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Abstract—Solving constrained multiobjective optimization
problems (CMOPs) is a challenging task since it is necessary
to optimize several conflicting objective functions and handle
various constraints simultaneously. A promising way to solve
CMOPs is to integrate multiobjective evolutionary algorithms
(MOEAs) with constraint-handling techniques, and the resultant
algorithms are called constrained multiobjective evolutionary
algorithms (CMOEAs). At present, many attempts have been
made to combine dominance-based and decomposition-based
MOEAs with diverse constraint-handling techniques together.
However, for another main branch of MOEAs, i.e., indicator-
based MOEAs, almost no effort has been devoted to extending
them for solving CMOPs. In this paper, we make the first study
on the possibility and rationality of combining indicator-based
MOEAs with constraint-handling techniques together. Afterward,
we develop an indicator-based CMOEA framework which can
combine indicator-based MOEAs with constraint-handling tech-
niques conveniently. Based on the proposed framework, nine
indicator-based CMOEAs are developed. Systemic experiments
have been conducted on 19 widely used constrained multiob-
jective optimization test functions to identify the characteristics
of these nine indicator-based CMOEAs. The experimental re-
sults suggest that both indicator-based MOEAs and constraint-
handing techniques play very important roles in the performance
of indicator-based CMOEAs. Some practical suggestions are also
given about how to select appropriate indicator-based CMOEAs.
Besides, we select a superior approach from these nine indicator-
based CMOEAs and compare its performance with five state-
of-the-art CMOEAs. The comparison results suggest that the
selected indicator-based CMOEA can obtain quite competitive
performance. It is thus believed that our work would encourage
researchers to pay more attention to indicator-based CMOEAs
in the future.

Index Terms—Constrained multiobjective optimization prob-
lems, constrained multiobjective evolutionary algorithms, indica-
tor, constraint-handling technique

I. INTRODUCTION

CONSTRAINED multiobjective optimization problems
(CMOPs) refer to multiobjective optimization problems

including constraints, which are frequently encountered in
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many real-world applications [1]–[5]. Without loss of gener-
ality, a CMOP can be described as:

min F(x) = (f1(x), f2(x), . . . , fm(x))T ∈ F
s.t. gj(x) ≤ 0, j = 1, 2, . . . , l

hj(x) = 0, j = l + 1, l + 2, . . . , n

x = (x1, x2, . . . , xD)
T ∈ S

(1)

where x denotes a D-dimensional decision vector, S refers
to the decision space, F(x) is the objective vector including
m objective functions, F denotes the objective space, fi(x) is
the ith objective function, gj(x) refers to the jth inequality
constraint, hj(x) denotes the (j − l)th equality constraint,
and l and (n − l) are the number of inequality and equality
constraints, respectively. Since several conflicting objective
functions have to be optimized and various constraints should
be satisfied at the same time [6], [7], obviously, solving
CMOPs poses great difficulties and challenges to current
methods [8]–[10].

Nowadays, a promising way to solve CMOPs is to integrate
multiobjective evolutionary algorithms (MOEAs) [11] with
constraint-handling techniques [12] 1, since MOEAs [13]–
[17] and constraint-handling techniques [18]–[24] have gained
great reputation in optimizing several conflicting objective
functions and dealing with diverse constraints, respective-
ly. Along this line, many researchers focused on combin-
ing different constraint-handling techniques with dominance-
based [25] and decomposition-based [26] MOEAs, and thus
many dominance-based and decomposition-based CMOEAs
have been proposed during the last two decades [27]–
[31]. Nevertheless, as another main branch of MOEAs, i.e.,
indicator-based MOEAs [32], to the best of our knowledge,
almost no research has been conducted to apply them to solve
CMOPs, even they have exhibited excellent performance in
evolutionary multiobjective optimization [11].

To alleviate this issue, in this paper, we make the first
attempt to investigate the rationality and superiority behind
the combination of indicator-based MOEAs and constraint-
handling techniques. Specifically, a generic indicator-based
CMOEA framework is proposed, in which different indicator-
based MOEAs can be readily integrated with different
constraint-handling techniques. Following the proposed frame-
work, nine indicator-based CMOEAs are developed in
this study by considering three well-known indicator-based
MOEAs (i.e., HypE [33], IBEA [34] and ISDE [35]) and
three famous constraint-handling techniques (i.e., feasibility

1The resultant algorithms are called constrained multiobjective evolutionary
algorithms (CMOEAs).
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rule (FR) [36], stochastic ranking (SR) [37], and ε con-
strained method [38]). Thereafter, the performance of these
nine indicator-based CMOEAs is tested on 19 widely used
constrained multiobjective optimization test functions.

The main contributions of this paper are summarized as
follows:
• By investigating the rationality and possibility of

indicator-based MOEAs for CMOPs, this paper suggests
that the combination of indicator-based MOEAs and
constraint-handling techniques is a natural way to solve
CMOPs. Thus, a new perspective for solving CMOPs is
provided in this study.

• An open indicator-based CMOEA framework is proposed
in this paper, which is able to accommodate different
indicator-based MOEAs and different constraint-handling
techniques. Based on this framework, nine new indicator-
based CMOEAs are developed by taking three indicator-
based MOEAs and three constraint-handling techniques
into account.

• Systematic experiments have been conducted on 19
test functions to identify the properties of these nine
indicator-based CMOEAs. The experimental results in-
dicate that the performance of indicator-based CMOEAs
relies on both indicator-based MOEAs and constraint-
handling techniques. It is also observed that there is no
such a combination of an indicator-based MOEA and
a constraint-handling technique, which can obtain the
best performance on each test function. Therefore, we
give some practical suggestions on how to select desired
indicator-based CMOEAs.

• The comparison experiments have been conducted be-
tween a superior indicator-based CMOEA (i.e., HypE-
FR) and five other state-of-the-art CMOEAs. The experi-
mental results suggest that, overall, HypE-FR can obtain
quite competitive results. Therefore, we can conclude
that indicator-based CMOEAs are worth extensively and
intensively studying in the future.

The rest of this paper is organized as follows. Section II
introduces the related work. The details of the proposed
indicator-based CMOEA framework are given in Section III.
Subsequently, the experimental setup is introduced in Sec-
tion IV and the experiments and discussions are carried out in
Section V. Finally, Section VI concludes this paper.

II. RELATED WORK

In this section, we first introduce some basic definitions
in CMOPs, and then give a brief introduction to some rep-
resentative indicator-based MOEAs and constraint-handling
techniques.

A. Basic Definitions in CMOPs

• Pareto Dominance: We only consider the m objective
functions in (1). For two decision vectors xu and xv ,
if ∀i ∈ {1, 2, . . . ,m}, fi(xu) ≤ fi(xv) and ∃j ∈
{1, 2, . . . ,m}, fj(xu) < fj(xv), then xu is said to Pareto
dominate xv , denoted as xu ≺ xv .

• Feasible Region: The feasible region of (1) is defined as
O = {x ∈ S|CV (x) = 0}, where

CV (x) =

n∑
i=1

CVi(x) (2)

CVi(x) =

{
max(0, gi(x)), if i ≤ l
max(0, |hi(x)|−δ), otherwise

, i = 1, . . . , n

(3)
It is cleat that CV (x) is the degree of constraint violation
of x on all constraints and CVi(x) is the degree of
constraint violation of x on the ith constraint. In (3), δ is
a very small positive value to relax equality constraints.

• Pareto Optimal Solution: For xu ∈ O, if ¬∃xv ∈ O,
xv ≺ xu, then xu is a Pareto optimal solution of (1).

• Pareto Optimal Set: The Pareto optimal set of (1) is the
set of all the Pareto optimal solutions: PS = {xu ∈
O|¬∃xv ∈ O, xv ≺ xu}.

• Pareto Front: The Pareto front of (1) is the image of PS
in the objective space: PF = {F(xu)|xu ∈ PS}.

• Approximation Set: An approximation set A ⊂ F is
defined as the image of a feasible solution set in which no
feasible solution Pareto dominates or is equal to any other
feasible solution. The goal of solving (1) is to obtain a
well-converged and well-distributed A.

B. Indicator-Based MOEAs

Three representative indicator-based MOEAs, i.e.,
HypE [33], IBEA [34], and ISDE [35], are considered
in this paper, which belong to hypervolume-based MOEAs,
I(ε)+ -based MOEAs, and ISDE-based MOEAs, respectively.
Next, we give a brief introduction to these three different
kinds of indicator-based MOEAs.

1) Hypervolume-Based MOEAs: The hypervolume indica-
tor is the most commonly used indicator in indicator-based
MOEAs, since it has an attractive property, that is, it is
strictly monotonic with regard to Pareto dominance [33]. For
population P , its hypervolume is calculated as:

HV (P) = L

( ⋃
a∈NS

{b ∈ F | a ≺ b ≺ R}
)

(4)

where L is the Lebesgue measure, NS denotes the set of
nondominated solutions in P , and R refers to the reference
point in the objective space.

At present, many hypervolume-based MOEAs have been
proposed [39] which adopt different schemes to assign fit-
ness values to individuals. For most hypervolume-based
MOEAs [40], [41], they usually first conduct a nondominated
sorting procedure [25] to identify a particular nondominated
level Fl 2. Afterward, for individual xu in Fl, its indicator-
based fitness value is defined as the hypervolume loss resulting
from the removal of xu:

FVHV (xu) = HV (Fl)−HV (Fl\xu) (5)

2Note that
∑l−1

i=1 |Fi| < N <
∑l

i=1 |Fi|, Fi denotes the ith nondomi-
nated level, and N is the population size.
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Another approach to assign fitness value is presented in [34],
in which a binary hypervolume indicator is designed. In this
approach, for two individuals xu and xv in P , an additive
indicator IHD is defined as:

IHD(xu, xv)=
{
HV (xv)−HV (xu), if xv ≺ xu
HV ({xv, xv})−HV (xu), otherwise (6)

Then, the indicator-based fitness value of xu is calculated as:

FVHV (xu) =
∑

xv∈P,xv 6=xu

−e−IHD(xu,xv)/0.05 (7)

Unlike the above approaches, HypE [33], which might be
the current most famous hypervolume-based MOEA, pro-
poses a brand-new strategy to assign fitness values to in-
dividuals in both the mating and environmental selection
procedures. In this strategy, the space enclosed by the non-
dominated solutions and the reference point R is split in-
to a series of specific partitions. Subsequently, the hyper-
volume contribution of each partition is computed and the
aggregation method is applied to assign the fitness val-
ue to each individual. For interested readers, the detailed
information of this strategy can be obtained from [33]
and the source code of HypE can be downloaded from:
http://www.tik.ee.ethz.ch/sop/download/supplementary/hype/.

