 15000 
Best 
Mean 
Worst 

16.634655 
36.099500 
145.470500 

16.634510 
24.011358 
74.022951 

14.467584 
14.467699 
14.468038 

Hydrostatic thrust bearing 25000 
Best 
Mean 
Worst 

1625.442760 
1861.554000 
2144.836000 

1625.443000 
1797.707980 
2096.801270 

1625.449568 
1663.562923 
1869.449075 

Rolling element bearing 10000 
Best 
Mean 
Worst 

-81859.741600 
-81496.000000 
-78897.810000 

-81859.740000 
-81438.987000 
-80807.855100 

-81859.198042 
-81856.171959 
-81848.523796 



IEEE Transactions on Cybernetics 13

Due to the limit of the paper length, only the OSY problem 
in [74] is used to test the performance of NSGA-II and 
INSGA-II. In addition, the hypervolume (HV) [75] is 
considered as the performance metric. Note that the larger the 
HV value, the better the performance of an algorithm. From 
the experiments, the mean HV values obtained by NSGA-II 
and INSGA-II over 25 runs are 696.3069 and 712.9837, 
which suggests that the objective function information can 
also be applied to enhance the performance of NSGA-II for 
solving CMOPs. 

Fig. 16 exhibits the Pareto fronts resulting from NSGA-II 
and INSGA-II in a typical run. As shown in Fig. 16, NSGA-II 
is very likely to miss some parts of the true Pareto front. 

VI. CONCLUSION 
This paper proposes an alternative method to balance 

constraints and objective function in constrained evolutionary 
optimization, called FROFI. In FROFI, we utilize the 
information of objective function to alleviate the greediness 
and improve the robustness of the well-known feasibility rule 
by three processes, i.e., the DE operators, the replacement 
mechanism, and the mutation strategy. Moreover, the 
comparison of individuals is based on objective function in 
the replacement mechanism and the mutation strategy. 

Experiments across two benchmark test sets from IEEE 
CEC2006 and IEEE CEC2010 show that: 1) the DE operators 
have the capability to balance the exploration and exploi-
tation during the evolution, 2) the replacement mechanism 
increases the diversity of the infeasible population, and 
efficiently searches the optimal solution from both the 
feasible and infeasible areas when the population contains 
feasible solutions, 3) the mutation strategy is a promising way 
to deal with complicated constrained search space, and 4) 
FROFI achieves better or at least highly competitive perfor-
mance against other state-of-the-art COEAs. Moreover, the 
performance advantage of FROFI is more pronounced on 
high-dimensional test functions. In the future, it is interesting 
to design adaptive or self-adaptive replacement mechanism in 
FROFI for solving large-scale COPs. 

The Matlab source code of FROFI can be downloaded 
from Y. Wang’s homepage: http://ist.csu.edu.cn/YongWang. 
htm 
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 Table S1 EXPERIMENTAL RESULTS OF FROFI_FR, FROFI_MO, AND FROFI OVER 25 INDEPENDENT RUNS ON 24 TEST 

FUNCTIONS FROM IEEE CEC2006 USING 5×105 FES. “MEAN OFV” AND “STD DEV” INDICATE THE AVERAGE AND 

STANDARD DEVIATION OF THE OBJECTIVE FUNCTION VALUES OBTAINED IN 25 RUNS, RESPECTIVELY. WILCOXON’S RANK 

SUM TEST AT A 0.05 SIGNIFICANCE LEVEL WAS PERFORMED BETWEEN FROFI AND EACH OF FROFI_FR AND FROFI_MO. 

 TABLE S2 EXPERIMENTAL RESULTS OF FROFI_FR, FROFI_MO, AND FROFI OVER 25 INDEPENDENT RUNS ON 18 TEST 

FUNCTIONS WITH 10D FROM IEEE CEC2010 USING 2×105 FES. “MEAN OFV” AND “STD DEV” INDICATE THE AVERAGE AND 

STANDARD DEVIATION OF THE OBJECTIVE FUNCTION VALUES OBTAINED IN 25 RUNS, RESPECTIVELY. WILCOXON’S RANK 

SUM TEST AT A 0.05 SIGNIFICANCE LEVEL WAS PERFORMED BETWEEN FROFI AND EACH OF FROFI_FR AND FROFI_MO. 

 Table S3 EXPERIMENTAL RESULTS OF FROFI_FR, FROFI_MO, AND FROFI OVER 25 INDEPENDENT RUNS ON 18 TEST 

FUNCTIONS WITH 30D FROM IEEE CEC2010 USING 6×105 FES. “MEAN OFV” AND “STD DEV” INDICATE THE AVERAGE AND 

STANDARD DEVIATION OF THE OBJECTIVE FUNCTION VALUES OBTAINED IN 25 RUNS, RESPECTIVELY. WILCOXON’S RANK 

SUM TEST AT A 0.05 SIGNIFICANCE LEVEL WAS PERFORMED BETWEEN FROFI AND EACH OF FROFI_FR AND FROFI_MO. 

 Table S4 COMPARISON OF FROFI WITH RESPECT TO εDE [47], APF-GA [69], (μ+λ)-CDE [31], DYHF [56], AND CMODE 

[57] IN TERMS OF THE SUCCESS RATE. IN ALL THE EXPERIMENTS, 25 INDEPENDENT RUNS WERE IMPLEMENTED ON 24 TEST 

FUNCTIONS FROM IEEE CEC2006 USING 5×105 FES. 

 Table S5 COMPARISON OF FROFI WITH RESPECT TO εDE [47], APF-GA [69], (μ+λ)-CDE [31], DYHF [56], AND CMODE 

[57] IN TERMS OF THE SUCCESS PERFORMANCE. IN ALL THE EXPERIMENTS, 25 INDEPENDENT RUNS WERE IMPLEMENTED ON 

24 TEST FUNCTIONS FROM IEEE CEC2006 USING 5×105 FES. 

 Table S6 EXPERIMENTAL RESULTS OF εDEAG [51], SRS-εDEAG [50], ECHT-DE [72], AIS-IRP [40], AND FROFI OVER 25 

INDEPENDENT RUNS ON 18 TEST FUNCTIONS WITH 10D FROM IEEE CEC2010 USING 2×105 FES. “MEAN OFV” AND “STD 

DEV” INDICATE THE AVERAGE AND STANDARD DEVIATION OF THE OBJECTIVE FUNCTION VALUES OBTAINED IN 25 RUNS, 

RESPECTIVELY. t -TEST AT A 0.05 SIGNIFICANCE LEVEL WAS PERFORMED BETWEEN FROFI AND EACH OF εDEAG, SRS-

εDEAG, ECHT-DE, AND AIS-IRP. 

