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Abstract—In the field of evolutionary computation, there has 

been a growing interest in applying evolutionary algorithms to 
solve multimodal optimization problems (MMOPs). Due to the 
fact that an MMOP involves multiple optimal solutions, many 
niching methods have been suggested and incorporated into 
evolutionary algorithms for locating such optimal solutions in a 
single run. In this paper, we propose a novel transformation 
technique based on multiobjective optimization for MMOPs, 
called MOMMOP. MOMMOP transforms an MMOP into a 
multiobjective optimization problem with two conflicting 
objectives. After the above transformation, all the optimal 
solutions of an MMOP become the Pareto optimal solutions of 
the transformed problem. Thus, multiobjective evolutionary 
algorithms can be readily applied to find a set of representative 
Pareto optimal solutions of the transformed problem, and as a 
result, multiple optimal solutions of the original MMOP could 
also be simultaneously located in a single run. In principle, 
MOMMOP is an implicit niching method. In this paper, we also 
discuss two issues in MOMMOP and introduce two new 
comparison criteria. MOMMOP has been used to solve 20 
multimodal benchmark test functions, after combining with 
nondominated sorting and differential evolution. Systematic 
experiments have indicated that MOMMOP outperforms a 
number of methods for multimodal optimization, including four 
recent methods at the 2013 IEEE Congress on Evolutionary 
Computation, four state-of-the-art single-objective optimization 
based methods, and two well-known multiobjective optimization 
based approaches.  

 
Index Terms—Multimodal optimization problems, multiple 

optimal solutions, transformation technique, multiobjective 
optimization, evolutionary algorithms. 
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I. INTRODUCTION 
Many optimization problems in real-world applications 

exhibit multimodal property [1], [2], that is, multiple optimal 
solutions coexist. This kind of optimization problems is 
considered to be multimodal optimization problems 
(MMOPs). MMOPs have the same formulation as single-
objective optimization problems and can be mathematically 
expressed as follows: 

maximize/minimize ( )f xG                         (1) 
where 1( , , )Dx x x S= ∈

G …  is the decision vector, i i iL x U≤ ≤  
( {1, , })i D∈ …  is the ith decision variable, iL  and iU  are the 
lower and upper bounds of ix , respectively, D is the number 
of decision variables, ( )f xG  is the objective function, and S  
is the decision space defined as 

1
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i

S L U
=

= ∏                                       (2) 

Evolutionary algorithms (EAs) are a class of population 
based intelligent optimization methods. During the past four 
decades, EAs have been widely applied to solve MMOPs [3]. 
For an MMOP, it is desirable to maintain all the optimal 
solutions in a single run, and as a result, a user can choose 
one final solution to satisfy his/her demands. However, due to 
genetic drift [4], EAs are easy to lose the diversity of the 
population and tend to converge toward one of the optimal 
solutions during the evolution. In order to achieve the 
simultaneous locating of multiple optimal solutions of 
MMOPs, a variety of niching methods targeted at EAs have 
been developed. The preselection method suggested by 
Cavicchio [5] in 1970 is the first implementation of niching 
methods. Currently, the popular niching methods include 
clearing [6], fitness sharing [7], crowding [8], [9], [10], 
restricted tournament selection [11], speciation [12], etc. In 
addition, niching methods have also been embedded into 
numerous EA paradigms, such as genetic algorithm [13], 
artificial immune system [14], particle swarm optimization 
[15], differential evolution [16], evolution strategy [17], and 
firefly algorithm [18], to solve MMOPs. 

The similarity between MMOPs and multiobjective 
optimization problems (MOPs) is that both of them involve 
multiple optimal solutions. Recently, several attempts have 
been made to solve MMOPs by taking advantage of 
multiobjective optimization concepts [19], [20], [21]. This 
kind of methods usually transforms an MMOP into a MOP 
with two objectives (i.e., a biobjective optimization problem), 
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in which the first objective is the multimodal function itself, 
and the second objective is constructed based on the gradient 
information [19], [20] or the distance information [21] of the 
population. After the above transformation, it is expected that 
multiple optimal solutions of an MMOP can be obtained by 
using multiobjective EAs (MOEAs) [22], [23], [24] to deal 
with the transformed problem. However, it is necessary to 
note that the conflicting objectives are the prerequisite for the 
coexistence of multiple Pareto optimal solutions in MOPs. 
Although this kind of methods can alleviate the drawbacks of 
the existing niching methods (e.g., some problem-dependent 
niching parameters) to a certain degree, it cannot guarantee 
that the two objectives in the transformed problem totally 
conflict with each other. The above situation implies that 
optimizing the transformed problem by MOEAs may fail to 
concurrently locate multiple optimal solutions of the original 
MMOP in a single run. Moreover, under this condition, the 
relationship between the optimal solutions of the original 
MMOP and the Pareto optimal solutions of the transformed 
problem is difficult to verify theoretically. 

Based on the above consideration, in this paper we propose 
a novel transformation technique based on multiobjective 
optimization for MMOPs, called MOMMOP. MOMMOP 
also transforms an MMOP into a biobjective optimization 
problem; however, unlike the previous work, the two 
objectives in MOMMOP totally conflict with each other. 
Moreover, it can be proven that all the optimal solutions of an 
MMOP are the Pareto optimal solutions of the transformed 
problem. In principle, MOMMOP is an implicit niching 
method. After the above transformation, MOEAs are able to 
approximate the Pareto optimal solutions of the transformed 
problem in a single run, and as a result, multiple optimal 
solutions of an MMOP could also be obtained. In addition, 
two issues in MOMMOP have been identified, and two new 
comparison criteria have been designed to remedy these two 
issues. The performance of MOMMOP has been evaluated on 
20 multimodal benchmark test functions developed for the 
special session and competition on niching methods for 
multimodal function optimization of the 2013 IEEE Congress 
on Evolutionary Computation (IEEE CEC2013) [25]. The 
experimental results suggest that MOMMOP performs better 
than a variety of methods for multimodal optimization. 

The rest of this paper is organized as follows. Section II 
introduces MOPs and differential evolution [26]. Section III 
briefly reviews the related work. Section IV provides the 
details of the proposed MOMMOP. Moreover, the principles 
of MOMMOP are explained, and two issues in MOMMOP 
are addressed. Additionally in this section, MOMMOP is 
combined with nondominated sorting [22] and differential 
evolution to solve MMOPs. Section V presents the 
performance comparison between MOMMOP and four recent 
methods in IEEE CEC2013, four state-of-the-art single-
objective optimization based methods, and two well-known 
multiobjective optimization based approaches. Section VI 
demonstrates the effectiveness of the two new comparison 
criteria and investigates the effect of the parameter settings. 
Finally, Section VII concludes the paper. 

II. MULTIOBJECTIVE OPTIMIZATION PROBLEMS (MOPS) 
AND DIFFERENTIAL EVOLUTION (DE) 

A. Multiobjective Optimization Problems (MOPs) 
A MOP can be formulated as follows: 

minimize 1( ) ( ( ), , ( ))Mf x f x f x=
G G G G…                   (3) 

where 1( , , ) D
Dx x x X= ∈ ⊂ ℜ

G …  is the decision vector, ( {1,ix i ∈  
, })D… is the ith decision variable, D is the number of 

decision variables, X  is the decision space, ( ) Mf x Y∈ ⊂ ℜ
G G  is 

the objective vector, ( ) ( {1, , })if x i M∈
G …  is the ith objective, 

M  is the number of objectives, and Y  is the objective space. 
With respect to MOPs, the objectives always conflict with 

each other. Under this condition, there does not exist a single 
solution which can optimize all the objectives simultaneously. 
Hence, MOPs usually include a set of optimal solutions 
(called Pareto optimal solutions). There are several basic 
definitions in multiobjective optimization. 