2) I(ε)+ -Based MOEAs: The I(ε)+ indicator is a binary
quality indicator extending from the Pareto dominance rela-
tion [34]. In general, for two individuals xu and xv in P , the
I(ε)+ indicator is defined as:

I(ε)+(xu, xv) =min
ε

(fi(xu)−ε ≤ fi(xv), i ∈ {1, . . . ,m}) (8)

Then, the indicator-based fitness value of xu is assigned as:

FV(ε)+(xu) =
∑

xv∈P,xv 6=xu

−e−I(ε)+ (xu,xv)/0.05 (9)

Based on the I(ε)+ indicator, IBEA [34] is proposed which
can obtain better performance compared with NSGA-II [25]
and SPEA2 [42] on several continuous and discrete multiob-
jective benchmark test problems. Currently, the I(ε)+ indicator
has been widely employed in many-objective optimization.
For example, in Two-Arch2 [43], two archives are adopted
to take care of convergence and diversity, respectively, and for
the convergence archive, it is updated according to the I(ε)+
indicator. In SRA [44], the biases of different indicators are
balanced by making use of stochastic ranking [37], and among
these indictors, one is the I(ε)+ indicator.

3) ISDE-Based MOEAs: The ISDE indicator is designed
based on the shift-based density estimation [45]. For two
individuals xu and xv in P , the ISDE indicator is defined
as

ISDE(xu, xv) =
√ ∑

1≤i≤m

sd(fi(xu), fi(xv))
2 (10)

where

sd(fi(xu), fi(xv))=
{
fi(xv)−fi(xu), if fi(xu)<fi(xv)
0, otherwise (11)

Then, the indicator-based fitness value of xu is as-
signed as the kth minimum value [42] in the set of
{ISDE(xu, xv), xv ∈ P

⋂
xv 6= xu}. Herein, k is set to

√
|P|.

The ISDE indicator is first proposed in SRA [44], in which
the ISDE indicator is in collaboration with the I(ε)+ indicator
for coping with many-objective optimization problems. Re-
cently, the ISDE indicator is extended to tackle both multi- and
many-objective optimization problems by utilizing the infor-
mation derived from the sum of objective function values [46].
Very recently, AnD is proposed by making use of both the
angle-based selection and the shift-based density estimation
for addressing many-objective optimization problems [35]. In
this paper, a variant of AnD without angle-based selection is
called ISDE.

C. Constraint-Handling Techniques

EAs are originally designed for unconstrained optimization,
and thus additional constraint-handling techniques are required
when EAs are applied to constrained optimization [12]. Next,
we give a brief introduction to three well-known constraint-
handling techniques for constrained single-objective optimiza-
tion problems 3: feasibility rule (FR) [25], stochastic ranking
(SR) [37], and ε constrained method [38], [47].

1) FR: In FR, individual xu is better than another individual
xv if one of the following three cases is satisfied:
• xu is feasible and xv is infeasible;
• Both xu and xv are infeasible, and xu has smaller degree

of constraint violation;
• Both xu and xv are feasible, and xu has a smaller

objective function value.
2) SR: SR employs a user-defined parameter Pf to control

the criterion for comparison of two individuals xu and xv:
• If both xu and xv are feasible, compare them according

to objective function with probability 1.0;
• If one of xu and xv is infeasible, compare them according

to objective function with probability Pf and according
to the degree of constraint violation with probability (1−
Pf ).

SR employs a bubble-sort-like process to rank the individu-
als. In general, by making use of Pf , SR aims to balance
objective function and constraints in the whole optimization
process [37].

3) ε Constrained Method: In this method, for two individ-
uals xu and xv , xu is better than xv if one of the following
three rules is hold:

f(xu) < f(xv), if CV (xu) ≤ ε and CV (xu) ≤ ε
f(xu) < f(xv), if CV (xu) = CV (xu)
CV (xu) < CV (xv), otherwise

(12)

For ε, it decreases as the generation increases:

ε =

 ε0(1−
t

T
)cp, if

t

T
< p

0, otherwise
(13)

cp = − logε0 + λ

log(1− p)
(14)

3In general, a constrained single-objective optimization problem is ex-
pressed as: min f(x), where x denotes a D-dimensional decision vector.
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where ε0 denotes the initial threshold and is set to the max-
imum degree of constraint violation in the initial population,
t denotes the current generation number, and T refers to
the maximum generation number. λ is set to 6 [48] and p
controls the degree that the information of objective function
is exploited. In this paper, p is set to 0.2.

Besides the above three methods, many other constraint-
handling techniques have been proposed during the last two
decades. One representative is constrained nondominated sort-
ing (CNS) [28], which is a totally parameter-free method. Note
that in CNS, each solution in the population is assigned a
constrained nondominated rank (CNR) based on its constraint
violation degree and Pareto rank. Then the solutions with
lower values of CNR will survive into the next generation. For
more information about other constraint-handling techniques,
interested readers are referred to two survey papers, i.e., [49]
and [50].

III. INDICATOR-BASED CMOEAS

A. Principle Analysis

CMOPs contain both conflicting objective functions and var-
ious constraints. When solving CMOPs, two tradeoffs should
be considered simultaneously: the tradeoff among objective
functions, and the tradeoff between objective functions and
constraints. Obviously, it is not an easy task to accomplish both
tradeoffs during the evolution, thus posing great challenges and
difficulties to current EAs.

However, if all objective function values can be outputted
as a single value, the solution of CMOPs will become much
easier since we only need to consider the balance between
this single value and constraints. Fortunately, in indicator-
based MOEAs, the indicator-based fitness value can serve
as this single value, since it has the capability to evaluate
an individual’s performance on all objective functions in
terms of both diversity and convergence [11], [39]. Therefore,
if we intend to extend indicator-based MOEAs for solving
CMOPs, we only need to consider the balance between the
indicator-based fitness value and constraints. Specifically, for
an individual x in the population, it is expected to obtain a
big indicator-based fitness value FV (x) while satisfying all
constraints 4:

max FV (x)

s.t. gj(x) ≤ 0, j = 1, 2, . . . , l

hj(x) = 0, j = l + 1, l + 2, . . . , n

x = (x1, x2, . . . , xD)
T ∈ S

(15)

Clearly, the above optimization problem is a constrained
single-objective optimization problem. To solve this optimiza-
tion problem, many constraint-handling techniques can be
applied to strike a good balance between the indicator-based
fineness value and constraints [12]. It is thus natural and
reasonable to combine indicator-based MOEAs and constraint-
handling techniques together for dealing with CMOPs.

4In each indicator-based MOEA considered in this paper, a big indicator-
based fitness value is desired for an individual.

Algorithm 1 Framework of indicator-based CMOEAs
Input: population size N
Output: population Pt

1: Initialization(P0);
2: t← 0
3: while the stopping criterion is not met do
4: Pt+1 = ∅;
5: Qt ← Mating(Pt) ;
6: Ut ← Pt

⋃
Qt;

7: Pt+1 ← Enviromental-Selection(Ut)
8: t← t+ 1;
9: end while

Along this line, in this paper, a generic indicator-based
CMOEA framework has been proposed and a series of
indicator-based CMOEAs has been developed.

Remark 1: Constraint-handling techniques are not easy to
be incorporated into dominance-based MOEAs. It is because
in dominance-based MOEAs, there may exist many nondomi-
nated solutions in the population. However, in some constraint-
handling techniques (e.g., SR), the individuals should be
comparable in terms of both objective functions and con-
straints. Thus, some constraint-handling techniques cannot be
incorporated into dominance-based MOEAs directly.

Remark 2: In principle, it is quite easy to combine
decomposition-based MOEAs with constraint-handling tech-
niques, since decomposition-based approaches can divide the
original CMOP into a series of constrained single-objective op-
timization problems, and then constraint-handling techniques
can be applied to solve these constrained single-objective
optimization problems. However, due to the existence of
constraints, the PF of a CMOP might be very complex; thus,
it would be challenging to adapt the weight vectors to fit the
shape of the PF. In addition, it is hard to set an appropriate
ideal point since some solutions in the population might be
infeasible yet with good objective function values.

B. Main Framework

Algorithm 1 presents the framework of indicator-based
CMOEAs. Similar to most CMOEAs, first, an initial popu-
lation P0 with N individuals is randomly generated in the
decision space S. Subsequently, at generation t, the mating is
implemented to produce an offspring population Qt, and the
environmental selection is performed on the union of Pt and
Qt (denoted as Ut) to generate the next population Pt+1. The
above process continues until the stopping criterion is met.

It is clear that the mating and environmental selection are
two main components in the proposed framework. In the
mating, the parents are chosen from Pt through the binary
tournament selection, and then the simulated binary crossover
(SBX) and the polynomial mutation are executed to generate
Qt [25]. Note that the binary tournament selection is based on
the individuals’ performance in the environmental selection.

C. Environmental Selection

The environmental selection aims at selecting N individuals
with good performance from Ut for the next generation, which
can be achieved by employing constraint-handling techniques.
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Algorithm 2 Combining an indicator-based MOEA with FR
Input: combined population Ut = {u1, . . . , u2N}
Output: Pt+1

1: Divide Ut into the feasible solution set S1 = {ui ∈ Ut|CV (ui) = 0}
and the infeasible solution set S2 = {ui ∈ Ut|CV (ui) > 0}.

2: if |S1| ≥ N then
3: Implement the environmental selection of the original indicator-based

MOEA to select N individuals out of S1;
4: Sort the selected N individuals according to their indicator-based

fitness values and put the sorted N individuals into Pt+1;
5: else
6: Sort the individuals in S1 according to their indicator-based fitness

values and put the sorted S1 into Pt+1;
7: Sort the individuals in S2 according to their degree of constraint

violation, and put the best (N − |S1|) individuals in the sorted S2
into the end of Pt+1;

8: end if

Algorithm 3 Combining an indicator-based MOEA with SR
Input: combined population Ut = {u1, . . . , u2N} and Pf

Output: Pt+1

1: for i = 1 : N do
2: for j = 1 : |Ut| − 1 do
3: u = rand(0,1)
4: if u < Pf or CV (uj) = CV (uj+1) = 0 then
5: if FV (uj ) < FV (uj+1) then
6: swap(uj , uj+1)
7: end if
8: else
9: if CV (uj ) > CV (uj+1) then

10: swap(uj , uj+1)
11: end if
12: end if
13: end for
14: if no swap is done then
15: break;
16: end if
17: end for
18: Put the top N individuals of Ut into Pt+1

Algorithm 4 Combining an indicator-based MOEA with ε
constrained method
Input: combined population Ut = {u1, . . . , u2N} and ε
Output: Pt+1

1: Divide Ut into S1 = {ui ∈ Ut|CV (ui) ≤ ε} and S2 = {ui ∈
Ut|CV (ui) > ε}.