 Table S7 EXPERIMENTAL RESULTS OF DYHF [56], CMODE [57], AND FROFI OVER 25 INDEPENDENT RUNS ON 18 TEST 

FUNCTIONS WITH 10D FROM IEEE CEC2010 USING 2×105 FES. “MEAN OFV” AND “STD DEV” INDICATE THE AVERAGE AND 
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STANDARD DEVIATION OF THE OBJECTIVE FUNCTION VALUES OBTAINED IN 25 RUNS, RESPECTIVELY. WILCOXON’S RANK 

SUM TEST AT A 0.05 SIGNIFICANCE LEVEL WAS PERFORMED BETWEEN FROFI AND EACH OF DYHF AND CMODE. 

 Table S8 EXPERIMENTAL RESULTS OF εDEAG [51], SRS-εDEAG [50], ECHT-DE [72], AIS-IRP [40], AND FROFI OVER 25 

INDEPENDENT RUNS ON 18 TEST FUNCTIONS WITH 30D FROM IEEE CEC2010 USING 6×105 FES. “MEAN OFV” AND “STD 

DEV” INDICATE THE AVERAGE AND STANDARD DEVIATION OF THE OBJECTIVE FUNCTION VALUES OBTAINED IN 25 RUNS, 

RESPECTIVELY. t -TEST AT A 0.05 SIGNIFICANCE LEVEL WAS PERFORMED BETWEEN FROFI AND EACH OF εDEAG, SRS-

εDEAG, ECHT-DE, AND AIS-IRP. 

 Table S9 EXPERIMENTAL RESULTS OF DYHF [56], CMODE [57], AND FROFI OVER 25 INDEPENDENT RUNS ON 18 TEST 

FUNCTIONS WITH 30D FROM IEEE CEC2010 USING 6×105 FES. “MEAN OFV” AND “STD DEV” INDICATE THE AVERAGE AND 

STANDARD DEVIATION OF THE OBJECTIVE FUNCTION VALUES OBTAINED IN 25 RUNS, RESPECTIVELY. WILCOXON’S RANK 

SUM TEST AT A 0.05 SIGNIFICANCE LEVEL WAS PERFORMED BETWEEN FROFI AND EACH OF DYHF AND CMODE. 

 Table S10 EXPERIMENTAL RESULTS OF FROFI_WOR AND FROFI OVER 25 INDEPENDENT RUNS ON 18 TEST FUNCTIONS 

WITH 10D FROM IEEE CEC2010 USING 2×105 FES. “MEAN OFV” AND “STD DEV” INDICATE THE AVERAGE AND STANDARD 

DEVIATION OF THE OBJECTIVE FUNCTION VALUES OBTAINED IN 25 RUNS, RESPECTIVELY. WILCOXON’S RANK SUM TEST AT 

A 0.05 SIGNIFICANCE LEVEL WAS PERFORMED BETWEEN FROFI AND FROFI_WOR. 

 Table S11 EXPERIMENTAL RESULTS OF FROFI_WOR AND FROFI OVER 25 INDEPENDENT RUNS ON 18 TEST FUNCTIONS 

WITH 30D FROM IEEE CEC2010 USING 6×105 FES. “MEAN OFV” AND “STD DEV” INDICATE THE AVERAGE AND STANDARD 

DEVIATION OF THE OBJECTIVE FUNCTION VALUES OBTAINED IN 25 RUNS, RESPECTIVELY. WILCOXON’S RANK SUM TEST AT 

A 0.05 SIGNIFICANCE LEVEL WAS PERFORMED BETWEEN FROFI AND FROFI_WOR. 

 Table S12 EXPERIMENTAL RESULTS OF FROFI_13, FROFI_14, FROFI_15, FROFI_16, AND FROFI_17 OVER 25 

INDEPENDENT RUNS ON 18 TEST FUNCTIONS WITH 30D FROM IEEE CEC2010 USING 6×105 FES. “MEAN OFV” AND “STD 

DEV” INDICATE THE AVERAGE AND STANDARD DEVIATION OF THE OBJECTIVE FUNCTION VALUES OBTAINED IN 25 RUNS, 

RESPECTIVELY. 
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TABLE S1 
EXPERIMENTAL RESULTS OF FROFI_FR, FROFI_MO, AND FROFI OVER 25 INDEPENDENT RUNS ON 24 TEST FUNCTIONS FROM IEEE CEC2006 USING 5×105 FES. 
“MEAN OFV” AND “STD DEV” INDICATE THE AVERAGE AND STANDARD DEVIATION OF THE OBJECTIVE FUNCTION VALUES OBTAINED IN 25 RUNS, RESPECTIVELY. 

WILCOXON’S RANK SUM TEST AT A 0.05 SIGNIFICANCE LEVEL WAS PERFORMED BETWEEN FROFI AND EACH OF FROFI_FR AND FROFI_MO. 
 

Test Function from 
IEEE CEC2006 

FROFI_FR FROFI_MO FROFI 
Mean OFV±Std Dev Mean OFV±Std Dev Mean OFV±Std Dev 

g01 -15.0000E+01±0.00E+00≈ -6.3245E+01±1.00E+01－(0%)* -15.0000E+01±0.00E+00 
g02 -8.0323E-01±2.21E-03－ -8.0283E-01±2.75E-03－ -8.0362E-01±1.78E-07 
g03 -5.1685E-01±1.04E-01－ -8.3141E-01±3.58E-01－(56%)* -1.0005E+00±4.49E-16 
g04 -3.066553E+04±3.71E-12≈ -3.066553E+04±3.71E-12≈ -3.066553E+04±3.71E-12 
g05 5.1264967E+03±2.63E-05≈ 4.756954E+03±4.75E+02－(0%)* 5.1264967E+03±2.78E-12 
g06 -6.9618138E+03±0.00E+00≈ -6.5993020E+03±1.57E+00－ -6.961813E+03±0.00E+00 
g07 2.430621E+01±8.14E-15≈ 2.431041E+01±9.312E-03－ 2.430621E+01±6.32E-15 
g08 -9.5825E+02±1.42E-17≈ -9.5825E+02±7.68E-07≈ -9.5825E+02±1.42E-17 
g09 6.8063006E+02±2.49E-13≈ 6.8063006E+02±3.63E-13≈ 6.8063006E+02±3.64E-13 
g10 7.0492480E+03±1.99E-12≈ 6.5800367E+03±1.41E+03－(8%)* 7.0492480E+03±3.26E-12 
g11 7.499E-01±5.53E-05≈ 7.504E-01±5.96E-04－ 7.499E-01±1.13E-16 
g12 -1.00E+00±0.00E+00≈ -1.00E+00±0.00E+00≈ -1.00E+00±0.00E+00 
g13 8.1063E-01±1.00E-01－(96%)* 1.0399E-01±9.88E-02－(0%)* 5.3942E-02±2.41E-17 
g14 -4.776489E+01±2.90E-14≈ -6.067545E+02±6.41E+01－(0%)* -4.776489E+01±2.34E-14 
g15 9.6171502E+02±5.80E-13≈ 9.6119367E+02±1.90E+00－(0%)* 9.617150E+02±5.80E-13 
g16 -1.90516E+00±4.53E-16≈ -1.89874E+00±8.18E-03－(96%)* -1.90516E+00±4.53E-16 
g17 8.8774789E+03±3.55E+01－ 8.4253151E+03±3.70E+02－(0%)* 8.853533E+03±0.00E+00 
g18 -8.660254E-01±4.79E-15≈ -1.181442E+01±3.89E+00－(0%)* -8.66025E-01±6.94E-16 
g19 3.265559E+01±2.12E-14≈ 3.265559E+01±2.18E-14≈ 3.265559E+01±2.18E-14 
g20 2.048E-01±1.82E-04≈(0%)* 6.051E-02±5.22E-03－(0%)* 2.049E-01±5.31E-05(0%)* 
g21 1.9372451E+02±1.54E-11≈ 1.0332682E+02±5.18E+01－(0%)* 1.937245E+02±2.95E-11 
g22 — — — 
g23 -4.000551E+02±1.28E-13≈ -1.594065E+03±2.41E+02－(0%)* -4.000551E+02±1.71E-13 
g24 -5.50801E+00±9.06E-16≈ -5.50801E+00±9.06E-16≈ -5.50801E+00±9.06E-16 
－ 4 17  
＋ 0 0  
≈ 19 6  