Definition 1 (Pareto Dominance): Let uxG  and vxG  be two 
decision vectors, uxG  is said to Pareto dominate vxG , denoted as 

u vx xG G≺ , if {1, , }i M∀ ∈ … , ( ) ( )i u i vf x f x≤
G G , and {1, , },j M∃ ∈ …  

( ) ( ).j u j vf x f x<
G G  

Definition 2 (Pareto Optimal Solution): If a decision vector 
uxG  cannot be Pareto dominated by any other decision vector 

in the decision space, then uxG is called a Pareto optimal 
solution or a nondominated solution. 

Definition 3 (Pareto Set): The set of all the Pareto optimal 
solutions is called the Pareto set. 

Definition 4 (Pareto Front): The Pareto front represents the 
set of the objective vectors of all the Pareto optimal solutions. 

B. Differential Evolution (DE) 
Differential evolution (DE) was proposed by Storn and 

Price in 1995 [26]. As a main paradigm of EAs, DE utilizes 
mutation, crossover, and selection to refine the quality of the 
population iteratively. Let GP  be a population at generation 

,G which consists of N  individuals: 1, , .Nx xG G…  For each 
individual ixG  (also called a target vector), the mutation is 
implemented as follows: 

1 2 3( )i r r rv x F x x= + ⋅ −
G G G G                               (4) 

where 1r , 2r , and 3r  are mutually different integers chosen 
from [1,  ]N  and also different from i , F is the mutation factor, 
and ivG  is the mutant vector. 

After the mutation, the target vector ixG  and its mutant 
vector ivG  will undergo crossover: 

,
,

,

,
,

i j j rand
i j

i j

v if rand CR or j j
u

x otherwise
≤ =⎧⎪= ⎨

⎪⎩
              (5) 

where 1, , ,i N= … 1, , ,j D= … jrand  is a uniformly distributed 
random number between 0 and 1 and regenerated for each ,j  

randj  is an integer randomly chosen from [1, ],D CR  is the 
crossover control parameter, and ,i ju  is the jth element of the 
trial vector .iuG  
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Subsequently, the selection is performed between the target 
vector ixG  and its trial vector ,iuG  and the better one will 
survive into the next population: 

, ( ) ( )
,

i i i
i

i

u if f u f x
x

x otherwise
≤⎧

= ⎨
⎩

G G G
G

G                            (6) 

III. THE RELATED WORK 
Solving MMOPs by EAs has attracted a lot of attention 

during the past forty years, and it is still one of the hottest 
areas in the evolutionary computation research community. 
Recently, Das et al. [3] conducted a comprehensive survey on 
real-parameter evolutionary multimodal optimization. Recent 
developments during the last three years are outlined below. 

Preuss [27] proposed a niching covariance matrix 
adaptation evolution strategy (CMA-ES), in which CMA-ES 
[28] is adopted as a local search algorithm. Moreover, the 
proposed method includes two specific components. The first 
is the nearest-better clustering and the second is a high level 
strategy. Li [29] investigated the capability of particle swarm 
optimization (PSO) [30] using a ring topology to solve 
MMOPs. Based on the thorough analysis and experiments, Li 
has demonstrated that ring topology based PSO is able to 
induce stable niching behavior. Epitropakis et al. [31] 
introduced two mutation strategies to improve the niching 
ability of DE. In these two mutation strategies, the nearest 
neighbor of the target vector is employed as the base vector. 
Qu et al. [32] proposed a neighborhood based mutation and 
incorporated it into three niching DE variants for solving 
MMOPs. In the same year, Qu et al. [33] presented a local 
search method for the personal best of each particle and 
applied it to enhance the search ability and convergence 
speed of three niching PSO. Similar to [32], Qu et al. [34] 
exploited the information provided by the neighbors to 
improve the velocity update in the original PSO, and pro-
posed a distance-based locally informed PSO for multimodal 
optimization. Very recently, Biswas et al. [35] proposed a 
parent-centric normalized mutation with proximity-based 
crowding DE, which makes use of normalized search 
neighborhood. It is interesting to note that all the above 
methods exploit the neighborhood information to guide the 
search of multiple optimal solutions during the evolution. 

In IEEE CEC2013, several proposals were put forward. 
Based on the baseline DE mutation strategy in [31], 
Epitropakis et al. [36] integrated two novel mechanisms. The 
first mechanism is based on JADE [37], which is used to 
adapt the parameters of DE. In addition, an external dynamic 
archive along with a reinitialization scheme [38] is taken into 
account in the second mechanism. Molina et al. [39] 
proposed a niching variable mesh optimization. This method 
uses clearing with an adaptive niche radius and an external 
memory to store the current best solutions found. Xu et al. 
[40] introduced an attraction basin estimating genetic 
algorithm. It estimates the radius using a detect-multimodal 
scheme. Thereafter, the estimated radius is used to separate 
species. Moreover, a seed archive is introduced to store seeds 
for tracking different attraction basins. It is evident that 

archiving is consistently adopted by the above three methods. 
One of the advantages of archiving is that the performance of 
the niching methods is insensitive to the population size. 

Unlike the above methods, only recently have researchers 
suggested using multiobjective optimization concepts to solve 
MMOPs. In this kind of methods, an MMOP is usually 
transformed into a biobjective optimization problem and the 
first objective is the original multimodal function. Yao et al. 
[19] described a biobjective multipopulation genetic 
algorithm (BMPGA). BMPGA uses two separate yet 
complementary objectives to enrich the diversity of the 
population and to promote the exploration of the search space. 
In BMPGA, the second objective is the absolute value of the 
gradient of the original multimodal function. Deb and Saha 
[20] made several attempts to construct the second objective. 
Firstly, the second objective is constructed according to the 
norm of the gradient vector. Due to some practical difficulties 
with gradient-based methods, such as the requirement of 
gradient information and high computational time complexity, 
two neighborhood based approaches have been subsequently 
introduced, in which the second objective is constructed by 
counting the number of neighboring solutions superior to the 
current solution. Basak et al. [21] proposed a biobjective DE 
for multimodal optimization, called MOBiDE. In MOBiDE, 
the second objective is the mean distance of a solution from 
all other solutions in the same population, which should be 
maximized to avoid the population converging toward a 
single optimum. In the method proposed by Bandaru and Deb 
[41], the second objective is to maximize the diversity among 
the individuals in the population. Recognizing the fact that 
the two transformed objectives may be non-conflicting with 
each other, a modified dominance criterion is introduced. 
Very recently, Wessing et al. [42] investigated the ability of 
multiobjective selection methods for niching. They also 
pointed out that due to the remarkable similarities to 
multiobjective optimization, it should be beneficial to 
reinforce the research on multiobjective algorithms for 
multimodal optimization. 