2: if |S1| ≥ N then
3: Implement the environmental selection of the original indicator-based

MOEA to select N individuals from S1 ignoring all constraints;
4: Sort the selected N individuals according to their indicator-based

fitness values and put the sorted N individuals into Pt+1;
5: else
6: Sort the individuals in S1 according to their indicator-based fitness

values and put the sorted S1 into Pt+1;
7: Sort the individuals in S2 according to their degree of constraint

violation, select the top (N − |S1|) individuals in the sorted S2, and
put them into the end of Pt+1;

8: end if

Next, we introduce how to integrate an indicator-based MOEA
with three constraint-handling techniques (i.e., FR, SR, and ε
constrained method), respectively.

1) Combining An Indicator-Based MOEA with FR: The
combination of an indicator-based MOEA and FR is quite
simple. The details are given in Algorithm 2. Firstly, we divide
Ut into the feasible solution set S1 and the infeasible solution
set S2. Note that in FR, feasible individuals are always better
than infeasible individuals; thus, we give a priority to select
feasible solutions. To be specific, if the number of individuals

in S1, denoted as |S1|, is larger than or equal to N , then
the environmental selection of the original indicator-based
MOEA is implemented to select N individuals out of S1.
Thereafter, the selected N individuals are sorted according
to their indicator-based fitness values and added to Pt+1.
Otherwise, we first sort the individuals in S1 based on their
indicator-based fitness values and put the sorted S1 into Pt+1.
Since |S1| is less than N , the other (N − |S1|) individuals
should be selected from S2. Herein, we sort the individuals in
S2 according to their degree of constraint violation, and copy
the best (N − |S1|) individuals in the sorted S2 to the end of
Pt+1.

Remark 3 : To facilitate the binary tournament selection in
the mating, in this paper, the index of an individual in Pt+1 is
based on its performance. That is, if the individuals are sorted
according to their indicator-based fitness values, the individual
with better indicator-based fitness values will be ranked in
front of the sorted population. Similarity, if the individuals
are sorted based on their degree of constraint violation, the
individuals with smaller constraint violations will be ranked
in front of the sorted population.

2) Combining An Indicator-Based MOEA with SR: Simi-
larly, it is easy to combine an indicator-based MOEA with SR.
As presented in Algorithm 3, for each swap, a pair of two
adjacent individuals is compared based on the indicator-based
fitness value or the degree of constraint violation with the
probability Pf or the probability (1−Pf ), respectively. For the
parameter Pf , it controls the tradeoff between the indicator-
based fitness value and the degree of constraint violation. In
this paper, Pf is set to 0.3. Once the ranking procedure stops,
the top N individuals are put into Pt+1.

3) Combining An Indicator-Based MOEA with ε Con-
strained Method: The combination of an indicator-based
MOEA and ε constrained method is also simple since ε con-
strained method can be regarded as an extension of FR [38].
As shown in Algorithm 4, first, ε is employed to divide
Ut into two sets: S1 = {ui ∈ Ut|CV (ui) ≤ ε} and
S2 = {ui ∈ Ut|CV (ui) > ε}. From Section II-C, we can
find that in ε constrained method, the individuals in S1 are
better than the individuals in S2; thus, we prefer to select
the individuals in S1. To be specific, two cases are under our
consideration:

• If |S1| ≥ N , then the environmental selection of the
original indicator-based MOEA is conducted to select N
individuals out of S1 ignoring all constraints. For these
selected individuals, they are sorted according to their
indicator-based fitness values and subsequently added to
Pt+1.

• If |S1| < N , then all the individuals in S1 are sorted ac-
cording to their indicator-based fitness values and added
to Pt+1. For the rest (N − |S1|) individuals, they are
selected from S2. Herein, we sort the individuals in S2
according to their degree of constraint violation, and then
put the top (N − |S1|) individuals in the sorted S2 into
the end of Pt+1.
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D. Discussions

• By combining FR, SR, and ε constrained method with
HypE following the above approaches, we can obtain
HypE-FR, HypE-SR, and HypE-ε, respectively. Simi-
larly, we can obtain IBEA-FR, IBEA-SR, and IBEA-
ε, and ISDE-FR, ISDE-SR, and ISDE-ε by integrating
these three constraint-handling techniques with IBEA
and ISDE, respectively. As a whole, nine indicator-based
CMOEAs are developed in this study.

• It is evident that the above three kinds of extensions
do not cost significant computational resources. In Al-
gorithm 2, Algorithm 3, and Algorithm 4, the ad-
ditional computational time complexity is O(NlogN),
O(N2) and O(NlogN), respectively. Considering that
the computational time complexity of the original HypE,
IBEA, and ISDE is equal to or higher than O(N2), the
additional computational time complexity caused by these
three kinds of extensions is acceptable.

IV. EXPERIMENTAL SETUP

A. Test Instances and Performance Metrics

Our experiments were conducted on 19 widely used con-
strained multiobjective optimization test functions. For test
functions 1-8, they came from the famous CTPs [51]. Test
functions 9-16 were collected from real-world applications:
BNH [52], CONSTR [53], disc brake design (DBD) [54],
OSY [55], speed reducer design (SRD) [56], SRN [57],
TNK [58], and welded beam design (WBD) [54]. With respect
to test functions 17-19, they were selected from the well-
known CDTLZ test suite [59] with three objective functions.
Overall, test functions 1-16 are CMOPs with two objective
functions, and test functions 17-19 are CMOPs with three
objective functions.

To compare the performance of different algorithms, two
metrics were employed in our experiments:
• Inverted Generational Distance (IGD) [60]: In this paper,

only the feasible solutions in the final population are used
to compute IGD. Suppose that IP is the set of images
of the feasible solutions in the final population, and IP∗
is a set of uniformly distributed points on the constrained
Pareto front. Then, IGD is calculated as:

IGD(IP) = 1

|IP∗|
∑

z∗∈IP∗

distance(z∗, IP) (16)

where distance(z∗, IP) denotes the minimum Euclidean
distance between z∗ and all members in IP , and |IP∗|
is the cardinality of IP∗. In general, a small IGD value
is desired for a CMOEA.

• Hypervolume (HV) [61]: Similarly, when computing HV,
we only consider the feasible solutions in the final popula-
tion. In principle, HV is able to evaluate both convergence
and diversity of IP . The details of the calculation of
HV have been introduced in Section II-B1. Note that
the larger the HV value, the better the performance of
a CMOEA. In our experiments, HV is computed by
employing the reference point which is set to 1.1 times
of the upper bounds of the constrained Pareto front.

B. Algorithms for Comparison

The following five state-of-the-art CMOEAs were chosen
for performance comparison.

• NSGA-II-CDP [25]: NSGA-II-CDP is a combination of
NSGA-II [25] and constraint-domination principle (CDP)
for solving CMOPs. CDP is extended from FR, in which
feasible solutions are better than infeasible solutions; for
two infeasible solutions, the one with smaller degree of
constraint violation is preferred; and the comparison of
two feasible solutions is based on Pareto dominance.

• A-NSGA-III [59]: A-NSGA-III is modified from the
constrained NSGA-III by adaptively updating the new
reference points. Compared with the original constrained
NSGA-III, A-NSGA-III can obtain a denser represen-
tation of the constrained Pareto front with an identical
computational effort.

• MOEA/D-ACDP [31]: MOEA/D-ACDP is a recently
proposed CMOEA, in which an angle-based constrained
dominance principle (ACDP) is incorporated into the
framework of MOEA/D for handling CMOPs.

• C-MOEA/DD [62]: C-MOEA/DD is an extension of
MOEA/DD [62] for addressing constrained multi- and
many-objective optimization problems. C-MOEA/DD
puts more emphasis on feasible solutions than infeasible
solutions by modifying the updating and reproduction
procedures of MOEA/DD.

• C-AnD [35]: C-AnD is a combination of AnD and FR.
In C-AnD, the union population is divided into a feasible
solution set and an infeasible solution set. If the number
of individuals in the feasible solution set is larger than
N , the original AnD is employed to select N individuals.
Otherwise, the union population is sorted according to the
degree of constraint violation, and the top N individuals
survive into the next generation.

C. Parameter Settings

• Population Size: The population size was set to 100 for
each algorithm on each test function [25].

• Parameter Settings for Evolutionary Operators: For all
algorithms, according to the suggestion in [25], the
crossover probability and the mutation probability were
set to 1.0 and 1/n, respectively, and the distribution
indexes of both SBX and the polynomial mutation were
set to 20.

• Number of Independent Runs and Termination Condition:
All algorithms were independently run 30 times on each
test function, and terminated when 50,000 function eval-
uations (FEs) were reached [25], [28].

• Parameter Settings for Algorithms: The number of sam-
ple points in HypE-FR, HypE-SR, and HypE-ε was
set to 10,000 following the suggestion in [63]. For C-
MOEA/DD [62], the neighborhood size was set to 20,
penalty parameter θ was set to 5, and probability δ was
set to 0.9.

In this paper, all the experiments were implemented on the
platform developed by Tian et al. [63].
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TABLE I
PERFORMANCE COMPARISON AMONG THE NINE INDICATOR-BASED CMOEAS IN TERMS OF THE AVERAGE IGD VALUE ON THE 19 TEST FUNCTIONS.

THE BEST AND SECOND BEST AVERAGE IGD VALUES AMONG ALL THE ALGORITHMS ON EACH TEST FUNCTION ARE HIGHLIGHTED IN GRAY AND LIGHT
GRAY, RESPECTIVELY.