“－”, “＋”, and “≈” denote that the performance of the corresponding method is worse than, better than, and similar to that of FROFI, respectively. “*” denotes that 
feasible solutions cannot be consistently found by the corresponding method in all runs, and (#) denotes the feasible rate. 
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TABLE S2 
EXPERIMENTAL RESULTS OF FROFI_FR, FROFI_MO, AND FROFI OVER 25 INDEPENDENT RUNS ON 18 TEST FUNCTIONS WITH 10D FROM IEEE CEC2010 

USING 2×105 FES. “MEAN OFV” AND “STD DEV” INDICATE THE AVERAGE AND STANDARD DEVIATION OF THE OBJECTIVE FUNCTION VALUES OBTAINED IN 25 
RUNS, RESPECTIVELY. WILCOXON’S RANK SUM TEST AT A 0.05 SIGNIFICANCE LEVEL WAS PERFORMED BETWEEN FROFI AND EACH OF FROFI_FR AND 

FROFI_MO. 
 

Test Function with 10D 
from IEEE CEC2010 

FROFI_FR FROFI_MO FROFI 
Mean OFV±Std Dev Mean OFV±Std Dev Mean OFV±Std Dev 

C01 -7.47E-01±1.4E-13≈ -7.47E-01±1.4E-03≈ -7.47E-01±1.35E-03 
C02 2.26E+00±1.19E-01－(88%)* 1.10E+00±1.50E+00－(68%)* -2.02E+00±1.41E-01 
C03 0.00E+00±0.00E+00≈ 8.52E+00±1.8E+00－ 0.00E+00±0.00E+00 
C04 -1.00E-05±0.00E+00≈ -2.97E-01±3.31E-01－(0%)* -1.00E-05±0.00E+00 
C05 3.85E+02±1.48E+02－(0%)* 2.25E+02±1.10E+02－(0%)* -4.84E+02±8.09E-07 
C06 3.20E+02±1.92E+02－(0%)* 7.79E+01±1.80E+02－(0%)* -5.79E+02±5.04E-04 
C07 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 
C08 7.84E+00±4.98E+00≈ 7.34E+00±5.14E+00≈ 7.11E+00±4.79E+00 
C09 8.59E+12±4.64E+12－(0%)* 5.44E+11±6.92E+11－(0%)* 2.50E+01±3.92E+01 
C10 9.65E+12±6.63E+12－(0%)* 1.29E+12±2.66E+12－(0%)* 4.17E+01±8.69E-06 
C11 -1.52E-03±2.00E-18≈ -1.94E+01±4.38E+00－(0%)* -1.52E-03±5.63E-14 
C12 -8.23E+13±1.52E+02－(60%)* -1.82E+03±2.86E+02－(0%)* -3.84E+02±2.17E+02 
C13 -6.84E+01±2.90E-09≈ -5.81E+01±9.06E+00－(36%)* -6.84E+01±2.52E-09 
C14 9.45E+10±1.18E+11－ 1.85E+00±5.46E+00－ 0.00E+00±0.00E+00 
C15 3.12E+13±1.72E+13－ 3.71E+11±4.29E+11－ 3.09E+00±1.37E+00 
C16 1.05E+00±3.03E-02－(64%)* 7.61E-01±2.66E-01－(28%)* 1.19E-02±2.07E-02 
C17 5.07E+02±2.42E+02－(52%)* 8.44E+01±7.18E+01－(40%)* 7.83E-02±2.25E-01 
C18 1.01E+04±4.79E+03－(92%)* 2.59E+03±1.98E+03－(44%)* 5.23E-26±1.71E-25 
－ 11 15  
＋ 0 0  
≈ 7 3  

“－”, “＋”, and “≈” denote that the performance of the corresponding method is worse than, better than, and similar to that of FROFI, respectively. “*” denotes 
that feasible solutions cannot be consistently found by the corresponding method in all runs, and (#) denotes the feasible rate. 
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TABLE S3 
EXPERIMENTAL RESULTS OF FROFI_FR, FROFI_MO, AND FROFI OVER 25 INDEPENDENT RUNS ON 18 TEST FUNCTIONS WITH 30D FROM IEEE CEC2010 

USING 6×105 FES. “MEAN OFV” AND “STD DEV” INDICATE THE AVERAGE AND STANDARD DEVIATION OF THE OBJECTIVE FUNCTION VALUES OBTAINED IN 
25 RUNS, RESPECTIVELY. WILCOXON’S RANK SUM TEST AT A 0.05 SIGNIFICANCE LEVEL WAS PERFORMED BETWEEN FROFI AND EACH OF FROFI_FR AND 

FROFI_MO. 
 