According to the experimental results, multiobjectivization 
seems to be a very promising way for solving MMOPs. 
Currently, the second objective is usually constructed based 
on the gradient information [19], [20] or the distance 
information [21], [41] in this kind of methods. However, the 
above situation cannot guarantee the second objective always 
conflicts with the first objective (i.e., the original multimodal 
function). Thus, the capability of this kind of methods to 
locate multiple optimal solutions is limited. More importantly, 
it is very difficult to prove the relationship between the 
optimal solutions of the original MMOP and the Pareto 
optimal solutions of the transformed biobjective optimization 
problem theoretically. 

Based on the above consideration, in this paper we propose 
a novel transformation technique based on multiobjective 
optimization for MMOPs called MOMMOP. Despite the fact 
that MOMMOP also transforms an MMOP into a biobjective 
optimization problem, the two objectives of MOMMOP 
conflict with each other. Moreover, after the above transfor-
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mation, MOEAs could be readily incorporated to solve the 
transformed problem, and as a result, multiple optimal 
solutions of the original MMOP could be found in parallel. 

IV. PROPOSED METHOD 

A. MOMMOP 
MOMMOP transforms an MMOP into the following 

biobjective optimization problem: 

1 1 1 1

2 1 1 1

| ( ) |minimize  ( ) + ( )
| |

| ( ) |minimize  ( ) 1 ( )
| |

f x BestOFVf x x U L
WorstOFV BestOFV

f x BestOFVf x x U L
WorstOFV BestOFV

η

η

−⎧ = ⋅ − ⋅⎪ −⎪
⎨ −⎪ = − + ⋅ − ⋅
⎪ −⎩

GG

GG
(7) 

where 1x  is the first decision variable, ( )f xG  is the objective 
function of the current individual in the population, BestOFV  
records the best objective function value during the evolution, 
WorstOFV records the worst objective function value during 
the evolution, 1U  and 1L  are the upper and lower bounds of 
the first decision variable, respectively, and η  is the scaling 
factor. 

In principle, MOMMOP can be decomposed into two parts. 
The first part has the following form: 

1 1

2 1

minimize  ( )
minimize  ( ) 1

x x
x x

α
α

=⎧
⎨ = −⎩

G
G                            (8) 

It is evident from equation (8) that 1( )xα G  and 2 ( )xα G  conflict 
with each other. According to the related definitions of 
multiobjective optimization in Section II-A, the following 
two theorems can be easily derived. 

 Theorem 1: Each decision vector in the decision space is a 
Pareto optimal solution of equation (8). 

Theorem 2: The Pareto front of equation (8) is a line 
segment defined by “y=1-x” in the objective space. 

In addition, the second part of MOMMOP has the 
following form: 

1 1
| ( ) |minimize  ( ) ( )

| |
f x BestOFVx U L

WorstOFV BestOFV
β η−

= ⋅ − ⋅
−

GG       (9) 

It can be seen from equation (9) that for an optimal solution 
*xG  of an MMOP, *( ) 0.xβ =

G It is because BestOFV  
continuously memorizes the best objective function value of 
the population and under this condition *( )BestOFV f x=

G . In 
equation (9), the purpose of 1 1( )U L−  is to make the second 
part have a similar scale to the first part, since the value of 1x  
changes from 1L  to 1U  in the first part during the evolution. 

Theorem 3: All the optimal solutions of an MMOP are the 
Pareto optimal solutions of the transformed biobjective 
optimization problem (i.e., equation (7)). 

Theorem 4: The objective vectors of the MOMMOP for all 
the optimal solutions of an MMOP are located on the line 
segment defined by “y=1-x” in the objective space of 
equation (7). 

The above two theorems are easy to prove. Let *xG  be one 
of the optimal solutions of an MMOP. As pointed out 
previously, *( ) 0.xβ =

G  In this case, equation (7) is equivalent 
to equation (8). Thus, the conclusions in Theorem 1 and 
Theorem 2 clearly indicate that both Theorem 3 and Theorem 
4 hold. 

Indeed, Theorem 3 and Theorem 4 reflect the relationship 
between the original MMOP and the transformed biobjective 
optimization problem. We give an example to explain the 
above relationship. For instance, the equal maxima function 
[25] includes five optimal solutions as shown in Fig. 1(a). 
After the transformation based on equation (7), these optimal 
solutions are the Pareto optimal solutions of the transformed 
biobjective optimization problem, and the objective vectors 
of them are located on the line segment defined by “y=1-x” 
(see Fig. 1(b)). 

B. Why does MOMMOP Work? 
After the above introduction of MOMMOP, one may be 

interested in the reason why MOMMOP could be effective 
for MMOPs. We now employ an example to illustrate the 
principles of MOMMOP. 

The features of the illustrated MMOP have been shown in 
Fig. 2(a). This problem should be maximized. In addition, it 
contains one decision variable and two optimal solutions. 
Suppose that there are four solutions (denoted as ,ax  ,bx  ,cx  
and dx ) in this problem and their location information is: 
( , ( )) (0.1,1.0),a ax f x = ( , ( )) (0.15,0.97),b bx f x = ( , ( )) (0.2,c cx f x =  
0.85), and ( , ( )) (0.8,0.85).d dx f x =  We can observe from Fig. 
2(a) that ax  is one of the optimal solutions and that ,ax ,bx  
and cx  lie in the same basin of attraction. Suppose also that 
for this problem 1,BestOFV = 0,WorstOFV = 1 1,U = and 1 0.L =  

Based on the above information, equation (7) can be 
reformulated as follows: 
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  (b) 
Fig. 1. The equal maxima function in [25] is used to explain the relationship 
between the original multimodal function and the transformed biobjective 
optimization problem. (a) The five optimal solutions of the equal maxima 
function. (b) The objective vectors of these five optimal solutions according 
to equation (7). 
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1 1

2 1

minimize  ( ) + | ( ) 1|
minimize  ( ) 1 | ( ) 1|

f x x f x
f x x f x

η
η

= − ⋅⎧
⎨ = − + − ⋅⎩

G G
G G                  (10) 

In equation (10), if 1,η = the corresponding objective 
vectors of the four solutions are: 1 2( ( ), ( )) (0.1,0.9),a af x f x =  

1 2( ( ), ( )) (0.18,0.88),b bf x f x = 1 2( ( ), ( )) (0.35,0.95),c cf x f x =  and 

1 2( ( ), ( )) (0.95,0.35).d df x f x =  According to the definitions 
introduced in Section II-A, ,ax ,bx and dx are the 
nondominated solutions (as shown in Fig. 2(b)). In addition, 
if 4,η = the corresponding objective vectors of the four 
solutions are: 1 2( ( ), ( )) (0.1,0.9),a af x f x =  1 2( ( ), ( )) (0.27,b bf x f x =   
0.97), 1 2( ( ), ( )) (0.8,1.4),c cf x f x = and 1 2( ( ), ( )) (1.4,0.8).d df x f x =  
Under this condition, ax and dx are the nondominated 
solutions (as shown in Fig. 2(c)). 

From the above illustration, the principles of MOMMOP 
can be summarized as follows: 

 Although cx  and dx  have the same multimodal function 
value, ax  is more likely to Pareto dominate ,cx  both of 

which are located in the same basin of attraction. The 
above phenomenon signifies that in principle 
MOMMOP is an implicit niching technique, which 
verifies the rationality of MOMMOP to solve MMOPs. 