Problem HypE-FR HypE-SR HypE-ε IBEA-FR IBEA-SR IBEA-ε ISDE-FR ISDE-SR ISDE-ε

CTP1 1.60e− 02 2.34e− 01 4.07e− 03 1.28e− 01 2.24e− 01 1.14e− 01 1.83e− 01 2.28e− 01 1.74e− 01
CTP2 1.92e− 03 1.56e− 01 1.88e− 03 5.63e− 03 1.15e− 01 3.17e− 03 2.54e− 02 2.51e− 02 2.25e− 02
CTP3 1.76e− 02 2.16e− 01 2.15e− 02 1.48e− 01 4.06e− 01 9.62e− 02 8.03e− 02 9.42e− 02 6.39e− 02
CTP4 1.25e− 01 4.45e− 01 1.13e− 01 4.86e− 01 4.76e− 01 4.37e− 01 1.71e− 01 1.56e− 01 1.62e− 01
CTP5 7.48e− 03 9.88e− 02 5.96e− 03 4.21e− 02 1.42e− 01 3.70e− 02 3.24e− 02 2.60e− 02 3.11e− 02
CTP6 8.35e− 03 1.08e− 01 8.30e− 03 1.25e− 02 9.25e− 01 1.24e− 02 4.87e− 02 4.37e− 02 4.75e− 02
CTP7 1.17e− 03 1.97e− 03 1.17e− 03 3.79e− 03 2.12e− 02 3.35e− 03 1.83e− 02 1.79e− 02 1.76e− 02
CTP8 8.36e− 02 2.89e− 01 3.38e− 02 1.27e− 01 8.60e− 01 7.10e− 02 4.10e− 02 1.11e− 01 4.19e− 02

BNH 2.90e− 01 2.90e− 01 2.89e− 01 2.96e− 01 4.02e− 01 2.98e− 01 9.48e− 01 9.81e− 01 9.30e− 01
CONSTR 1.52e− 02 1.41e+ 00 1.52e− 02 3.04e− 02 6.88e− 01 2.97e− 02 1.03e− 01 1.40e− 01 1.21e− 01

DBD 8.13e− 02 5.47e− 01 3.30e− 01 4.38e− 01 6.25e− 01 4.28e− 01 7.19e− 01 7.57e− 01 6.61e− 01
OSY 1.56e+ 00 3.73e+ 01 5.27e+ 00 4.20e+ 00 1.19e+ 02 8.85e+ 00 8.86e+ 00 1.08e+ 01 1.19e+ 01
SRD 2.20e+ 01 4.51e+ 02 2.84e+ 02 1.54e+ 03 1.56e+ 02 1.71e+ 03 6.45e+ 02 6.46e+ 02 6.42e+ 02
SRN 7.96e− 01 9.78e− 01 7.94e− 01 8.09e− 01 1.43e+ 00 8.10e− 01 2.90e+ 00 3.25e+ 00 3.00e+ 00
TNK 3.26e− 03 8.75e− 02 3.21e− 03 2.79e− 02 3.12e− 01 2.84e− 02 2.11e− 02 8.10e− 02 2.06e− 02
WBD 1.62e− 01 4.43e− 01 1.60e− 01 1.02e+ 01 1.39e+ 01 1.14e+ 01 9.22e+ 00 8.63e+ 00 9.22e+ 00

C1-DTLZ1 3.20e− 02 4.86e− 02 3.05e− 02 2.59e− 02 3.66e− 02 2.64e− 02 3.75e− 02 3.87e− 02 3.76e− 02
C2-DTLZ2 9.27e− 02 1.05e− 01 9.11e− 02 7.79e− 02 1.27e− 01 7.83e− 02 1.93e− 01 1.89e− 01 1.86e− 01
C3-DTLZ4 2.76e− 01 5.73e− 01 2.86e− 01 1.58e− 01 4.60e− 01 1.11e− 01 1.98e− 01 2.13e− 01 2.04e− 01

TABLE II
PERFORMANCE COMPARISON AMONG THE NINE INDICATOR-BASED CMOEAS IN TERMS OF THE AVERAGE HV VALUE ON THE 19 TEST FUNCTIONS.

THE BEST AND SECOND BEST AVERAGE HV VALUES AMONG ALL THE ALGORITHMS ON EACH TEST FUNCTION ARE HIGHLIGHTED IN GRAY AND LIGHT
GRAY, RESPECTIVELY.

Problem HypE-FR HypE-SR HypE-ε IBEA-FR IBEA-SR IBEA-ε ISDE-FR ISDE-SR ISDE-ε

CTP1 4.57e− 01 3.76e− 01 4.61e− 01 4.19e− 01 3.77e− 01 4.24e− 01 3.92e− 01 3.74e− 01 3.95e− 01
CTP2 1.14e− 01 7.26e− 02 1.14e− 01 1.12e− 01 8.43e− 02 1.13e− 01 9.90e− 02 1.00e− 01 1.01e− 01
CTP3 4.67e− 01 3.29e− 01 4.64e− 01 3.83e− 01 2.19e− 01 4.15e− 01 4.04e− 01 4.01e− 01 4.16e− 01
CTP4 3.42e− 01 1.45e− 01 3.50e− 01 1.37e− 01 1.41e− 01 1.63e− 01 3.01e− 01 3.16e− 01 3.12e− 01
CTP5 4.78e− 01 2.39e− 01 4.80e− 01 4.09e− 01 1.74e− 01 4.31e− 01 4.22e− 01 4.19e− 01 4.28e− 01
CTP6 2.08e+ 00 1.83e+ 00 2.08e+ 00 2.08e+ 00 1.05e+ 00 2.08e+ 00 1.98e+ 00 1.99e+ 00 1.98e+ 00
CTP7 7.17e− 01 7.04e− 01 7.17e− 01 7.16e− 01 6.81e− 01 7.17e− 01 6.80e− 01 6.80e− 01 6.80e− 01
CTP8 1.32e+ 00 1.06e+ 00 1.34e+ 00 1.29e+ 00 7.16e− 01 1.32e+ 00 1.30e+ 00 1.26e+ 00 1.30e+ 00

BNH 2.85e+ 03 2.85e+ 03 2.85e+ 03 2.85e+ 03 2.84e+ 03 2.85e+ 03 2.80e+ 03 2.80e+ 03 2.80e+ 03
CONSTR 5.24e+ 00 3.78e+ 00 5.24e+ 00 5.21e+ 00 4.42e+ 00 5.22e+ 00 5.09e+ 00 5.02e+ 00 5.07e+ 00

DBD 4.31e+ 01 4.25e+ 01 4.30e+ 01 4.28e+ 01 4.24e+ 01 4.28e+ 01 4.22e+ 01 4.22e+ 01 4.23e+ 01
OSY 1.40e+ 04 9.10e+ 03 1.35e+ 04 1.37e+ 04 1.52e+ 03 1.32e+ 04 1.33e+ 04 1.32e+ 04 1.30e+ 04
SRD 2.58e+ 06 2.53e+ 06 2.57e+ 06 6.74e+ 05 2.50e+ 06 3.61e+ 05 2.53e+ 06 2.51e+ 06 2.53e+ 06
SRN 3.06e+ 04 3.04e+ 04 3.06e+ 04 3.06e+ 04 3.02e+ 04 3.06e+ 04 2.98e+ 04 2.98e+ 04 2.98e+ 04
TNK 5.25e− 01 4.45e− 01 5.25e− 01 5.19e− 01 2.44e− 01 5.19e− 01 4.98e− 01 4.52e− 01 5.01e− 01
WBD 9.76e− 01 9.69e− 01 9.76e− 01 8.95e− 01 5.43e− 01 8.71e− 01 9.12e− 01 9.24e− 01 9.17e− 01

C1-DTLZ1 1.33e− 01 1.22e− 01 1.34e− 01 1.38e− 01 1.32e− 01 1.38e− 01 1.29e− 01 1.29e− 01 1.29e− 01
C2-DTLZ2 6.61e− 01 6.53e− 01 6.63e− 01 6.95e− 01 5.79e− 01 6.95e− 01 4.81e− 01 4.72e− 01 4.75e− 01
C3-DTLZ4 7.65e+ 00 6.68e+ 00 7.73e+ 00 8.32e+ 00 7.39e+ 00 8.50e+ 00 7.90e+ 00 7.89e+ 00 7.88e+ 00
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Fig. 1. Friedman’s test among the nine indicator-based CMOEAs (i.e., HypE-
FR, HypE-SR, HypE-ε, IBEA-FR, IBEA-SR, IBEA-ε, ISDE-FR, ISDE-SR,
and ISDE-ε) on the 19 test functions in terms of IGD and HV. The smaller
the ranking, the better the performance of an algorithm.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Comparison among Indicator-Based CMOEAs

Firstly, we are interested in identifying the properties of
the proposed nine indicator-based CMOEAs. To this end, we
tested them on the 19 constrained multiobjective optimization
test functions introduced in Section IV-A. The comparison
results in terms of IGD and HV are presented in Table I
and Table II, respectively. At our first glance, HypE-FR and
HypE-ε can achieve the superior performance on CTPs and
real-world CMOPs, while IBEA-FR and IBEA-ε can obtain
better results on the CDTLZ problems. Next, we will give the
detailed discussions.

1) CTPs: From Tables I and II, we can observe that HypE-
ε achieves the best overall performance in terms of both IGD
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Fig. 2. Images of the feasible solutions provided by HypE, IBEA, and ISDE with different constraint-handing techniques in a run on CTP4.
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Fig. 3. Images of the feasible solutions provided by HypE, IBEA, and ISDE with different constraint-handing techniques in a run on DBD.

and HV, followed by HypE-FR. For HypE-ε, it obtains the best
and second best results on seven instances (i.e., CTP1, CTP2,
CTP4, CTP5, CTP6, CTP7, and CTP8) and one instance (i.e.,
CTP3), respectively. As for HypE-FR, it performs the best on
one instance (i.e., CTP3) with respect to both IGD and HV, and
performs the second best on six instances (i.e., CTP1, CTP2,
CTP4, CTP5, CTP6, and CTP7) and seven instances (i.e.,
CTP1, CTP2, CTP4, CTP5, CTP6, CTP7, and CTP8) in terms
of IGD and HV, respectively. The competitive performance of
these two algorithms can be largely attributed to the utilization
of the hypervolume indicator, which is the only indicator
strictly monotonic with regard to Pareto dominance [33]. For
another hypervolume-based CMOEA, i.e., HypE-SR, it cannot
obtain promising results. The reason might be that the usage of
SR will keep some infeasible solutions with good indicator-
based fitness values in the final population. However, these
infeasible solutions will be deleted before the calculation of
IGD or HV. Due to the less feasible solutions, HypE-SR
provides worse IGD and HV values, compared with HypE-
FR and HypE-ε. For other algorithms, ISDE-FR reaches the
second best performance on CTP8 in terms of IGD, while
IBEA-FR, IBEA-SR, IBEA-ε, ISDE-SR, and ISDE-ε fail to
achieve any of the best or second best results on these CTPs.

2) Real-World CMOPs: On these eight real-world CMOPs,
again, HypE-FR and HypE-ε can obtain the superior perfor-

mance. Regarding IGD, HypE-FR can obtain the best perfor-
mance on DBD, OSY, and SRD, and achieve the second best
performance on BNH, CONSTR, SRN, TNK and WBD; while
HypE-ε can obtain the best performance on BND, CONSTR,
SRN, TNK, and DBD, and the second best performance on
DBD and SRN. With respect to HV, HypE-FR performs the
best on BNH, CONSTR, DBD, OSY, SRD, SRN, and TNK,
and performs the second best on DBD; while HypE-ε performs
the best on WBD, and performs the second best on BHN,
CONSTR, DBD, SRD, SRN, and TNK. The above phenomena
again verify the effectiveness of the hypervolume indicator for
coping with CMOPs with two objective functions. It is also
observed that HypE-SR still cannot obtain promising results
on these real-world CMOPs, which might be attributed to the
maintenance of infeasible solutions in the final population as
analyzed before. As for other algorithms, IBEA-FR can attain
the second best performance on OSY regarding both IGD and
HV, while IBEA-SR, IBEA-ε, ISDE-FR, ISDE-SR, and ISDE-
ε are unable to obtain any of the best or second best results
on these eight real-world CMOPs.