Test Function with 30D 
from IEEE CEC2010 

FROFI_FR FROFI_MO FROFI 
Mean OFV±Std Dev Mean OFV±Std Dev Mean OFV±Std Dev 

C01 -8.21E-01±1.5E-03≈ -8.21E-01±1.69E-03≈ -8.21E-01±2.36E-03 
C02 3.40E+00±8.15E-01－ 2.65E+00±6.07E-01－ -2.00E+00±4.35E-02 
C03 1.89E+12±7.45E+12－ 2.87E+01±3.02E-04－(96%)* 2.87E+01±6.24E-08 
C04 2.60E-02±1.30E-02－ -6.57E-01±1.11E-01－(0%)* -3.33E-06±4.13E-10 
C05 5.30E+02±5.09E+01－(0%)* 4.10E+02±8.51E+01－(0%)* -4.81E+02±2.84E+00 
C06 5.57E+02±4.25E+01－(0%)* 4.25E+02±7.66E+01－(0%)* -5.29E+02±5.71E-01 
C07 1.60E+00±7.97E-01－ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 
C08 3.67E+00±1.84E+01－ 5.57E-30±2.79E-29－ 0.00E+00±0.00E+00 
C09 3.83E+13±1.10E+13－(4%)* 1.02E+13±5.24E+12－(0%)* 4.30E+01±3.27E+01 
C10 3.23E+13±1.17E+12－(8%)* 1.11E+13±6.95E+12－(4%)* 3.13E+01±8.22E-02 
C11 -3.92E-04±2.64E-06≈ -1.40E+01±3.00E+00－(0%)* -3.92E-04±2.64E-06 
C12 6.37E+01±2.81E+02－(28%)* -5.46E+03±7.19E+02－(0%)* -1.99E-01±1.42E-06 
C13 -6.23E+01±1.50E+00－ -7.48E+01±8.66E+00－(0%)* -6.83E+01±1.95E-01 
C14 3.56E+07±1.23E+08－ 1.47E+01±4.84E+00－ 9.80E-29±4.90E-28 
C15 1.66E+14±4.79E+13－ 2.74E+13±1.22E+13－ 2.16E+01±8.03E-05 
C16 1.18E+00±3.46E-02－(40%)* 1.06E+00±2.57E-02－(32%)* 0.00E+00±0.00E+00 
C17 1.76E+03±4.89E+02－(76%)* 6.63E+02±2.83E+02－(44%)* 1.59E-01±3.82E-01 
C18 2.87E+04±5.26E+03－ 1.44E+04±6.15E+03－(92%)* 4.87E-01±1.25E+00 
－ 16 16  
＋ 0 0  
≈ 2 2  

“－”, “＋”, and “≈” denote that the performance of the corresponding method is worse than, better than, and similar to that of FROFI, respectively. “*” 
denotes that feasible solutions cannot be consistently found by the corresponding method in all runs, and (#) denotes the feasible rate. 
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TABLE S4 
COMPARISON OF FROFI WITH RESPECT TO εDE [47], APF-GA [69], (μ+λ)-CDE [31], DYHF [56], AND CMODE [57] IN TERMS OF THE SUCCESS RATE. IN ALL 

THE EXPERIMENTS, 25 INDEPENDENT RUNS WERE IMPLEMENTED ON 24 TEST FUNCTIONS FROM IEEE CEC2006 USING 5×105 FES. 
 

Test Function from 
IEEE CEC2006 

Success Rate 
εDE APF-GA (μ+λ)-CDE DyHF CMODE FROFI 

g01 100% 100% 100% 100% 100% 100% 
g02 100% 60% 96% 100% 100% 100% 
g03 100% 100% 100% 100% 100% 100% 
g04 100% 100% 100% 100% 100% 100% 
g05 100% 55% 100% 100% 100% 100% 
g06 100% 100% 100% 100% 100% 100% 
g07 100% 100% 100% 100% 100% 100% 
g08 100% 100% 100% 100% 100% 100% 
g09 100% 100% 100% 100% 100% 100% 
g10 100% 55% 100% 100% 100% 100% 
g11 100% 100% 100% 100% 100% 100% 
g12 100% 100% 100% 100% 100% 100% 
g13 100% 70% 100% 100% 100% 100% 
g14 100% 64% 100% 100% 100% 100% 
g15 100% 100% 100% 100% 100% 100% 
g16 100% 80% 100% 100% 100% 100% 
g17 100% 36% 100% 100% 100% 100% 
g18 100% 96% 100% 100% 100% 100% 
g19 100% 100% 100% 100% 100% 100% 
g20 0% 0% 100% 0% 100% 100% 
g21 100% 0% 92% 100% 80% 100% 
g22 0% 0% 0% 0% 0% 0% 
g23 100% 0% 100% 100% 100% 100% 
g24 100% 100% 100% 100% 100% 100% 

Mean 91.67% 71.50% 95.33% 91.67% 95.00% 95.83% 
 



IEEE Transactions on Cybernetics 7

 

TABLE S5 
COMPARISON OF FROFI WITH RESPECT TOεDE [47], APF-GA [69], (μ+λ)-CDE [31], DYHF [56], AND CMODE [57] IN TERMS OF THE SUCCESS PERFORMANCE. 

IN ALL THE EXPERIMENTS, 25 INDEPENDENT RUNS WERE IMPLEMENTED ON 24 TEST FUNCTIONS FROM IEEE CEC2006 USING 5×105 FES. 
 

Test Function from 
IEEE CEC2006 

Success Performance 
εDE APF-GA (μ+λ)-CDE DyHF CMODE FROFI 

g01 5.9E+04 4.2E+05 8.9E+04 6.9E+04 1.2E+05 3.8E+04 
g02 1.5E+05 6.8E+05 2.7E+05 1.1E+05 1.9E+05 8.5E+04 
g03 8.9E+04 2.3E+05 1.1E+05 4.3E+04 7.5E+04 6.3E+04 
g04 2.6E+04 2.6E+05 3.0E+04 4.0E+04 7.3E+04 2.5E+04 
g05 9.7E+04 5.7E+05 1.6E+05 4.7E+04 2.9E+04 3.1E+04 
g06 7.4E+03 2.0E+05 1.1E+04 3.8E+04 3.5E+04 1.5E+04 
g07 7.4E+04 2.2E+05 1.4E+05 9.4E+04 1.6E+05 7.2E+04 
g08 1.1E+03 5.7E+04 2.0E+03 1.2E+03 5.9E+03 2.4E+03 
g09 2.3E+04 5.3E+04 4.0E+04 4.1E+04 7.1E+04 3.2E+04 
g10 1.1E+05 2.9E+05 1.8E+05 1.4E+05 1.8E+05 1.0E+05 
g11 1.6E+04 2.2E+05 7.9E+04 5.8E+03 6.0E+03 1.2E+04 
g12 4.1E+03 1.1E+05 4.9E+03 3.0E+03 5.0E+03 3.5E+03 
g13 3.5E+04 1.1E+05 1.4E+05 3.2E+04 3.1E+04 4.1E+04 
g14 1.1E+05 2.4E+05 1.7E+05 6.5E+04 1.1E+05 6.6E+04 
g15 8.4E+04 1.8E+04 1.3E+05 2.3E+04 1.3E+04 1.9E+04 
g16 1.3E+04 4.9E+04 1.9E+04 3.0E+04 2.9E+04 1.8E+04 
g17 9.9E+04 3.2E+05 1.8E+05 2.1E+05 1.4E+05 1.3E+05 
g18 5.9E+04 2.2E+05 2.1E+05 8.9E+04 1.1E+05 9.6E+04 
g19 3.5E+05 2.6E+04 2.6E+05 1.1E+05 2.5E+05 1.2E+05 
g20 NA NA 1.4E+05 NA 4.4E+05 4.7E+05 
g21 1.4E+05 NA 2.1E+05 1.0E+05 1.3E+05 9.4E+04 
g22 NA NA NA NA NA NA 
g23 2.0E+05 NA 2.6E+05 1.6E+05 2.4E+05 1.7E+05 
g24 3.0E+03 1.9E+05 5.0E+03 1.4E+04 2.2E+04 5.7E+03 
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TABLE S6 
EXPERIMENTAL RESULTS OF εDEAG [51], SRS-εDEAG [50], ECHT-DE [72], AIS-IRP [40], AND FROFI OVER 25 INDEPENDENT RUNS ON 18 TEST FUNCTIONS 
WITH 10D FROM IEEE CEC2010 USING 2×105 FES. “MEAN OFV” AND “STD DEV” INDICATE THE AVERAGE AND STANDARD DEVIATION OF THE OBJECTIVE 