 We can observe from equation (10) that the Pareto 
dominance relationship between two solutions is 
dependent mainly on the decision variable (such as 1x ) 
and the objective function (such as ( )f x

G ), since the 
values of ,BestOFV ,WorstOFV 1,U 1,L and η  are the 
same for all the solutions. Thus, the essence of 
MOMMOP is to balance the decision variable and the 
objective function. Actually, such balance can be 
controlled by the scaling factor .η  For example, ax  can 
Pareto dominate cx  when 1,η = and ax  can Pareto 
dominate both bx  and cx  when 4,η = which implies that 
the larger the value of ,η  the higher the selection 
pressure of the population. 

It is necessary to emphasize that in this paper the value of 
η  gradually increases during the evolution, and as a result, 
the selection pressure also gradually increases, which can 
continuously enhance the quality of the population and 
motivate the population toward multiple optimal solutions. 

C. Two Issues in MOMMOP 
There are two issues we need to consider in MOMMOP. 

The first issue is that with respect to a special kind of 
MMOPs, some optimal solutions may have the same values 
in certain decision variables. For example, in the Vincent 
function with two decision variables [25], a number of 
optimal solutions have the same value in the first decision 
variable and a number of optimal solutions have the same 
value in the second decision variable as shown in Fig. 3(a). 
Due to the fact that only the first decision variable is adopted 
in equation (7), the optimal solutions with the same value in 
the first decision variable and their neighbors will be mapped 
into the same basin of attraction, in terms of the first decision 
variable1. Consequently, the potential individuals in the nei-
ghborhood of some optimal solutions might be unreasonably 
replaced by superior individuals in the vicinity of other 
 

1 Note, however, that according to the landscape of the whole decision 
space, such optimal solutions and their neighbors belong to different basins 
of attraction, see, for example, Fig. 3(a). 

Some optimal solutions 
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Fig. 3. The Vincent function with two decision variables [25] is used to
explain the first issue in MOMMOP. (a) Some optimal solutions have the 
same values in the first and second decision variables, respectively. (b) The 
two basins of attraction (BOA1 and BOA2) and eight individuals. (c) The 
eight individuals are mapped into the same basin of attraction in terms of the 
first decision variable. (d) The eight individuals are mapped into different 
basins of attraction in terms of the second decision variable. 
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Fig. 2. The schematic graph to illustrate the principles of MOMMOP. (a) The features of the illustrated MMOP. (b) The images of the four solutions in the 
objective space defined by equation (10) with 1.η = (c) The images of the four solutions in the objective space defined by equation (10) with 4.η =  
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optimal solutions during the evolution, because of the 
implicit niching feature of MOMMOP discussed in Section 
IV-B. Thus, some potential regions may include no individual 
in the end, which makes it difficult for MOMMOP to locate 
multiple optimal solutions in a single run. 

The above issue can be illustrated through Fig. 3(b) and 
Fig. 3(c). In Fig. 3(b), we concentrate on two basins of 
attraction denoted as BOA1 and BOA2. The optimal solutions 
in BOA1 and BOA2 have the same value in the first decision 
variable. Suppose that there are four individuals surrounding 
BOA1 and BOA2, respectively. Since different basins of 
attraction may have distinct properties (such as the size and 
topology structure), the individuals in them show different 
convergence performance. Suppose that the quality of the 
four individuals in BOA1 is higher than that of the four 
individuals in BOA2. According to the explanation in Section 
IV-B, the Pareto dominance relationship between two 
individuals depends mainly on 1x  and 1 2( , ).f x x 2 Moreover, it 
is clear from equation (7) that the second decision variable 2x  
is only exploited to compute the objective function 1 2( , ).f x x  
Consequently, the three-dimensional structure of the Vincent 
function in Fig. 3(a) can be simplified and mapped into 

1 1 2O ( , )x f x x  plane (see Fig. 3(c)) when the Pareto dominance 
relationship is considered. Thus, the eight individuals in 
BOA1 and BOA2 will be mapped into the same basin of 
attraction. As a result, the implicit niching feature of 
MOMMOP may lead to the four potential individuals in 
BOA2 being eliminated by the four superior individuals in 
BOA1 during the evolution, and the optimal solution 
contained by BOA2 cannot be found when the evolution 
terminates. 

 A possible way to address the first issue in MOMMOP is 
to use another decision variable, rather than the first decision 
variable, to construct the biobjective optimization problem. 
For example, when using the second decision variable in 
equation (7), the three-dimensional structure of the Vincent 
function in Fig. 3(a) can be simplified and mapped into 

2 1 2O ( , )x f x x  plane (see Fig. 3(d)). Afterward, the eight 
 

2  The Vincent function involves two decision variable 1x  and 2 ,x  

therefore 1 2( ) ( , ).f x f x x=
G  

individuals in Fig. 3(b) will be mapped into different basins 
of attraction. Thus, it is less likely that the four potential 
individuals in BOA2 are Pareto dominated by the four 
superior individuals in BOA1 based on the implicit niching 
feature of MOMMOP. Note, however, that some optimal 
solutions also have the same value in the second decision 
variable as shown in Fig. 3(a); therefore, the first issue in 
MOMMOP will still occur under this condition.  

Since we have no prior knowledge about the decision 
variables for which the optimal solutions have the same 
values, each decision variable is used to design a biobjective 
optimization problem similar to equation (7) in this paper. 
After the above process, there are D  biobjective optimization 
problems, which are denoted as 1 2, , , DBOP BOP BOP…  and 
described in Fig. 4. Furthermore, we introduce a new 
comparison criterion, in which a decision vector uxG  is said to 
dominate another decision vector vxG  if uxG  Pareto dominates 

vxG  on all the D  biobjective optimization problems, i.e., 

1 2 on    on      on u v u v u v Dx x BOP x x BOP x x BOP∧ ∧ ∧
G G G G G G≺ ≺ " ≺ (11) 

Next, we explain the second issue. In general, the larger the 
size of a basin of attraction, the more the number of 
individuals located in it, and vice versa. The first composition 
function in [25] has been taken as an example. As shown in 
Fig. 5(a), the basins of attraction with a smaller size may 
contain only one individual (such as individuals axG  and bxG ). 
Note that it is not a trivial task to improve the quality of a 
single individual in a basin of attraction through crossover 
and mutation since it is far from other individuals in the 
population. In particular, such an individual might be 
removed during the evolution due to its poor quality, which 
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Fig. 5. The first composition function with two decision variables in [25] is 
used to explain the second issue in MOMMOP. (a) The distribution of the 
population before the second comparison criterion is utilized. (b) The 
distribution of the population after the second comparison criterion is 
utilized.
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has a side effect on the performance of MOMMOP. On the 
contrary, the basins of attraction with a larger size may 
contain many individuals. Meanwhile, some individuals in 
the same basin may be quite similar to each other (such as 
individuals cxG  and ,dxG  individuals exG  and ,fxG  individuals gxG  
and ,hxG  and individuals ixG  and jxG  in Fig. 5(a)). Based on our 
observation, if such similar individuals lie in a very small 
vicinity of one optimal solution, they may be frequently 
nondominated with each other according to the Pareto 
dominance, and other individuals also cannot Pareto 
dominate them due to their high quality, which enables them 
to remain in the population during the evolution. It is evident 
that the computational resource will be seriously wasted 
under this condition.  