3) CDTLZ Problems: Interestingly, HypE-FR and HypE-
ε cannot show their superiorities on the CDTLZ problems.
It is probably because the Monte Carlo method is used for
hypervolume estimation, when these two algorithms are used
for handing CMOPs with three objective functions. Owing to
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TABLE III
PERFORMANCE COMPARISON BETWEEN HYPE-FR AND FIVE STATE-OF-THE-ART CMOEAS IN TERMS OF THE AVERAGE AND STANDARD DEVIATION OF

THE IGD VALUES ON THE 19 TEST FUNCTIONS. THE BEST AVERAGE IGD VALUE AMONG ALL THE ALGORITHMS ON EACH TEST FUNCTION WAS
HIGHLIGHTED IN BOLDFACE.

Problem NSGA-II-CDP A-NSGA-III MOEA/D-ACDP C-MOEA/DD C-AnD HypE-FR

CTP1 8.1067e-2 (8.10e-2)− 1.0747e-1 (8.72e-2)− 1.6081e-2 (1.39e-2)− 1.3388e-2 (2.18e-3)+ 1.3651e-1 (4.14e-2)− 1.5984e-2 (4.18e-2)
CTP2 2.2526e-3 (3.28e-4)− 2.8563e-3 (4.31e-4)− 5.2737e-3 (1.28e-3)− 9.3850e-3 (3.00e-3)− 4.1252e-2 (2.59e-2)− 1.9208e-3 (2.32e-4)
CTP3 6.2697e-2 (8.03e-2)− 3.2048e-2 (4.58e-2)− 2.9864e-2 (3.74e-3)− 4.8233e-2 (5.12e-3)− 1.4240e-1 (4.31e-2)− 1.7568e-2 (8.46e-3)
CTP4 2.1376e-1 (1.51e-1)− 2.0740e-1 (1.39e-1)− 1.6414e-1 (3.35e-2)− 1.2083e-1 (1.48e-2) ≈ 2.7084e-1 (8.84e-2)− 1.2545e-1 (4.31e-2)
CTP5 9.8773e-3 (4.70e-3)≈ 7.4848e-3 (2.40e-3)≈ 2.0178e-2 (8.94e-3)− 1.1432e-2 (2.64e-3)− 2.5913e-2 (1.31e-2)− 7.4821e-3 (2.84e-3)
CTP6 1.1617e-2 (3.90e-4)− 1.7224e-2 (9.99e-3)− 1.8301e-2 (8.40e-4)− 2.1604e-2 (2.50e-3)− 1.3003e-1 (4.18e-2)− 8.3547e-3 (1.58e-4)
CTP7 1.7321e-3 (1.41e-3)− 1.9550e-3 (1.43e-3)− 3.3652e-3 (3.21e-5)− 4.0297e-3 (2.05e-3)− 1.2341e-1 (3.41e-2)− 1.1661e-3 (7.20e-6)
CTP8 1.4255e-1 (1.46e-1)− 1.7405e-1 (1.48e-1)− 3.6822e-2 (6.14e-2)+ 1.8420e-1 (9.19e-1)− 1.0016e-1 (7.34e-2)− 8.3572e-2 (1.33e-1)

BNH 4.3484e-1 (2.99e-2)− 5.2000e-1 (1.21e-1)− 2.7511e-1 (1.26e-4)+ 2.6638e-1 (4.66e-4)+ 4.6801e-1 (5.40e-2)− 2.8967e-1 (4.69e-3)
CONSTR 2.0453e-2 (6.60e-4)− 2.3775e-2 (2.01e-3)− 4.3999e-2 (6.37e-4)− 6.1968e-2 (9.87e-3)− 3.4766e-2 (2.60e-3)− 1.5192e-2 (9.93e-5)

DBD 8.3875e-2 (4.88e-2)≈ 4.0564e-1 (1.05e-1)− 1.9603e-1 (6.47e-2)− 4.6390e-1 (2.46e-2)− 3.2154e-1 (1.04e-1)− 8.1280e-2 (4.08e-2)
OSY 4.0696e+0 (9.21e+0)− 3.1830e+0 (1.66e+0)− 2.7214e+1 (1.37e+1)− 1.0626e+2 (9.15e+0)− 3.3951e+0 (1.00e+0)− 1.5645e+0 (9.28e-1)
SRD 1.1373e+1 (1.48e+0)+ 3.5192e+2 (1.96e+2)− 2.6468e+2 (4.68e+1)− 5.6208e+1 (1.24e+1)− 5.9861e+2 (1.20e+2)− 2.1964e+1 (2.93e+0)
SRN 1.0904e+0 (6.34e-2)− 7.6610e-1 (4.78e-3)+ 2.2303e+0 (1.23e-2)− 7.1229e+1 (1.19e+1)− 1.0036e+0 (5.29e-2)− 7.9605e-1 (5.64e-3)
TNK 4.3557e-3 (1.58e-4)− 4.1239e-3 (2.84e-4)− 6.1697e-3 (4.96e-4)− 2.9281e-2 (5.81e-3)− 9.6892e-3 (1.02e-3)− 3.2624e-3 (1.36e-4)
WBD 1.8295e-1 (1.19e-2)− 4.3149e-1 (3.54e-2)− 7.3427e+0 (2.15e-1)− 1.5704e+1 (8.19e-1)− 7.2724e-1 (1.67e-1)− 1.6199e-1 (6.25e-3)

C1-DTLZ1 2.6927e-2 (1.47e-3)+ 2.2035e-2 (1.46e-3)+ 2.1989e-2 (2.52e-4)+ 2.0371e-2 (1.57e-4)+ 2.1616e-2 (3.50e-4)+ 3.2020e-2 (4.23e-3)
C2-DTLZ2 5.6755e-2 (3.58e-3)+ 4.4552e-2 (4.62e-4)+ 5.1819e-2 (3.09e-4)+ 4.9736e-2 (4.42e-4)+ 4.6135e-2 (1.47e-3)+ 9.2727e-2 (5.15e-3)
C3-DTLZ4 1.7464e-1 (1.82e-1)+ 1.5406e-1 (1.87e-1)+ 2.0711e-1 (2.53e-1)+ 1.8416e-1 (2.96e-1)+ 1.0716e-1 (2.81e-3)+ 2.7576e-1 (1.98e-1)

+ 4 4 5 5 3 /
− 13 14 14 13 16 /
≈ 2 1 0 1 0 /

the existence of various constraints, the Monte Carlo method
might lose its effectiveness in the approximation process.
Instead, IBEA-FR and IBEA-ε can obtain quite competitive
performance on these three CDTLZ problems in terms of
both IGD and HV. Specifically, IBEA-FR can obtain the
best performance on C1-DTLZ1 and C2-DTLZ2, and obtain
the second best performance on C3-DTLZ4; while IBEA-ε
performs the best on C3-DTLZ4, and perform the second best
on C1-DTLZ1 and C2-DTLZ2. The excellent performance of
IBEA-FR and IBEA-ε suggests that the I(ε)+ indictor is an
effective indicator for CMOPs with three objective functions.

4) Discussions: From the above experiments, we can
conclude that both indicator-based MOEAs and constraint-
handling techniques play very important roles in the perfor-
mance of indicator-based CMOEAs. It is also observed that
there does not exist an indicator-based CMOEA which can
beat all other indicator-based CMOEAs on each test function.
In general, HypE-FR and HypE-ε are highly suggested for
two-objective CMOPs, while IBEA-FR and IBEA-ε are rec-
ommended for solving CMOPs with three objective functions.

To analyze the overall performance of these nine indicator-
based CMOEAs, the Friedman’s test was implemented on the
19 test functions as shown in Fig. 1. From the results of the
Friedman’s test, it is evident that HypE-FR and HypE-ε are
the two best algorithms in terms of both IGD and HV, fol-
lowed by IBEA-ε and IBEA-FR. However, for indicator-based
CMOEAs with the usage of the ISDE indicator (i.e., ISDE-
FR, ISDE-SR, and ISDE-ε) or SR (i.e., HypE-SR, IBEA-SR,
and ISDE-SR), they cannot obtain any promising results in
terms of either IGD or HV. The above phenomena suggest
that the ISDE indicator is not suitable for solving CMOPs
with two and three objective functions, even its potential has
been demonstrated on solving unconstrained many-objective
optimization problems [35], [44], [45]. The failure of SR,
as discussed above, might be due to its balance mechanism,

which would keep a certain proportion of infeasible solutions
in the final population. Thus, we can also conclude that not all
constraint-handling techniques in constrained single-objective
optimization are effective in solving CMOPs. Actually, how
to select proper constraint-handling techniques and indicator-
based MOEAs, and how to combine them together are still
open issues worthy of in-depth studies.

The images of the feasible solutions provided by these nine
indicator-based CMOEAs in the end of a run are plotted in
Fig. 2, Fig. 3, and Fig. S-1 in the supplementary file on CTP4,
DBD, and C1-DTLZ1, respectively.

B. Comparison between HypE-FR and Five State-of-the-Art
CMOEAs

Subsequently, we compared the performance of a superior
indicator-based CMOEA (i.e., HypE-FR) with that of five
state-of-the-art CMOEAs (i.e., NSGA-II-CDP, A-NSGA-III,
MOEA/D-ACDP, C-MOEA/DD, and C-AnD) on the 19 test
functions. The Wilcoxon’s rank-sum test at a 0.05 significance
level was implemented between HypE-FR and each of NSGA-
II-CDP, A-NSGA-III, MOEA/D-ACDP, C-MOEA/DD, and
C-AnD on each test function. The comparison results are
summarized in Table III and Table IV in terms of IGD and
HV, respectively. The detailed discussions are presented in the
following.

It is clear that HypE-FR can achieve the best over-
all performance in terms of both IGD and HV. Regard-
ing IGD, HypE-FR outperforms NSGA-II-CDP, A-NSGA-III,
MOEA/D-ACDP, C-MOEA/DD, and C-AnD on 13, 14, 14,
13, and 16 instances, respectively, while loses on four, four,
five, five, and three instances, respectively. As far as HV
is concerned, HypE-FR obtains better performance than its
competitors on more than 14 instances, while provides worse
results on no more than four instances.
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TABLE IV
PERFORMANCE COMPARISON BETWEEN HYPE-FR AND FIVE STATE-OF-THE-ART CMOEAS IN TERMS OF THE AVERAGE AND STANDARD DEVIATION OF

THE HV VALUES ON THE 19 TEST FUNCTIONS. THE BEST AVERAGE HV VALUE AMONG ALL THE ALGORITHMS ON EACH TEST FUNCTION WAS
HIGHLIGHTED IN BOLDFACE.