FUNCTION VALUES OBTAINED IN 25 RUNS, RESPECTIVELY. t -TEST AT A 0.05 SIGNIFICANCE LEVEL WAS PERFORMED BETWEEN FROFI AND EACH OF εDEAG, 
SRS-εDEAG, ECHT-DE, AND AIS-IRP. 

 
Test Function 
with 10D from 
IEEE CEC2010 

εDEag SRS-εDEag ECHT-DE AIS-IRP FROFI 

Mean OFV±Std Dev Mean OFV±Std Dev Mean OFV±Std Dev Mean OFV±Std Dev Mean OFV±Std Dev 
C01 -7.47E-01±1.32E-03≈ -7.47E-01±2.82E-03≈ -7.47E-01±1.40E-03≈ -7.47E-01±1.30E-03≈ -7.47E-01±1.35E-03 
C02 -2.26E+00±2.39E-02＋ -2.27E+00±1.28E-02＋ -2.27E+00±6.70E-03＋ -2.27E+00±2.00E-03＋ -2.02E+00±1.41E-01 
C03 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 3.75E-09±4.81E-04－ 0.00E+00±0.00E+00 
C04 -9.92E-06±1.55E-07－ -9.99E-06±1.60E-10－ -1.00E-05±0.00E+00≈ -9.97E-06±4.28E-03≈ -1.00E-05±0.00E+00 
C05 -4.84E+02±3.89E-13≈ -4.84E+02±6.25E-13≈ -4.11E+02±7.63E+01－ -4.80E+02±6.30E+00－ -4.84E+02±8.09E-07 
C06 -5.79E+02±3.63E-03－ -5.79E+02±9.07E-04≈ -5.62E+02±4.51E+01－ -5.80E+02±7.30E-08＋ -5.79E+02±5.04E-04 
C07 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 1.33E-01±7.28E-01－ 1.17E-08±2.70E+00－ 0.00E+00±0.00E+00 
C08 6.73E+00±5.56E+00≈ 8.39E+00±4.49E+00≈ 6.16E+00±6.45E+00≈ 4.09E+00±1.46E+00＋ 7.11E+00±4.79E+00 
C09 0.00E+00±0.00E+00＋ 2.93E+01±1.99E+01≈ 1.47E-01±8.05E-01＋ 2.70E+01±7.50E+01≈ 2.50E+01±3.92E+01 
C10 0.00E+00±0.00E+00＋ 4.80E+01±3.29E+01≈ 1.71E+00±7.66E+00＋ 1.62E+03±5.00E+02－ 4.17E+01±8.69E-06 
C11 -1.52E-03±6.34E-11≈ -1.52E-03±6.02E-11≈ -4.40E-03±1.57E-02－* -9.20E-04±8.23E-04－ -1.52E-03±5.63E-14 
C12 -3.37E+02±1.78E+02－ -4.70E+02±1.42E+02＋ -1.72E+02±2.21E+02－* -4.36E+02±6.02E+01≈ -3.84E+02±2.17E+02 
C13 -6.84E+01±1.03E-06≈ -6.80E+01±1.33E+00－ -6.51E+01±2.38E+00－ -6.79E+01±3.11E-01－ -6.84E+01±2.52E-09 
C14 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 7.02E+05±3.19E+06－ 1.22E-04±2.90E-08－ 0.00E+00±0.00E+00 
C15 1.80E-01±8.81E-01＋ 2.21E+01±1.05E+02－ 2.34E+13±5.30E+13－ 5.19E-09±1.10E-08＋ 3.09E+00±1.37E+00 
C16 3.70E-01±3.71E-01－ 2.34E-02±2.64E-02≈ 3.93E-02±4.28E-02－ 9.96E-18±6.27E-15＋ 1.19E-02±2.07E-02 
C17 1.25E-01±1.94E-01－ 4.15E-02±1.24E-01≈ 1.12E-01±3.32E-01－ 2.93E+00±2.29E+00－ 7.83E-02±2.25E-01 
C18 9.68E-19±1.81E-18－ 5.79E-17±2.24E-16－ 0.00E+00±0.00E+00＋ 1.66E+00±1.27E+00－ 5.23E-26±1.71E-25 
－ 6 4 10 9  
＋ 4 2 4 5  
≈ 8 12 4 4  

“－”, “＋”, and “≈” denote that the performance of the corresponding method is worse than, better than, and similar to that of FROFI, respectively. “*” 
denotes that feasible solutions cannot be consistently found by the corresponding method in all runs. 
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TABLE S7 
EXPERIMENTAL RESULTS OF DYHF [56], CMODE [57], AND FROFI OVER 25 INDEPENDENT RUNS ON 18 TEST FUNCTIONS WITH 10D FROM IEEE CEC2010 

USING 2×105 FES. “MEAN OFV” A*ND “STD DEV” INDICATE THE AVERAGE AND STANDARD DEVIATION OF THE OBJECTIVE FUNCTION VALUES OBTAINED IN 
25 RUNS, RESPECTIVELY. WILCOXON’S RANK SUM TEST AT A 0.05 SIGNIFICANCE LEVEL WAS PERFORMED BETWEEN FROFI AND EACH OF DYHF AND 

CMODE. 
 