In order to alleviate the second issue, another new 
comparison criterion is introduced to complement the Pareto 
dominance, in which a decision vector uxG  dominates another 
decision vector vxG  if 

( ) is better than ( ) ( ( , )) 0.01u v u vf x f x distance normalization x x∧ <
G G G G (12) 

where ( )uf xG  and ( )vf xG  are the multimodal function values of 

uxG  and ,vxG  respectively, and ( ( , ))u vdistance normalization x xG G  
represents the Euclidean distance between the normalized uxG  
and vxG  (i.e., , ,( ) / ( )u i u i i i ix x L U L= − −  and , ,( ) /v i v i ix x L= −  
( )i iU L−  for every {1, , }i D∈ … ) in the decision space. If 

( ( , )) 0.01,u vdistance normalization x x <
G G  we consider uxG  and vxG  to 

be quite similar to each other. 
The comparison criterion in equation (12) is able to 

eliminate some quite similar individuals and make the 
distribution of the population more reasonable (see Fig. 5(b)). 

Remark 1: Bandaru and Deb [41] proposed a similar 
comparison criterion. However, their comparison criterion is 
based on the Pareto dominance. In contrast, our comparison 
criterion in equation (12) uses the information of the original 
multimodal function. More importantly, the motivations of 
our comparison criterion are to complement the Pareto 
dominance and to maintain a reasonable distribution of the 
population. Note that the goal of the comparison criterion in 
[41] is to alleviate the non-conflicting objectives of the 
transformed problem. 

D. Combining MOMMOP with MOEAs 
After transforming an MMOP into a MOP with two 

conflicting objectives, MOMMOP needs to be combined with 
a MOEA to solve the transformed problem. In this paper, 
MOMMOP is integrated with the nondominated sorting 
genetic algorithm II (NSGA-II) [22], and the implementation 
procedure is shown in Fig. 6. It is worth noting that we have 
made three modifications on the baseline NSGA-II: 

 In Step 7, the crossover and mutation of DE introduced 
in Section II-B are used to generate the offspring 
population. 

 In the nondominated sorting of Step 13, the comparison 
of individuals is based on the two new comparison 
criteria (i.e., equation (11) and equation (12)). For 

example, when comparing individual uxG  with individual 
,vxG  once one of the comparison criteria is satisfied, we 

call uxG  dominates .vxG  
 Similar to [23], in Step 20 the crowding distance of an 

individual is defined as the minimum Euclidean distance 
between it and other individuals of the population in the 
decision space. If several individuals have the same 
crowding distance, then the second minimum Euclidean 
distance is considered, and so on. 

E. Computational Time Complexity 
The computational time complexity is governed by the 

following two processes when combining MOMMOP with 
the NSGA-II variant: 

 The first is the comparison between pair-wise 
individuals according to equation (11) in Step 13 of Fig. 
6. The basic nondominated sorting in NSGA-II results 
in 2MN  comparisons, where M  is the number of 
objectives and N  is the population size. Since the 
Pareto dominance relationship between two individuals 
will be detected D  times in equation (11) due to the D  
biobjective optimization problems, the worst compu-
tational time complexity is 2(2 ).O DN  Note that when 

1: 0;G =     // G  is the generation number 
2: Generate an initial population 0 1{ , , }NP x x=

G G…  by uniformly and 
randomly sampling N  individuals in the decision space; 

3: Evaluate the multimodal function values of the initial population 
1( ), , ( );Nf x f xG G…  

4: Compute BestOFV  and ;WorstOFV  
5: ;FEs N=      // FEs records the number of fitness evaluations 
6: While FEs MaxFEs<  do      // MaxFEs  represents the maximum        

number of fitness evaluations 
7: Implement the crossover and mutation of DE introduced in Section 

II-B to produce an offspring population GQ ; 
8: Evaluate the multimodal function values of the offspring population 

;GQ  
9: ;FEs FEs N= +  
10: Update BestOFV and ;WorstOFV  
11: G G GH P Q= ∪ ; 

12: Compute the D  objective vectors of each individual in GH  
according to Fig. 4; 

13: Partition GH  into k Pareto fronts denoted as 1, , kF F…  by applying 
the nondominated sorting; 

14: 1GP φ+ =  and 1;i =  

15: While 1| | | |G iP F N+ + ≤  do   // 1| |GP +  and | |iF  denotes the number

of individuals in 1GP +  and iF , respectively 

16: 1 1G G iP P F+ += ∪ ; 
17: 1;i i= +  
18: End While 
19: 1 1 \G G iP P F+ += ; 

20: Find 1( | |)GN P +−  individuals with the largest crowding distances in 

iF  and incorporate them into 1GP + ; 
21: 1;G G= +  
22: End While 

Fig. 6. Combining MOMMOP with a NSGA-II variant. 
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comparing two individuals, if they are nondominated 
with each other in terms of the first biobjective optimi-
zation problem, then they are also nondominated with 
each other in terms of equation (11), which implies that 
it is unnecessary to compare them on the other ( 1)D −  
biobjective optimization problems under this condition. 
Therefore, the best computational time complexity is 

2(2 ).O N In the future, we will attempt to reduce the 
computational time complexity via the fast diversified 
selection proposed in [43]. 

 The second is the computing of the Euclidean distance 
according to equation (12) in Step 13 of Fig. 6. Since 
the Euclidean distance should be computed between 
pair-wise individuals of the combined population GH  in 
equation (12), the computational time complexity is 

2(4 ).O N  Note that although in Step 20 of Fig. 6, it is 
also necessary to compute the Euclidean distance, the 
resulting Euclidean distance in Step 13 of Fig. 6 can be 
directly utilized. 

Overall, the computational time complexity of MOMMOP 
ranges from 2(6 )O N  to 2 2(2 4 ).O DN N+  The computational 
time complexity of MOBiDE [21], a well-known multi-
objective optimization based approach for multimodal opti-
mization, is 2( ),gO DN DN+  where gN  is the number of 
candidate trial solutions generated. Therefore, MOMMOP 
has a similar computational time complexity to MOBiDE. In 
addition, since the single-objective optimization based 
niching techniques always need to compute the distance 
between pair-wise individuals in the population [3], the 
computational time complexity is usually 2( ).O N  In general, 
D N�  for multimodal optimization; thus, MOMMOP does 
not impose any serious burden compared with the single-
objective optimization based niching techniques. 

V. EXPERIMENTAL STUDY 
In this paper, 20 benchmark test functions developed for 

the IEEE CEC2013 special session and competition on 
niching methods for multimodal function optimization [25] 

have been employed to test the performance of MOMMOP. 
The first 10 test functions denoted as F1-F10 in Table I are 
the commonly used test functions in the community of 
evolutionary multimodal optimization. The remaining 10 test 
functions denoted as F11-F20 in Table I are the composition 
functions. Note that all the test functions should be 
maximized. The details of these 20 test functions can be 
found in [25]. 

A. Performance Measures 
When measuring the performance of an approach for 

MMOPs, we need to know the number of optimal solutions 
found by it in a single run. Li et al. [25] introduced an 
algorithm to achieve this purpose. First, all the individuals in 
the final population are ranked based on their objective 
function values in descending order. Afterward, the first 
individual is chosen and denoted as .x′G  If the function error 
value *( ( ) ( ))f x f x′−

G G  of this individual is less than ,ε  where 
*xG  is one of the optimal solutions and ε  is the accuracy level, 

then x′G  is stored into a predefined archive S  and deleted 
from the population. Subsequently, the first individual in the 
updated population is chosen and also denoted as .x′G  If 

*( ( ) ( ))f x f x ε′− ≤
G G  and if the Euclidean distances between x′G  

and all the individuals in S  are larger than the niche radius 
,r  then it is stored into S  and deleted from the population. 