Problem NSGA-II-CDP A-NSGA-III MOEA/D-ACDP C-MOEA/DD C-AnD HypE-FR

CTP1 4.3399e-1 (2.89e-2)− 4.2309e-1 (3.18e-2)− 4.5695e-1 (3.61e-3)− 4.5246e-1 (2.10e-3)− 3.8056e-1 (1.96e-2)− 4.5736e-1 (1.51e-2)
CTP2 1.1380e-1 (1.86e-4)≈ 1.1321e-1 (3.42e-4)− 1.1202e-1 (1.14e-3)− 1.0824e-1 (2.45e-3)− 9.9489e-2 (7.76e-3)− 1.1376e-1 (2.15e-4)
CTP3 4.3692e-1 (5.20e-2)− 4.5644e-1 (3.12e-2)− 4.5282e-1 (3.82e-3)− 4.2969e-1 (5.84e-3)− 3.2098e-1 (3.44e-2)− 4.6729e-1 (6.52e-3)
CTP4 2.8591e-1 (9.50e-2)− 2.9121e-1 (8.13e-2)− 2.8046e-1 (2.38e-2)− 3.3712e-1 (1.95e-2)≈ 1.9875e-1 (4.86e-2)− 3.4214e-1 (2.92e-2)
CTP5 4.3634e-1 (5.82e-2)− 4.7074e-1 (1.45e-2)− 4.7065e-1 (3.70e-3)− 4.4256e-1 (7.44e-3)− 3.2207e-1 (4.09e-2)− 4.7760e-1 (1.88e-2)
CTP6 2.0714e+0 (1.26e-3)− 2.0575e+0 (2.04e-2)− 2.0579e+0 (2.66e-3)− 2.0365e+0 (8.45e-3)− 1.8196e+0 (6.12e-2)− 2.0826e+0 (1.10e-3)
CTP7 7.1672e-1 (2.82e-3)− 7.1532e-1 (2.74e-3)− 7.1601e-1 (5.89e-4)− 7.0463e-1 (5.17e-3)− 5.6434e-1 (3.57e-2)− 7.1739e-1 (5.96e-5)
CTP8 1.2765e+0 (9.06e-2)− 1.2536e+0 (8.94e-2)− 1.3186e+0 (7.64e-2)+ 1.2975e+0 (2.45e-1)− 1.2039e+0 (4.50e-2)− 1.3156e+0 (8.18e-2)

BNH 2.8408e+3 (2.09e+0)− 2.8318e+3 (1.10e+1)− 2.8536e+3 (2.85e-2)− 2.8531e+3 (1.04e-1)− 2.8375e+3 (3.96e+0)− 2.8538e+3 (5.02e-1)
CONSTR 5.2259e+0 (1.87e-3)− 5.2220e+0 (5.05e-3)− 5.2020e+0 (1.63e-3)− 5.1243e+0 (2.03e-2)− 5.2088e+0 (4.16e-3)− 5.2423e+0 (4.39e-4)

DBD 4.3019e+1 (2.24e-2)− 4.2794e+1 (8.81e-2)− 4.2955e+1 (4.47e-2)− 4.2694e+1 (3.81e-2)− 4.2854e+1 (7.03e-2)− 4.3099e+1 (2.43e-2)
OSY 1.3592e+4 (1.22e+3)− 1.3809e+4 (2.04e+2)− 1.0343e+4 (2.00e+3)− 2.0892e+3 (9.76e+2)− 1.3875e+4 (1.43e+2)− 1.3953e+4 (1.35e+2)
SRD 2.5766e+6 (3.52e+2)− 2.5707e+6 (3.72e+3)− 2.5720e+6 (1.55e+3)− 2.5722e+6 (1.08e+3)− 2.5698e+6 (1.67e+3)− 2.5780e+6 (2.14e+1)
SRN 3.0481e+4 (1.67e+1)− 3.0607e+4 (4.55e+0)− 3.0158e+4 (1.03e+1)− 8.8632e+3 (3.42e+3)− 3.0477e+4 (2.99e+1)− 3.0616e+4 (1.81e+0)
TNK 5.2377e-1 (2.28e-4)− 5.2374e-1 (5.02e-4)− 5.2279e-1 (2.67e-4)− 4.9262e-1 (7.57e-3)− 5.1812e-1 (1.14e-3)− 5.2535e-1 (2.46e-4)
WBD 9.7470e-1 (1.96e-4)− 9.7354e-1 (4.40e-4)− 2.7555e-1 (2.54e-2)− 2.9751e-1 (1.91e-1)− 9.7033e-1 (1.10e-3)− 9.7578e-1 (3.36e-4)

C1-DTLZ1 1.3606e-1 (1.26e-3)+ 1.3738e-1 (2.27e-3)+ 1.3742e-1 (1.16e-3)+ 1.3904e-1 (6.84e-4)+ 1.3843e-1 (7.95e-4)+ 1.3287e-1 (1.92e-3)
C2-DTLZ2 6.5074e-1 (7.05e-3)− 6.8091e-1 (5.08e-3)+ 6.7060e-1 (5.88e-4)+ 6.7260e-1 (2.65e-3)+ 6.8577e-1 (1.55e-3)+ 6.6149e-1 (4.45e-3)
C3-DTLZ4 7.9926e+0 (6.21e-1)≈ 8.1796e+0 (6.86e-1)+ 8.0787e+0 (9.62e-1)+ 7.9206e+0 (1.31e+0)≈ 8.3528e+0 (1.74e-2)+ 7.6524e+0 (8.96e-1)
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Fig. 4. Images of the feasible solutions provided by NSGA-II-CDP, A-NSGA-III, MOEA/D-ACDP, C-MOEA/DD, C-AnD, and HypE-FR in a run on CTP6.

It can be seen that the advantage of HypE-FR focuses
mainly on solving two-objective CMOPs (i.e., CTPs and real-
world CMOPs). Specifically, for CTPs, HypE-FR achieves the
similar or better performance on all instances in terms of both
IGD and HV compared with its competitors, except for C-
MOEA/DD on CTP1 (with respect to IGD) and MOEA/D-
ACDP on CTP8 (regarding both IGD and HV). For real-
world CMOPs, HypE-FR outperforms its competitors on most
instances in terms of both IGD and HV, and loses on no
more than one instance with respect to IGD. However, for
the CDTLZ problems, HypE-FR does not show its advantage

again. Instead, C-AnD can obtain the best overall performance
on these three CDTLZ problems, followed by C-MOEA/DD
and A-NSGA-III. The superiority of C-AnD may be attributed
to its angle-based selection and shift-based density estimation,
which can maintain the diversity of search directions and
delete poor individuals in a reasonable way. For C-MOEA/DD
and A-NSGA-III, their competitive performance demonstrates
the potential of using reference vectors or reference points to
guide the search in constrained multiobjective optimization.

In summary, the excellent performance of HypE-FR verifies
that indicator-based CMOEAs are worth extensively and inten-
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Fig. 5. Images of the feasible solutions provided by NSGA-II-CDP, A-NSGA-III, MOEA/D-ACDP, C-MOEA/DD, C-AnD, and HypE-FR in a run on
C2-DTLZ2.
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Fig. 6. Convergence graphs of NSGA-II-CDP, A-NSGA-III, MOEA/D-ACDP, C-MOEA/DD, C-AnD, and HypE on CTP6 in terms of IGD and HV.

sively studying in the future. For an engineering application,
HypE-FR is highly recommended for solving two-objective
CMOPs, while C-AnD is suggested for dealing with CMOPs
with three objective functions. The images of the feasible
solutions provided by these six CMOEAs in the end of a run
are plotted in Fig. 4 and Fig. 5 on CTP6 and C2-DTLZ2,
respectively. Besides, the convergence graphs of these six
compared algorithms on CTP6 are depicted in Fig. 6.

Remark 4: In the supplementary file, we also investigated
the effect of constraint-handling techniques in indicator-based
CMOEAs in Section S-I-A, and conducted the parameter
sensitivity analysis in Section S-I-B.

VI. CONCLUSION

In this paper, we made an attempt to extend indicator-based
MOEAs for solving CMOPs. Firstly, we discussed the rational-

ity and superiority behind the combination of indicator-based
MOEAs and constraint-handling techniques. Subsequently,
we proposed an indicator-based CMOEA framework which
can combine indicator-based MOEAs with constraint-handling
techniques in an easy way. Based on this proposed framework,
nine indicator-based CMOEAs were developed in this study.
The performance of these nine indicator-based CMOEAs was
tested on 19 widely used constrained multiobjective opti-
mization test functions. The comparison results revealed that
the indicator-based CMOEAs’ performance relies both on
indicator-based MOEAs and constraint-handling techniques,
and there does not exist an indicator-based CMOEA which
can beat all other indicator-based CMOEAs on each test
function. Some practical suggestions were given on how to
select appropriate indicator-based CMOEAs for addressing
different CMOPs. We also compared the performance of a
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superior indicator-based CMOEA (i.e., HypE-FR) with that of
five state-of-the-art CMOEAs on the above 19 test functions.
The experimental results demonstrated that HypE can achieve
the best overall performance with respect to both the IGD
and HV metrics. It was thus concluded that the research on
indicator-based CMOEAs deserves much attention from the
researchers in the community of evolutionary computation for
further promoting the development of evolutionary constrained
multiobjective optimization.

REFERENCES

[1] X. L. Zheng and L. Wang, “A collaborative multiobjective fruit fly
optimization algorithm for the resource constrained unrelated parallel
machine green scheduling problem,” IEEE Transactions on Systems Man
and Cybernetics: Systems, vol. 48, no. 5, pp. 790–800, 2018.

[2] W. Lakhdhar, R. Mzid, M. Khalgui, Z. Li, G. Frey, and A. Al-Ahmari,
“Multiobjective optimization approach for a portable development of
reconfigurable real-time systems: From specification to implementation,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 49,
no. 3, pp. 623–637, 2019.

[3] C. H. Chen and J. H. Chou, “Multiobjective optimization of airline crew
roster recovery problems under disruption conditions,” IEEE Transac-
tions on Systems Man and Cybernetics: Systems, vol. 47, no. 1, pp.
133–144, 2017.

[4] S. Wang and H. Chiang, “Constrained multiobjective nonlinear opti-
mization: A user preference enabling method,” IEEE Transactions on
Cybernetics, 2019, in press. DOI: 10.1109/TCYB.2018.2833281.

[5] J. Wang, W. Ren, Z. Zhang, H. Huang, and Y. Zhou, “A hybrid
multiobjective memetic algorithm for multiobjective periodic vehicle
routing problem with time windows,” IEEE Transactions on Systems,
Man, and Cybernetics: Systems, 2019, in press, DOI: 10.1109/TSM-
C.2018.2861879.