Test Function with 10D 
from IEEE CEC2010 

DyHF CMODE FROFI 
Mean OFV±Std Dev Mean OFV±Std Dev Mean OFV±Std Dev 

C01 -7.47E-01±1.9E-03≈ -7.47E-01±2.35E-13≈ -7.47E-01±1.35E-03 
C02 -9.45E-01±1.15E+00－(84%)* -1.48E+00±4.88E-01－(96%)* -2.02E+00±1.41E-01 
C03 9.66E+04±4.83E+05－(92%)* 2.84E+00±4.23E+00－ 0.00E+00±0.00E+00 
C04 -1.00E-05±3.34E-13－ -9.99E-04±2.90E-08－ -1.00E-05±0.00E+00 
C05 -2.56E+02±1.53E+02－ -4.50E+02±1.61E+02－(84%)* -4.84E+02±8.09E-07 
C06 -5.66E+02±1.65E+01－ -5.78E+02±1.60E-02－ -5.79E+02±5.04E-04 
C07 0.00E+00±0.00E+00≈ 6.69E-15±8.95E-15－ 0.00E+00±0.00E+00 
C08 5.13E+00±5.45E+00+ 8.94E+00±3.98E+00≈ 7.11E+00±4.79E+00 
C09 2.10E+11±6.85E+11－(68%)* 2.13E+06±1.04E+07－(96%)* 2.50E+01±3.92E+01 
C10 4.06E+11±1.40E+12－(72%)* 2.13E+06±1.04E+07－(96%)* 4.17E+01±8.69E-06 
C11 -8.18E-01±2.20E+00－(0%)* -7.7E-02±2.85E-02－(12%)* -1.52E-03±5.63E-14 
C12 -4.87E+02±4.38E+02－(20%)* -6.14E+02±2.74E+02－(60%)* -3.84E+02±2.17E+02 
C13 -6.84E+01±8.10E-06－ -5.79E+01±4.09E+00－ -6.84E+01±2.52E-09 
C14 2.10E+01±1.05E+02－ 8.18E-09±1.64E-08－ 0.00E+00±0.00E+00 
C15 2.28E+12±8.94E+12－ 1.20E+02±3.48E+02－ 3.09E+00±1.37E+00 
C16 1.55E-01±2.25E-01－ 6.82E-05±1.49E-04+ 1.19E-02±2.07E-02 
C17 2.40E+01±7.00E+01－(96%)* 4.37E-02±1.12E-01≈ 7.83E-02±2.25E-01 
C18 5.18E+02±8.84E+02－(96%)* 5.75E+00±2.64E+02－ 5.23E-26±1.71E-25 
－ 15 14  
＋ 1 1  
≈ 2 3  

“－”, “＋”, and “≈” denote that the performance of the corresponding method is worse than, better than, and similar to that of FROFI, respectively. “*” 
denotes that feasible solutions cannot be consistently found by the corresponding method in all runs, and (#) denotes the feasible rate. 
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TABLE S8 
EXPERIMENTAL RESULTS OFεDEAG [51], SRS-εDEAG [50], ECHT-DE [72], AIS-IRP [40], AND FROFI OVER 25 INDEPENDENT RUNS ON 18 TEST FUNCTIONS 
WITH 30D FROM IEEE CEC2010 USING 6×105 FES. “MEAN OFV” AND “STD DEV” INDICATE THE AVERAGE AND STANDARD DEVIATION OF THE OBJECTIVE 

FUNCTION VALUES OBTAINED IN 25 RUNS, RESPECTIVELY. t -TEST AT A 0.05 SIGNIFICANCE LEVEL WAS PERFORMED BETWEEN FROFI AND EACH OF εDEAG, 
SRS-εDEAG, ECHT-DE, AND AIS-IRP. 

 
Test Function 
with 30D from 
IEEE CEC2010 

εDEag SRS-εDEag ECHT-DE AIS-IRP FROFI 

Mean OFV±Std Dev Mean OFV±Std Dev Mean OFV±Std Dev Mean OFV±Std Dev Mean OFV±Std Dev 
C01 -8.21E-01±7.10E-04≈ -8.21E-01±6.10E-04≈ -8.00E-01±1.79E-02－ -8.20E-01±3.25E-04≈ -8.21E-01±2.36E-03 
C02 -2.15E+00±1.20E-02＋ -2.19E+00±8.88E-03＋ -1.99E+00±2.10E-01－ -2.21E+00±2.84E-03＋ -2.00E+00±4.35E-02 
C03 2.88E+01±8.05E-01－ 2.87E+01±2.80E-07≈ 9.89E+01±6.26E+01－ 6.68E+01±4.26E+02－ 2.87E+01±6.24E-08 
C04 8.16E-03±3.07E-03－ 5.70E-03±1.84E-03－ -1.03E-06±9.01E-03－ 1.98E-03±1.61E-03－ -3.33E-06±4.13E-10 
C05 -4.50E+02±2.90E+00－ -4.63E+02±3.37E+00－ -1.06E+02±1.67E+02－ -4.36E+02±2.51E+01－ -4.81E+02±2.84E+00 
C06 -5.28E+02±4.75E-01－ -5.29E+02±2.54E-01≈ -1.38E+02±9.89E+01－ -4.54E+02±4.79E+01－ -5.29E+02±5.71E-01 
C07 2.60E-15±1.23E-15－ 2.70E-15±1.61E-15－ 1.33E-01±7.28E-01－ 1.07E+00±1.61E+00－ 0.00E+00±0.00E+00 
C08 7.83E-14±4.86E-14－ 4.90E-14±3.09E-14－ 3.36E+01±1.11E+02－ 1.65E+00±6.41E-01－ 0.00E+00±0.00E+00 
C09 1.07E+01±2.82E+01＋ 2.43E+00±1.20E+01＋ 4.24E+01±1.38E+02≈ 1.57E+00±1.96E+00＋ 4.30E+01±3.27E+01 
C10 3.33E+01±4.55E-01－ 3.29E+01±4.74E-01－ 5.34E+01±8.83E+01≈ 1.78E+01±1.88E+01＋ 3.13E+01±8.22E-02 
C11 -2.86E-04±2.71E-05－ -2.99E-04±3.32E-05－ 2.60E-03±6.00E-03－* -1.58E-04±4.67E-05－ -3.92E-04±2.64E-06 
C12 3.56E+02±2.89E+02－* 2.13E+02±2.71E+02－* -2.51E+01±1.37E+02－* 4.29E-06±4.52E-04－ -1.99E-01±1.42E-06 
C13 -6.54E+01±5.73E-01－ -6.59E+01±6.18E-01－ -6.46E+01±1.67E+00－ -6.62E+01±2.27E-01－ -6.83E+01±1.95E-01 
C14 3.09E-13±5.61E-13－ 1.04E-13±8.24E-14－ 1.24E+05±6.77E+05－ 8.68E-07±3.14E-07－ 9.80E-29±4.90E-28 
C15 2.16E+01±1.10E-04≈ 2.16E+01±6.24E-05≈ 1.94E+11±4.35E+11－ 3.41E+01±3.82E+01－ 2.16E+01±8.03E-05 
C16 2.17E-21±1.06E-20－ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 8.21E-02±1.12E-01－ 0.00E+00±0.00E+00 
C17 6.33E+00±4.99E+00－ 1.17E-01±7.77E-01≈ 2.75E-01±3.78E-01－ 3.61E+00±2.54E+00－ 1.59E-01±3.82E-01 
C18 8.75E+01±1.66E+02－ 3.95E+01±6.23E+01－ 0.00E+00±0.00E+00＋ 4.02E+01±1.80E+01－ 4.87E-01±1.25E+00 
－ 14 10 14 14  
＋ 2 2 1 3  
≈ 2 6 3 1  

“－”, “＋”, and “≈” denote that the performance of the corresponding method is worse than, better than, and similar to that of FROFI, respectively. “*” 
denotes that feasible solutions cannot be consistently found by the corresponding method in all runs. 
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TABLE S9 
EXPERIMENTAL RESULTS OF DYHF [56], CMODE [57], AND FROFI OVER 25 INDEPENDENT RUNS ON 18 TEST FUNCTIONS WITH 30D FROM IEEE CEC2010 
USING 6×105 FES. “MEAN OFV” AND “STD DEV” INDICATE THE AVERAGE AND STANDARD DEVIATION OF THE OBJECTIVE FUNCTION VALUES OBTAINED IN 

25 RUNS, RESPECTIVELY. WILCOXON’S RANK SUM TEST AT A 0.05 SIGNIFICANCE LEVEL WAS PERFORMED BETWEEN FROFI AND EACH OF DYHF AND 
CMODE. 