The above procedure is repeated until the population contains 
no individuals. Finally, the number of optimal solutions 
found by an approach is equal to the number of individuals in 
the archive .S  In this paper, five different accuracy levels are 
utilized to compute the number of optimal solutions found by 
an approach, that is, 1.0E 01,ε = −  1.0E 02,−  1.0E 03,−  
1.0E 04,−  and 1.0E 05.−  

As suggested in [25], we use peak ratio (PR) and success 
rate (SR) as two performance measures to evaluate the 
performance of MOMMOP and to compare MOMMOP with 
other methods. The PR is the average number of optimal 
solutions found over all the runs divided by the known 
number of optimal solutions. A run is successful if all the 
optimal solutions have been found. The SR is the number of 
successful runs divided by the number of all the runs. 

B.  Experimental Results 
In this paper, 50 independent runs were performed for each 

test function according to the suggestion in [25]. In addition, 
the maximum number of fitness evaluations (FEs) MaxFEs  
and the population size N  for each test function were given 
in Table II. The mutation factor F  and the crossover control 
parameter CR  of DE were fixed to 0.5 and 0.7, respectively. 
The scaling factor η  in equation (7) was set to: 

TABLE I 
TEST FUNCTIONS 

 
F1 (Five-Uneven-Peak Trap) F6 (Shubert with 2D) F11 (Composition Function 1 with 2D) F16 (Composition Function 3 with 5D) 
F2 (Equal Maxima) F7 (Vincent with 2D) F12 (Composition Function 2 with 2D) F17 (Composition Function 4 with 5D) 
F3 (Uneven Decreasing Maxima) F8 (Shubert with 3D) F13 (Composition Function 3 with 2D) F18 (Composition Function 3 with 10D) 
F4 (Himmelblau) F9 (Vincent with 3D) F14 (Composition Function 3 with 3D) F19 (Composition Function 4 with 10D) 
F5 (Six-Hump Camel Back) F10 (Modified Rastrigin) F15 (Composition Function 4 with 3D) F20 (Composition Function 4 with 20D) 

TABLE II 
THE MAXIMUM NUMBER OF FES AND THE POPULATION SIZE 

 
Test Function MaxFEs  N  

F1-F5 5.0E+04 80 
F6 2.0E+05 100 
F7 2.0E+05 300 

F8-F9 4.0E+05 300 
F10 2.0E+05 100 

F11-F13 2.0E+05 200 
F14-F20 4.0E+05 200 
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340 ( )D CurrentFEs MaxFEsη =                     (13) 
where CurrentFEs  represents the current number of FEs. 

The PR and SR values provided by MOMMOP at five 
different accuracy levels for 20 test functions are summarized 
in the supplemental file. MOMMOP achieves 100% PR and 
100% SR for the first 10 test functions at all the accuracy 
levels except for test function F9, which means that 
MOMMOP has the capability to solve these test functions 
consistently. F9 involves 216 optimal solutions and the 
distances among these optimal solutions vary remarkably. 
Therefore, it is a very challenging task for the current 
methods to maintain all the optimal solutions of F9 in a single 
run. Note that for F9, 100% PR and 100% SR have been 
accomplished by MOMMOP at the first three accuracy levels 
(i.e., 1.0E 01,ε = − 1.0E 02,− and 1.0E 03).−  Moreover, the PR 
values surpass 0.97 for the other two accuracy levels, which 
implies that all the individuals in the population lie in a very 
small vicinity of diverse optimal solutions. The 10 compo-
sition functions are more complex than others. With respect 
to these composition functions, MOMMOP consistently 
converges to multiple optimal solutions except that only one 
optimal solution has been found for F20. We can also observe 
from the supplemental file that the successful runs arise for 
F11-F13. In particular, MOMMOP is able to consistently 
locate all the optimal solutions of F11 at the first accuracy 
level (i.e., 1.0E 01).ε = −  

The supplemental file plots the evolution of the average 
number of optimal solutions found by MOMMOP over 50 
runs against the number of FEs for 20 test functions 
with 1.0E 04.ε = −  The supplemental file clearly indicates that 
MOMMOP can not only find multiple optimal solutions for 
all the test functions with the exception of F20, but can also 
maintain these optimal solutions found during the evolution. 

C.  Comparison with Four Recent Methods in IEEE 
CEC2013 

Four methods have participated the special session and 
competition on niching methods for multimodal function 
optimization organized by Li et al. [25] in IEEE CEC2013. 
They are dADE/nrand/1 [36], NVMO [39], PNSGA-II [41], 
and modified NSGA-II [20] (called MNSGA-II in this paper), 
which have been briefly introduced in Section III. The 
performance of MOMMOP was first compared with that of 
these four recent methods. The experimental results of these 
four methods were directly taken from the original papers in 
order to ensure a fair comparison. It is worth noting that all 
the five compared methods implemented 50 independent runs 
and used the same MaxFEs  for each test function. 

The PR values of dADE/nrand/1, NVMO, PNSGA-II, 
MNSGA-II, and MOMMOP at the accuracy level ε =  
1.0E 04−  are summarized in the supplemental file. In order to 
test the statistical significance of the five compared methods, 
the multiple-problem Wilcoxon’s test [44] was carried out 
based on the PR values. It is necessary to emphasize that in 
this paper the multiple-problem Wilcoxon’s test was 
implemented by using KEEL software [45]. Table III 
summarizes the statistical test results. It can be seen from 
Table III that MOMMOP provides higher R+ values than R- 
values in all the cases. Furthermore, the p values of all the 
cases are less than 0.05, which means that MOMMOP is 
significantly better than the four competitors. 

To further determine the significant differences between 
MOMMOP and the four competitors, the Friedman’s test was 
conducted, in which the Bonferroni-Dunn method was used 
for the post-hoc test. The Friedman’s test was also 
implemented by using KEEL software [45]. Table IV 
provides the ranking of the five compared methods. As 
shown in Table IV, MOMMOP has the first ranking, 
followed by dADE/nrand/1. 

Based on the above comparison, we can conclude that, 
overall, MOMMOP is superior to the four recent methods for 
multimodal optimization. 