[6] Z. Liu and Y. Wang, “Handling constrained multiobjective optimization
problems with constraints in both the decision and objective spaces,”
IEEE Transactions on Evolutionary Computation, 2019, in press. DOI:
10.1109/TEVC.2019.2894743.

[7] Z. Ma and Y. Wang, “Evolutionary constrained multiobjective op-
timization: Test suite construction and performance comparisons,”
IEEE Transactions on Evolutionary Computation, 2019, in press. DOI:
10.1109/TEVC.2019.2896967.

[8] Z. Fan, W. Li, X. Cai, H. Han, F. Yi, Y. You, J. Mo, C. Wei,
and E. Goodman, “An improved epsilon constraint-handling method in
MOEA/D for CMOPs with large infeasible regions,” Soft Computing,
2019, in press. DOI: https://doi.org/10.1007/s00500-019-03794-x.

[9] Z. Fan, W. Li, X. Cai, H. Li, K. Hu, Q. Zhang, K. Deb, and E. D. Good-
man, “Difficulty adjustable and scalable constrained multi-objective
test problem toolkit,” Evolutionary Computation, 2019, in press. DOI:
https://doi.org/10.1162/evco a 00259.

[10] Y. Zhou, M. Zhu, J. Wang, Z. Zhang, Y. Xiang, and J. Zhang, “Tri-
goal evolution framework for constrained many-objective optimization,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019,
in press, DOI: 10.1109/TSMC.2018.2858843.

[11] A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P. N. Suganthan, and Q. Zhang,
“Multiobjective evolutionary algorithms: A survey of the state of the
art,” Swarm and Evolutionary Computation, vol. 1, no. 1, pp. 32–49,
2011.

[12] C. A. Coello Coello, “Theoretical and numerical constraint-handling
techniques used with evolutionary algorithms: a survey of the state of
the art,” Computer Methods in Applied Mechanics and Engineering, vol.
191, no. 11-12, pp. 1245–1287, 2002.

[13] Q. Kang, X. Song, M. Zhou, and L. Li, “A collaborative resource
allocation strategy for decomposition-based multiobjective evolutionary
algorithms,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 2019, in press, DOI: 10.1109/TSMC.2018.2818175.

[14] Y. R. Naidu and A. K. Ojha, “Solving multiobjective optimization
problems using hybrid cooperative invasive weed optimization with mul-
tiple populations,” IEEE Transactions on Systems Man and Cybernetics:
Systems, vol. 48, no. 6, pp. 821–832, 2018.

[15] R. Wang, R. C. Purshouse, and P. J. Fleming, “Preference-inspired co-
evolutionary algorithms for many-objective optimization,” IEEE Trans-
actions on Evolutionary Computation, vol. 17, no. 4, pp. 474–494, 2012.

[16] R. Wang, Z. Zhou, H. Ishibuchi, T. Liao, and T. Zhang, “Local-
ized weighted sum method for many-objective optimization,” IEEE
Transactions on Evolutionary Computation, 2017, in press, DOI:
10.1109/TEVC.2016.2611642.

[17] K. Li, R. Wang, T. Zhang, and H. Ishibuchi, “Evolutionary many-
objective optimization: A comparative study of the state-of-the-art,”
IEEE Access, vol. 6, pp. 26 194–26 214, 2018.

[18] B. Wang, H. Li, Q. Zhang, and Y. Wang, “Decomposition-based multi-
objective optimization for constrained evolutionary optimization,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 2019, in press,
DOI: 10.1109/TSMC.2018.2876335.

[19] Y. Wang, B. Wang, H. Li, and G. G. Yen, “Incorporating objective
function information into the feasibility rule for constrained evolutionary
optimization,” IEEE Transactions on Cybernetics, vol. 46, no. 12, pp.
2938–2952, 2016.

[20] Y. Wang and Z. Cai, “Constrained evolutionary optimization by means
of (µ+λ)-differential evolution and improved adaptive trade-off model,”
Evolutionary Computation, vol. 19, no. 2, pp. 249–285, 2011.

[21] ——, “Combining multiobjective optimization with differential evolu-
tion to solve constrained optimization problems,” IEEE Transactions on
Evolutionary Computation, vol. 16, no. 1, pp. 117–134, 2012.

[22] ——, “A dynamic hybrid framework for constrained evolutionary opti-
mization,” IEEE Transactions on Systems, Man, and Cybernetics, Part
B (Cybernetics), vol. 42, no. 1, pp. 203–217, 2012.

[23] S. Zeng, R. Jiao, C. Li, and R. Wang, “Constrained optimisation by solv-
ing equivalent dynamic loosely-constrained multiobjective optimisation
problem,” International Journal of Bio-Inspired Computation, vol. 13,
no. 2, pp. 86–101, 2019.

[24] S. Zeng, R. Jiao, C. Li, X. Li, and J. S. Alkasassbeh, “A general frame-
work of dynamic constrained multiobjective evolutionary algorithms for
constrained optimization,” IEEE transactions on cybernetics, vol. 47,
no. 9, pp. 2678–2688, 2017.

[25] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[26] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Transactions on Evolutionary Compu-
tation, vol. 11, no. 6, pp. 712–731, 2007.

[27] Z. Fan, Y. Fang, W. Li, J. Lu, X. Cai, and C. Wei, “A comparative study
of constrained multi-objective evolutionary algorithms on constrained
multi-objective optimization problems,” in 2017 IEEE Congress on
Evolutionary Computation (CEC). IEEE, 2017, pp. 209–216.

[28] W. Ning, B. Guo, Y. Yan, X. Wu, J. Wu, and Z. Dan, “Constrained
multi-objective optimization using constrained non-dominated sorting
combined with an improved hybrid multi-objective evolutionary algo-
rithm,” Engineering Optimization, vol. 49, no. 10, pp. 1645–1664, 2017.

[29] Z. Fan, H. Li, C. Wei, W. Li, H. Huang, X. Cai, and Z. Cai, “An
improved epsilon constraint handling method embedded in moea/d for
constrained multi-objective optimization problems,” 2016 IEEE Sympo-
sium Series on Computational Intelligence (SSCI), pp. 1–8, Dec 2016.

[30] Z. Fan, W. Li, X. Cai, H. Li, C. Wei, Q. Zhang, K. Deb, and E. D.
Goodman, “Push and pull search for solving constrained multi-objective
optimization problems,” Swarm and Evolutionary Computation, vol. 44,
no. 2, pp. 665–679, 2019.

[31] Z. Fan, Y. Fang, W. Li, X. Cai, C. Wei, and E. Goodman, “Moea/d
with angle-based constrained dominance principle for constrained multi-
objective optimization problems,” Applied Soft Computing, vol. 74,
no. 1, pp. 621–633, 2019.

[32] S. Jiang, J. Zhang, Y. S. Ong, A. N. Zhang, and P. S. Tan, “A
simple and fast hypervolume indicator-based multiobjective evolutionary
algorithm,” IEEE Transactions on Cybernetics, vol. 45, no. 10, pp. 2202–
2213, Oct 2015.

[33] J. Bader and E. Zitzler, “HypE: An algorithm for fast hypervolume-based
many-objective optimization,” Evolutionary Computation, vol. 19, no. 1,
pp. 45–76, 2011.

[34] E. Zitzler and S. Künzli, “Indicator-based selection in multiobjective
search,” in International Conference on Parallel Problem Solving from
Nature. Springer, 2004, pp. 832–842.

[35] Z.-Z. Liu, Y. Wang, and P.-Q. Huang, “A many-objective evolu-
tionary algorithm with angle-based selection and shift-based den-
sity estimation,” Information Sciences, 2019, in press, DOI: http-
s://doi.org/10.1016/j.ins.2018.06.063.

[36] K. Deb, “An efficient constraint handling method for genetic algorithms,”
Computer Methods in Applied Mechanics and Engineering, vol. 186,
no. 2, pp. 311–338, 2000.



13

[37] T. P. Runarsson and X. Yao, “Stochastic ranking for constrained evolu-
tionary optimization,” IEEE Transactions on Evolutionary Computation,
vol. 4, no. 3, pp. 284–294, Sep 2000.

[38] T. Takahama and S. Sakai, “Constrained optimization by the ε con-
strained differential evolution with an archive and gradient-based muta-
tion,” in IEEE Congress on Evolutionary Computation, July 2010, pp.
1–9.

[39] B. Li, J. Li, K. Tang, and X. Yao, “Many-objective evolutionary
algorithms: A survey,” ACM Computing Surveys (CSUR), vol. 48, no. 1,
p. 13, 2015.

[40] M. Emmerich, N. Beume, and B. Naujoks, “An EMO algorithm using
the hypervolume measure as selection criterion.” in EMO, vol. 3410.
Springer, 2005, pp. 62–76.

[41] I. Christian, H. Nikolaus, and R. Stefan, “Covariance matrix adaptation
for multi-objective optimization,” Evolutionary Computation, vol. 15,
no. 1, pp. 1–28, 2007.

[42] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the
strength pareto evolutionary algorithm for multiobjective optimization,”
Proceedings of Evolutionary Methods for Design, Optimization and
Control with Applications to Industrial Problems, EUROGEN’2001, pp.
95–100, 2001.

[43] H. Wang, L. Jiao, and X. Yao, “Two Arch2: An improved two-archive
algorithm for many-objective optimization,” IEEE Transactions on Evo-
lutionary Computation, vol. 19, no. 4, pp. 524–541, 2015.

[44] B. Li, K. Tang, J. Li, and X. Yao, “Stochastic ranking algorithm
for many-objective optimization based on multiple indicators,” IEEE
Transactions on Evolutionary Computation, vol. 20, no. 6, pp. 924–938,
2016.

[45] M. Li, S. Yang, and X. Liu, “Shift-based density estimation for pareto-
based algorithms in many-objective optimization,” IEEE Transactions
on Evolutionary Computation, vol. 18, no. 3, pp. 348–365, 2014.

[46] T. Pamulapati, R. Mallipeddi, and P. N. Suganthan, “ISDE+ -
— an indicator for multi and many-objective optimization,” IEEE
Transactions on Evolutionary Computation, 2019, in press, DOI:
10.1109/TEVC.2018.2848921.

[47] T. Takahama and S. Sakai, “Constrained optimization by ε constrained
particle swarm optimizer with ε-level control,” in Soft Computing as
Transdisciplinary Science and Technology. Springer, 2005, pp. 1019–
1029.

[48] B.-C. Wang, H.-X. Li, J.-P. Li, and Y. Wang, “Composite differential
evolution for constrained evolutionary optimization,” IEEE Transactions
on Systems, Man, and Cybernetics: Systems, vol. 49, no. 7, pp. 1482–
1495, 2019.