 
Test Function with 30D 
from IEEE CEC2010 

DyHF CMODE FROFI 
Mean OFV±Std Dev Mean OFV±Std Dev Mean OFV±Std Dev 

C01 -8.21E-01±1.80E-03≈ -8.21E-01±3.3E-03≈ -8.21E-01±2.36E-03 
C02 5.74E-01±1.59E+00－(88%)* 9.75E-01±6.25E+01－ -2.00E+00±4.35E-02 
C03 3.03E+12±8.18E+12－(0%)* 2.18E+01±1.25E+01≈ 2.87E+01±6.24E-08 
C04 8.25E+00±7.15E+00－(0%)* 6.72E-04±4.24E-04－ -3.33E-06±4.13E-10 
C05 2.95E+12±8.18E+12－(60%)* 2.77E+02±2.03E+02－(0%)* -4.81E+02±2.84E+00 
C06 -2.10E+01±2.91E+02－(88%)* -4.96E+02±2.15E+02－(0%)* -5.29E+02±5.71E-01 
C07 1.59E-01±7.97E-01－ 5.24E-05±5.89E-05－ 0.00E+00±0.00E+00 
C08 4.72E+00±2.36E+01－ 3.68E-01±2.62E-01－ 0.00E+00±0.00E+00 
C09 1.50E+13±1.57E+13－(60%)* 1.72E+13±1.07E+13－(0%)* 4.30E+01±3.27E+01 
C10 1.57E+13±1.38E+13－(44%)* 1.60E+13±7.00E+12－(12%)* 3.13E+01±8.22E-02 
C11 -1.68E-01±7.04E-01－(0%)* 9.5E-03±9.7E-03－(48%)* -3.92E-04±2.64E-06 
C12 -1.59E+01±3.87E+02－(0%)* -3.46E+00±7.35E+02－(84%)* -1.99E-01±1.42E-06 
C13 -6.61E+01±1.91E+00－ -3.89E+01±2.17E+00－ -6.83E+01±1.95E-01 
C14 2.41E+12±8.94E+12－ 9.31E+00±2.46E+00－ 9.80E-29±4.90E-28 
C15 5.49E+13±7.61E+13－ 1.51E+13±8.26E+12－ 2.16E+01±8.03E-05 
C16 7.41E-01±1.85E-01－ 6.30E-02±2.72E-02－ 0.00E+00±0.00E+00 
C17 6.04E+02±4.92E+02－(76%)* 3.12E+02±2.75E+02－(80%)* 1.59E-01±3.82E-01 
C18 1.18E+04±1.31E+04－(76%)* 7.36E+03±3.12E+03－ 4.87E-01±1.25E+00 
－ 17 16  
＋ 0 0  
≈ 1 2  

“－”, “＋”, and “≈” denote that the performance of the corresponding method is worse than, better than, and similar to that of FROFI, respectively. “*” 
denotes that feasible solutions cannot be consistently found by the corresponding method in all runs, and (#) denotes the feasible rate. 



IEEE Transactions on Cybernetics 12

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE S10 
EXPERIMENTAL RESULTS OF FROFI_WOR AND FROFI OVER 25 INDEPENDENT RUNS ON 18 TEST FUNCTIONS WITH 10D FROM IEEE CEC2010 USING 2×105 

FES. “MEAN OFV” AND “STD DEV” INDICATE THE AVERAGE AND STANDARD DEVIATION OF THE OBJECTIVE FUNCTION VALUES OBTAINED IN 25 RUNS, 
RESPECTIVELY. WILCOXON’S RANK SUM TEST AT A 0.05 SIGNIFICANCE LEVEL WAS PERFORMED BETWEEN FROFI AND FROFI_WOR. 

 
Test Function with 10D from 

IEEE CEC2010 
FROFI_WOR FROFI 

Mean OFV±Std Dev Mean OFV±Std Dev 
C01 -7.47E-01±1.4E-03≈ -7.47E-01±1.35E-03 
C02 2.30E+00±1.49E+00－(88%)* -2.02E+00±1.41E-01 
C03 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 
C04 -1.00E-05±0.00E+00≈ -1.00E-05±0.00E+00 
C05 3.31E+02±1.74E+02－(0%)* -4.84E+02±8.09E-07 
C06 2.76E+02±2.04E+02－(0%)* -5.79E+02±5.04E-04 
C07 1.60E-01±7.97E-01≈ 0.00E+00±0.00E+00 
C08 8.84E+00±4.17E+00－ 7.11E+00±4.79E+00 
C09 1.04E+13±6.68E+12－(8%)* 2.50E+01±3.92E+01 
C10 7.48E+12±5.07E+12－(0%)* 4.17E+01±8.69E-06 
C11 -1.52E-03±2.80E-18＋ -1.52E-03±5.63E-14 
C12 -1.07E+01±5.00E+01－(80%)* -3.84E+02±2.17E+02 
C13 -6.84E+01±2.97E-14＋ -6.84E+01±2.52E-09 
C14 9.95E+10±9.01E+10－ 0.00E+00±0.00E+00 
C15 2.76E+13±2.01E+13－ 3.09E+00±1.37E+00 
C16 1.05E+00±2.51E-02－(56%)* 1.19E-02±2.07E-02 
C17 4.83E+02±2.23E+02－(52%)* 7.83E-02±2.25E-01 
C18 9.97E+03±4.65E+03－(88%)* 5.23E-26±1.71E-25 
－ 12  
＋ 2  
≈ 4  

“－”, “＋”, and “≈” denote that the performance of the corresponding method is worse than, better than, and similar to that of FROFI, respectively. “*” 
denotes that feasible solutions cannot be consistently found by the corresponding method in all runs, and (#) denotes the feasible rate. 
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TABLE S11 
EXPERIMENTAL RESULTS OF FROFI_WOR AND FROFI OVER 25 INDEPENDENT RUNS ON 18 TEST FUNCTIONS WITH 30D FROM IEEE CEC2010 USING 6×105 

FES. “MEAN OFV” AND “STD DEV” INDICATE THE AVERAGE AND STANDARD DEVIATION OF THE OBJECTIVE FUNCTION VALUES OBTAINED IN 25 RUNS, 
RESPECTIVELY. WILCOXON’S RANK SUM TEST AT A 0.05 SIGNIFICANCE LEVEL WAS PERFORMED BETWEEN FROFI AND FROFI_WOR. 