D. Comparison with Four State-of-the-art Single-objective 
Optimization Based Approaches 

To validate the effectiveness of our multiobjective 
formulation for MMOPs, MOMMOP was compared with 
four state-of-the-art single-objective optimization based 
approaches: NCDE [32], NSDE [32], LIPS [34], and r2pso 
[29]. For these four approaches, we ran the source codes 
provided by the authors for solving the 20 test functions in 
this paper. To make the comparison fair, NCDE, NSDE, 
LIPS, and r2pso implemented 50 independent runs and used 
the same MaxFEs  with MOMMOP for each test function. 
The PR values of NCDE, NSDE, LIPS, r2pso, and 
MOMMOP at the accuracy level 1.0E 04ε = −  are shown in 
the supplemental file. By making use of KEEL software [45], 

TABLE III 
RESULTS OF THE MULTIPLE-PROBLEM WILCOXON’S TEST FOR DADE/NRAND/1, NVMO, PNSGA-II, MNSGA-II, AND MOMMOP AT A 0.05 SIGNIFICANCE 

LEVEL AND AT A 0.1 SIGNIFICANCE LEVEL 
 

Algorithm R+ R- p-value α=0.05 α=0.1 
MOMMOP vs dADE/nrand/1 147.0 43.0 3.61E-02 Yes Yes 

MOMMOP vs NVMO 182.0 28.0 2.71E-03 Yes Yes 
MOMMOP vs PNSGA-II 185.0 5.0 3.81E-05 Yes Yes 
MOMMOP vs MNSGA-II 208.5 1.5 4.77E-06 Yes Yes 

TABLE IV 
RANKING OF DADE/NRAND/1, NVMO, PNSGA-II, MNSGA-II, AND 

MOMMOP BY THE FRIEDMAN’S TEST 
 

Algorithm Ranking 
MOMMOP 1.75 

dADE/nrand/1 2.275 
NVMO 2.75 

PNSGA-II 3.475 
MNSGA-II 4.75 
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the multiple-problem Wilcoxon’s test and the Friedman’s test 
have been implemented based on the PR values. Tables V 
and VI present the experimental results. 

As shown in Table V, MOMMOP provides higher R+ 
values than R- values in all the cases. In terms of the 
multiple-problem Wilcoxon’s test at α=0.05, significant 
differences can be observed in two cases (i.e., MOMMOP vs 
NCDE and MOMMOP vs r2pso). With respect to the 
multiple-problem Wilcoxon’s test at α=0.1, significant 
differences can be observed in all the cases, which indicates 
that MOMMOP is statistically superior to the four compe-
titors on the 20 test functions at α=0.1. In addition, we can 
observe from Table VI that MOMMOP has the best ranking, 
followed by LIPS according to the Friedman’s test. 

The above comparison clearly shows that MOMMOP has 
an edge over the four state-of-the-art single-objective optimi-
zation based approaches, which verified the effectiveness of 
our multiobjective formulation. Compared with the single-
objective formulation, the advantages of our multiobjective 
formulation are twofold: 1) after converting an MMOP into a 

MOP, multiple optimal solutions of an MMOP can be 
simultaneously located by a MOEA, and 2) the distribution of 
multiple optimal solutions can be maintained by the diversity 
mechanism of a MOEA. 

E. Comparison with Two State-of-the-art Multiobjective 
Optimization Based Approaches 

After verifying that MOMMOP obtains better performance 
than four recent methods in IEEE CEC2013 and four state-of-
the-art single-objective optimization based approaches, 
MOMMOP was further compared with two state-of-the-art 
multiobjective optimization based approaches for MMOPs: 
MOBiDE [21] and BMPGA [19]. It is noteworthy that 
Section V-C also includes two multiobjective optimization 
based approaches: PNSGA-II and MNSGA-II. 

Since eight test functions in this paper (i.e., F1-F7, and F9) 
have been used to test the performance of MOBiDE and 
BMPGA in [21], MOMMOP was compared with MOBiDE 
and BMPGA only on these eight test functions. We ran 
MOMMOP using the same experimental environment with 
MOBiDE and BMPGA. The PR values of the three compared 
methods are presented in the supplemental file. Note that the 
PR values of MOBiDE and BMPGA were directly taken 
from [21] to make the comparison fair. The multiple-problem 
Wilcoxon’s test and the Friedman’s test, executed by KEEL 
software [45], were used to detect the statistical differences of 
the three compared methods based on the PR values. Table 
VII and Table VIII collect the statistical test results. 

As shown in Table VII, MOMMOP achieves higher R+ 
values than R- values in all the cases. Moreover, the p value 
is less than 0.05 when comparing MOMMOP with BMPGA, 
which means that MOMMOP has more reliable performance. 
In addition, according to the Friedman’s test in Table VIII, 
MOMMOP exhibits the best ranking, followed by MOBiDE. 

Compared with MOBiDE and BMPGA, the superior 
performance of MOMMOP could be attributed to two aspects: 
1) the two objectives in MOMMOP fully conflict with each 
other, and 2) the optimal solutions of an MMOP are the 
Pareto optimal solutions of the transformed biobjective 
optimization problem. 

VI. DISCUSSION 
The main purpose of this section is to investigate the 

effectiveness of the two new comparison criteria proposed in 
this paper and the effect of the parameter settings on the 
performance of MOMMOP. For all the experiments in this 
section, 50 independent runs have been executed for 20 test 
functions and the peak ratio (PR) at the accuracy level 

TABLE VI 
RANKING OF NCDE, NSDE, LIPS, R2PSO, AND MOMMOP BY THE 

FRIEDMAN’S TEST 
 

Algorithm Ranking 
MOMMOP 1.875 

LIPS 2.525 
NSDE 2.725 
NCDE 3.25 
r2pso 4.625 

 
TABLE VII 

RESULTS OF THE MULTIPLE-PROBLEM WILCOXON’S TEST FOR MOBIDE, 
BMPGA, AND MOMMOP AT A 0.05 SIGNIFICANCE LEVEL AND AT A 0.1 

SIGNIFICANCE LEVEL 
 

Algorithm R+ R- p-value α=0.05 α=0.1 
MOMMOP 

vs 
MOBiDE 

23.0 5.0 1.56E-01 No No 

MOMMOP 
 vs 

 BMPGA 
28.0 5.0 1.56E-02 Yes Yes 

 
TABLE VIII 

RANKING OF MOBIDE, BMPGA, AND MOMMOP BY THE FRIEDMAN’S 
TEST 

 
Algorithm Ranking 
MOMMOP 1.375 
MOBiDE 1.75 
BMPGA 2.875 

TABLE V 
RESULTS OF THE MULTIPLE-PROBLEM WILCOXON’S TEST FOR NCDE, NSDE, LIPS, R2PSO, AND MOMMOP AT A 0.05 SIGNIFICANCE LEVEL AND AT A 0.1 

SIGNIFICANCE LEVEL 
 

Algorithm R+ R- p-value α=0.05 α=0.1 
MOMMOP vs NCDE 179.5 10.5 1.87E-04 Yes Yes 
MOMMOP vs NSDE 139.5 50.5 7.64E-02 No Yes 
MOMMOP vs LIPS 143.0 47.0 5.46E-02 No Yes 
MOMMOP vs r2pso 208.5 1.5 4.77E-06 Yes Yes 
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1.0E 04ε = −  has been recorded. Moreover, in order to show 
the significant differences of the compared methods, the 
multiple-problem Wilcoxon’s test and the Friedman’s test 
have been conducted by making use of KEEL software [45] 
based on the PR values. The parameter settings were kept 
unchanged unless we point out that new settings for one or 
some of the parameters have been adopted with the aim of 
parameter study. 

A. Effectiveness of Two New Comparison Criteria 
In Section IV-C, we discuss two issues in MOMMOP and 

introduce two new comparison criteria (i.e., equations (11) 
and (12)). In order to ascertain the effectiveness of these two 
comparison criteria, two additional experiments have been 
carried out. In this first experiment, only one biobjective 
optimization problem rather than D  biobjective optimization 
problems is constructed, by taking advantage of one 
randomly chosen decision variable ( {1, , })ix i D∈ …  at each 
generation. This MOMMOP variant is called MOMMOP1. 
The second experiment removes the second comparison 
criterion and is denoted as MOMMOP2. The PR values of 
MOMMOP1, MOMMOP2, and MOMMOP are summarized 
in the supplemental file. 