[49] E. Mezura-Montes and C. A. Coello Coello, “Constraint-handling in
nature-inspired numerical optimization: Past, present and future,” Swarm
and Evolutionary Computation, vol. 1, no. 4, pp. 173–194, 2011.

[50] C. Segura, C. A. Coello Coello, G. Miranda, and C. Len, “Using multi-
objective evolutionary algorithms for single-objective constrained and
unconstrained optimization,” Annals of Operations Research, vol. 240,
no. 1, pp. 217–250, 2016.

[51] K. Deb, A. Pratap, and T. Meyarivan, “Constrained test problems
for multi-objective evolutionary optimization,” in First International
Conference on Evolutionary Multi-Criterion Optimization (EMO 2001),
2000, pp. 284–298.

[52] T. T. Binh and U. Korn, “MOBES: A multiobjective evolution strategy
for constrained optimization problems,” in The Third International
Conference on Genetic Algorithms (Mendel 97), vol. 25, 1997, p. 27.

[53] P. D. Justesen, “Multi-objective optimization using evolutionary al-
gorithms,” University of Aarhus, Department of Computer Science,
Denmark, 2009.

[54] T. Ray and K. M. Liew, “A swarm metaphor for multiobjective design
optimization,” Engineering Optimization, vol. 34, no. 2, pp. 141–153,
2002.

[55] A. Osyczka and S. Kundu, “A new method to solve generalized
multicriteria optimization problems using the simple genetic algorithm,”
Structural Optimization, vol. 10, no. 2, pp. 94–99, Oct 1995.

[56] C. A. Coello Coello and G. T. Pulido, “Multiobjective structural op-
timization using a microgenetic algorithm,” Structural and Multidisci-
plinary Optimization, vol. 30, no. 5, pp. 388–403, 2005.

[57] N. Srinivas and K. Deb, “Multiobjective function optimization using
nondominated sorting genetic algorithms,” IEEE Transactions on Evo-
lutionary Computation, vol. 2, no. 3, pp. 1301–1308, 1994.

[58] M. Tanaka, H. Watanabe, Y. Furukawa, and T. Tanino, “GA-based
decision support system for multicriteria optimization,” in 1995 IEEE
International Conference on Systems, Man and Cybernetics. Intelligent
Systems for the 21st Century, vol. 2, Oct 1995, pp. 1556–1561 vol.2.

[59] H. Jain and K. Deb, “An evolutionary many-objective optimization
algorithm using reference-point based nondominated sorting approach,
Part II: Handling constraints and extending to an adaptive approach,”
IEEE Transactions on Evolutionary Computation, vol. 18, no. 4, pp.
602–622, 2014.

[60] C. A. Coello Coello, G. B. Lamont, D. A. Van Veldhuizen et al., Evo-
lutionary Algorithms for Solving Multi-objective Problems. Springer,
2007, vol. 5.

[61] E. Zitzler and L. Thiele, “Multiobjective optimization using evolutionary
algorithms – A comparative case study,” in International Conference on
Parallel Problem Solving from Nature. Springer, 1998, pp. 292–301.

[62] K. Li, K. Deb, Q. Zhang, and S. Kwong, “An evolutionary many-
objective optimization algorithm based on dominance and decomposi-
tion,” IEEE Transactions on Evolutionary Computation, vol. 19, no. 5,
pp. 694–716, 2015.

[63] Y. Tian, R. Cheng, X. Zhang, and Y. Jin, “PlatEMO: A matlab platform
for evolutionary multi-objective optimization [educational forum],” IEEE
Computational Intelligence Magazine, vol. 12, no. 4, pp. 73–87, 2017.

 

Zhi-Zhong Liu received the B.S. degree in automation from Central South University, Changsha, China, in 2013, 

where he is currently pursuing the Ph.D. degree in control science and engineering. His current research 

interests include evolutionary computation, bioinformatics, swarm intelligence, nonlinear equation systems, and 

multimodal optimization. 

 

 

Jia-Wei Huang received the B.S. degree in automation from Nanchang University, Nanchang, China, in 2011, 

and the M.S. degree in control science and engineering from Central South University, Changsha, China, in 

2016. His research interests include evolutionary computation, drug discovery, and bioinformatics. 

 

 

Yong Wang (M’08-SM’17) received the B.S. degree in automation from the Wuhan Institute of Technology, 

Wuhan, China, in 2003, and the M.S. degree in pattern recognition and intelligent systems and the Ph.D. degree 

in control science and engineering both from the Central South University (CSU), Changsha, China, in 2006 and 

2011, respectively. 

Page 13 of 14

For Review Only

IEEE Access

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Zhi-Zhong Liu received the B.S. degree in au-
tomation and the Ph.D. degree in control science
and engineering from the Central South University,
Changsha, China, in 2013 and 2019, respective-
ly. His current research interests include evolution-
ary computation, bioinformatics, swarm intelligence,
constrained optimization, and multimodal optimiza-
tion.

Yong Wang (M’08–SM’17) received the Ph.D. de-
gree in control science and engineering from the
Central South University, Changsha, China, in 2011.

He is a Professor with the School of Automa-
tion, Central South University, Changsha, China.
His current research interests include the theory,
algorithm design, and interdisciplinary applications
of computational intelligence.

Dr. Wang is an Associate Editor for the Swarm
and Evolutionary Computation. He was a Web of
Science highly cited researcher in Computer Science

in 2017 and 2018.

Bing-Chuan Wang Bing-Chuan Wang received the
B.S. degree in automation and the M.S. degree
in control science and engineering from Central
South University, Changsha, China, in 2013 and
2016, respectively, and the Ph.D. degree in system
engineering and engineering management from City
University of Hong Kong, Hong Kong, in 2019.

He is an Associate Professor with the School
of Automation, Central South University, Changsha,
China. His current research interests include evolu-
tionary computation, constrained optimization, and

intelligent modeling.



1

Supplementary File for “Indicator-Based
Constrained Multiobjective Evolutionary

Algorithms”

S-I. ADDITIONAL RESULTS AND DISCUSSIONS

A. Effect of Constraint-handling Techniques in Indicator-based CMOEAs

In this subsection, we investigated the influence of different constraint-handling techniques in indicator-based CMOEAs. To
this end, we considered three HypE-based CMOEAs (i.e., HypE-FR, HypE-SR, and HypE-ε). We tested these three algorithms
on CTP1 and recorded the feasible solutions provided by them during the evolution in Fig. S-2, Fig. S-3, and Fig. S-4,
respectively.

From Fig. S-2 and Fig. S-4, it is observed that the feasible solutions obtained by HypE-ε have a better distribution than
the feasible solutions obtained by HypE-FR at the early stage of evolution (i.e. the 50th generation). The reason might be
that compared with FR which prefers feasible solutions, in ε constrained method, the constrained boundary can be relaxed
to some extent (i.e., up to ε), which helps HypE-ε maintain some infeasible solutions with good objective function values
and low constraint violations. It should be noted that the maintenance of this kind of infeasible solutions is very necessary,
since they can help HypE-ε approach the PF from diverse search directions. As a result, HypE-ε can obtain a more widely-
distributed approximation set than HypE-FR. As for HypE-SR, it is interesting to observe from Fig. S-3 that as the evolution
continues, the obtained feasible solutions are biased toward a relatively small area. The reason might be that for CTP1, only
the top one-third portion of the original unconstrained Pareto-optimal region is feasible, while the other two-third region of
the constrained Pareto-optimal region comes from the constraints [1]. Note that in HypE-SR, some infeasible solutions with
good objective function values might be retained which affect the assignment of the fitness values for feasible solutions. An
example is presented in Fig. S-5. Due to the existence of C, A (lying near the top-one third portion of PF) will be preferred
to B (lying near the bottom two-third of PF) during the environmental selection of HypE-SR. As a result, feasible solutions
are biased toward the top one-third portion of PF as shown in Fig. S-3.

From the above discussion, we can conclude that not all constraint-handling techniques in constrained single-objective
optimization are effective in solving CMOPs. There is still a lot of work to be done in the future on how to select appropriate
constraint-handling techniques and indicator-based MOEAs, and how to combine them together.

B. Parameter Sensitivity Analysis

For ε constrained method and SR, they are not parameter-free methods. Parameter p in ε constrained method and parameter
Pf in SR can control the extent that the information of objective function is utilized, which is of essential importance in
balancing constraints and objective function.

First of all, we investigated the sensitivity of p in ε constrained method. We selected HypE-ε as the instance algorithm and
ran it with six different values of p: p = 0, p = 0.2, p = 0.4, p = 0.6, p = 0.8, and p = 0.99 1 over 30 independent runs on
CTPs. The average IGD values are shown in Fig. S-6. From Fig. S-6, it is observed that HypE-ε with p = 0.2 can achieve the
best performance in most instances (i.e. CTP1, CTP2, CTP4, CPT5, CTP6, CTP7, and CTP8). Hence, in this paper, p was set
to 0.2.

Similarly, we studied the sensitivity of Pf in SR. Herein, we chose IBEA-SR as the instance algorithm and ran it with six
different values of Pf : Pf = 0, Pf = 0.1, Pf = 0.2, Pf = 0.3, Pf = 0.4, and Pf = 0.5 over 30 independent runs on CTPs
2. The average IGD values are shown in Fig. S-7. From Fig. S-7, we can find that for CTP1, CTP3, CTP4, CTP5, and CTP8,
better results are obtained when Pf is close to 0.3. As for CTP2, CTP6, and CTP7, the best results are achieved when Pf is
close to 0.4, 0.1, and 0.5, respectively. In general, Pf = 0.3 is a good choice and is recommended in this paper.
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1From Eq. (14), we can find that the value of p cannot be equal to 1.
2According to [2], the value of Pf should not be larger than 0.5. It is claimed in [2] that a minor bias toward constraints encourages the evolution of

feasible solutions while still maintaining infeasible regions as potential bridges to move among feasible regions in the whole search space.
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Fig. S-1. Images of the feasible solutions provided by HypE-FR, HypE-SR, HypE-ε, IBEA-FR, IBEA-SR, IBEA-ε, ISDE-FR, ISDE-SR, and ISDE-ε in a
run on C1-DTLZ1.
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Fig. S-2. Images of the feasible solutions provided by HypE-FR during the evolution on CTP1.
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Fig. S-3. Images of the feasible solutions provided by HypE-SR during the evolution on CTP1.
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Fig. S-4. Images of the feasible solutions provided by HypE-ε during the evolution on CTP1.
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Fig. S-5. Illustration of the effect of infeasible solutions in HypE-SR. A and B are feasible solutions while C is an infeasible solution.
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Fig. S-6. Average IGD values obtained by HypE-ε with different δ values over 30 runs in CTPs

Fig. S-7. Average IGD values obtained by IBEA-SR with different Pf values over 30 runs in CTPs
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