 
Test Function with 30D from 

IEEE CEC2010 
FROFI_WOR FROFI 

Mean OFV±Std Dev Mean OFV±Std Dev 
C01 -8.20E-01±2.1E-03≈ -8.21E-01±2.36E-03 
C02 3.22E+00±5.32E-01－ -2.00E+00±4.35E-02 
C03 3.26E+11±1.21E+12－ 2.87E+01±6.24E-08 
C04 -3.31E-06±6.87E-08－ -3.33E-06±4.13E-10 
C05 5.06E+02±8.05E+01－(0%)* -4.81E+02±2.84E+00 
C06 5.40E+02±6.19E+01－(0%)* -5.29E+02±5.71E-01 
C07 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 
C08 1.60E-01±7.97E-01－ 0.00E+00±0.00E+00 
C09 3.40E+13±1.04E+13－(0%)* 4.30E+01±3.27E+01 
C10 4.32E+13±1.40E+13－(4%)* 3.13E+01±8.22E-02 
C11 -3.92E-04±4.78E-09＋ -3.92E-04±2.64E-06 
C12 -3.23E+01±1.95E+02－(48%)* -1.99E-01±1.42E-06 
C13 -6.25E+01±1.75E+00－ -6.83E+01±1.95E-01 
C14 2.65E+08±1.01E+09－ 9.80E-29±4.90E-28 
C15 1.63E+14±5.43E+13－ 2.16E+01±8.03E-05 
C16 1.14E+00±4.01E-02－(44%)* 0.00E+00±0.00E+00 
C17 1.61E+03±5.05E+02－(88%)* 1.59E-01±3.82E-01 
C18 2.92E+04±6.16E+03－ 4.87E-01±1.25E+00 
－ 15  
＋ 1  
≈ 2  

“－”, “＋”, and “≈” denote that the performance of the corresponding method is worse than, better than, and similar to that of FROFI, respectively. “*” 
denotes that feasible solutions cannot be consistently found by the corresponding method in all runs, and (#) denotes the feasible rate. 
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TABLE S12 
EXPERIMENTAL RESULTS OF FROFI_13, FROFI_14, FROFI_15, FROFI_16, AND FROFI_17 OVER 25 INDEPENDENT RUNS ON 18 TEST FUNCTIONS WITH 30D FROM IEEE 
CEC2010 USING 6×105 FES. “MEAN OFV” AND “STD DEV” INDICATE THE AVERAGE AND STANDARD DEVIATION OF THE OBJECTIVE FUNCTION VALUES OBTAINED IN 25 

RUNS, RESPECTIVELY. 
 

Test Function with 30D 
from IEEE CEC2010 

FROFI_13 FROFI_14 FROFI_15 FROFI_16 FROFI_17 
Mean OFV±Std Dev Mean OFV±Std Dev Mean OFV±Std Dev Mean OFV±Std Dev Mean OFV±Std Dev 

C01 -8.20E-01±2.29E-03 -8.20E-01±2.25E-03 -8.21E-01±2.36E-03 -8.20E-01±2.39E-03 -8.20E-01±1.73E-03 
C02 -1.99E+00±4.79E-02 -1.99E+00±4.34E-02 -2.00E+00±4.35E-02 -2.01E+00±3.80E-02 -2.00E+00±4.13E-02 
C03 2.87E+01±2.55E-08 2.87E+01±3.99E-08 2.87E+01±6.24E-08 2.75E+01±5.73E+00 2.87E+01±5.74E-08 
C04 -3.33E-06±8.53E-11 -3.33E-06±5.35E-10 -3.33E-06±4.13E-10 -3.33E-06±1.88E-10 -3.33E-06±8.2E-11 
C05 -4.81E+02±1.70E+00 -4.81E+02±1.10E+00 -4.81E+02±2.84E+00 -4.81E+02±1.33E+00 -4.81E+02±1.58E+00 
C06 -5.27E+02±1.20E+00 -5.28E+02±8.70E-01 -5.29E+02±5.71E-01 -5.28E+02±7.85E-01 -5.28E+02±7.60E-01 
C07 0.00E+00±0.00E+00 1.59E-01±7.97E-01 0.00E+00±0.00E+00 0.00E+00±0.00E+00 0.00E+00±0.00E+00 
C08 3.67E+00±1.84E+01 8.49E+00±2.94E+01 0.00E+00±0.00E+00 0.00E+00±0.00E+00 3.67E+00±1.84E+01 
C09 5.68E+01±1.12E+02 5.70E+01±2.84E+01 4.30E+01±3.27E+01 3.67E+01±4.23E+01 4.14E+01±3.80E+01 
C10 3.17E+01±1.47E+00 3.14E+01±9.02E-01 3.13E+01±8.22E-02 3.13E+01±2.64E-02 3.13E+01±1.85E-02 
C11 -3.92E-04±1.65E-06 -3.92E-04±1.18E-08 -3.92E-04±2.64E-06 -3.92E-04±1.77E-07 -3.92E-04±2.44E-07 

C12 1.71E-01±1.33E+00 
(84%)* 

-1.17E+01±5.88E+01 
 (88%)* -1.99E-01±1.42E-06 -7.92E-01±3.35E+00 

 (92%)* 
-5.08E+00±2.52E+01 

(92%)* 
C13 -6.82E+01±4.86E-01 -6.80E+01±6.59E-01 -6.83E+01±1.95E-01 -6.82E+01±4.01E-01 -6.83E+01±3.73E-01 
C14 1.59E-01±7.97E-01 0.00E+00±0.00E+00 9.80E-29±4.90E-28 0.00E+00±0.00E+00 0.00E+00±0.00E+00 
C15 2.16E+01±3.53E-05 2.16E+01±5.61E-05 2.16E+01±8.03E-05 2.16E+01±6.87E-05 2.16E+01±1.02E-04 
C16 0.00E+00±0.00E+00 6.78E-04±3.39E-03 0.00E+00±0.00E+00 5.10E-03±4.42E-01 2.49E-03±1.24E-02 
C17 1.47E-01±2.40E-01 2.99E-01±3.94E-01 1.59E-01±3.82E-01 2.25E-01±4.42E-01 2.19E-01±4.57E-01 
C18 1.90E+00±6.08E+00 9.68E-01±2.33E+00 4.87E-01±1.25E+00 6.86E-01±1.73E+00 1.12E+00±3.55E+00 

“*” denotes that feasible solutions cannot be consistently found by the corresponding method in all runs, and (#) denotes the feasible rate. 