1) Effectiveness of the First New Comparison Criterion: 
The PR values derived from MOMMOP1 drastically decrease 
for nine test functions (i.e., F7-F9, F11, F12, F15, and F17-
F19) compared with those provided by MOMMOP. Among 
these nine test functions, F7-F9 have a unique characteristic 
(i.e., some optimal solutions have the same values in certain 
decision variables). As analyzed in Section IV-C, for this 
kind of MMOPs, if only one decision variable is chosen to 
construct the biobjective optimization problem in equation 
(7), some potential individuals might be eliminated from the 
population unreasonably and some basins of attraction will be 
neglected during the evolution. Therefore, MOMMOP1 
suffers from significant performance degradation for these 
three test functions. In F11, F12, F15, and F17-F19, the 
values of certain decision variables are very similar for some 
optimal solutions; therefore, MOMMOP1 faces a similar 

difficulty as in F7-F9 when solving these six test functions. It 
is interesting to note that although F6 and F10 belong to the 
same kind of MMOPs as F7-F9, there is no performance 
difference between MOMMOP and MOMMOP1 for them. It 
may be because the individuals in different basins of 
attraction have similar convergence speed and quality. As a 
result, the possibility that the replacement takes place over 
different basins of attraction drastically decreases, and 
MOMMOP1 can succeed in locating all the optimal solutions 
at the end of a run. 

We can conclude from the above comparison that the first 
new comparison criterion is quite effective for solving the 
MMOPs in which some optimal solutions have the same or 
similar values in certain decision variables. 

2) Effectiveness of the Second New Comparison Criterion: 
The PR values provided by MOMMOP are of a higher 
quality than those of MOMMOP2 for 13 test functions (i.e., 
F4, F7-F9, and F11-F19). Moreover, it can be observed that 
the PR values of MOMMOP2 are less than 0.1 for six test 
functions (i.e., F4, F14-F16, F18, and F19). Especially, 
MOMMOP2 cannot find any optimal solution for F18. 

The above comparison suggests that MOMMOP2 cannot 
maintain as many optimal solutions as MOMMOP for a 
majority of test functions, and that MOMMOP2 is unable to 
provide the results with high accuracy for some complex test 
functions. The poor performance of MOMMOP2 can be 
attributed to its inability to make an appropriate distribution 
of the population. The above experimental results also 
demonstrate the effectiveness of the second new comparison 
criterion to balance the population distribution. 

Remark 2: From Table IX, MOMMOP provides higher R+ 
values than R- values in all the cases. Furthermore, the p 
values of all the cases are less than 0.05, which means that 
MOMMOP performs much better than both MOMMOP1 and 
MOMMOP2. Moreover, from Table X, MOMMOP 
accomplishes the best ranking, followed by MOMMOP1. 
MOMMOP2 gets the worst ranking, which signifies that the 
second new comparison criterion plays a more important role 
in locating multiple optimal solutions for MOMMOP. 

B. Effect of the Parameter Settings 
1) Effect of the Distance Parameter in Equation (12): In 

equation (12), there is a distance parameter (i.e., 0.01). As 
mentioned previously, this parameter has the capability of 
adjusting the distribution of the population. If the value of 
this parameter is too big, unreasonable replacement may arise 
over different basins of attraction if some global peaks are 
very close to each other, which has a negative effect on the 
coexistence of multiple optimal solutions in the population. 
However, too small of a value may also lead to performance 
degradation since the second new comparison criterion may 
be utilized with a low probability for some test functions due 
to the fact that the distance between pair-wise individuals 
may always be bigger than the distance parameter.  

In order to ascertain the effect of the distance parameter on 
the performance of MOMMOP, we tested four different 
values: 0.001, 0.005, 0.01, and 0.05. MOMMOP with the 
above four values are denoted as MOMMOP_dp1, 
MOMMOP_dp2, MOMMOP_dp3, and MOMMOP_dp4, 

TABLE IX 
RESULTS OF THE MULTIPLE-PROBLEM WILCOXON’S TEST FOR 

MOMMOP1, MOMMOP2, AND MOMMOP AT A 0.05 SIGNIFICANCE 
LEVEL AND AT A 0.1 SIGNIFICANCE LEVEL 

 

Algorithm R+ R- p-value α=0.05 α=0.1 
MOMMOP  

vs  
MOMMOP1 

162.5 27.5 4.95E-03 Yes Yes 

MOMMOP  
vs  

MOMMOP2 
179.5 10.5 1.87E-04 Yes Yes 

 
TABLE X 

RANKING OF MOMMOP1, MOMMOP2, AND MOMMOP BY THE 
FRIEDMAN’S TEST 

 

Algorithm Ranking 
MOMMOP 1.45 
MOMMOP1 2.1 
MOMMOP2 2.45 
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respectively. The PR values of these four algorithms are 
summarized in the supplemental file. 

Considering the statistical test results in Tables XI and XII, 
we can see that MOMMOP_dp3 is significantly better than 
both MOMMOP_dp1 and MOMMOP_dp4. It seems that 
MOMMOP_dp2 and MOMMOP_dp3 have similar overall 
performance. 

Based on the above discussion, a value between 0.005 and 
0.01 is recommended for the distance parameter in equation 
(12). 

2) Effect of the Scaling Parameter in Equation (13): In 
equation (13), the scaling factor η  was set in a dynamic 
fashion. Note that equation (13) also contains a scaling 
parameter (i.e., 40). As analyzed in Section IV-B, this scaling 
parameter is effective for balancing the decision variable and 
the objective function and controlling the selection pressure 
of the population. If the value of this scaling parameter is too 
small, the convergence accuracy of the population will 
become low. On the contrary, if the value of this scaling 
parameter is too big, the algorithm may suffer from 
premature convergence. Consequently, a suitable value 
should be chosen for this parameter. 

The effect of the scaling parameter on the performance of 
MOMMOP has been investigated by using five different 
values: 10, 30, 40, 50, and 70. MOMMOP with the above 
five values are denoted as MOMMOP_sp1, MOMMOP_sp2, 
MOMMOP_sp3, MOMMOP_sp4, and MOMMOP_sp5, 
respectively. The PR values of the above five algorithms are 
summarized in the supplemental file. 

Tables XIII and XIV verify that MOMMOP_sp3 performs 
significantly better than both MOMMOP_sp1 and 
MOMMOP_sp5. In addition, the experimental results of 
Tables XIII and XIV also suggest that a value between 30 and 
50 is a good choice for the scaling parameter in equation (13). 

VII. CONCLUSION 
Multimodal optimization problems (MMOPs) have a 

similarity with multiobjective optimization problems (MOPs), 
that is, both of them involve multiple optimal solutions. In 
this paper, we have focused on the issue of whether an 
MMOP can be transformed into a MOP, and as a result, 
whether all the optimal solutions of the original multimodal 
function can become the Pareto optimal solutions of the 
transformed problem. Along this line, a novel transformation 
technique called MOMMOP has been proposed based on 
multiobjective optimization. MOMMOP transforms an 
MMOP into a MOP with two conflicting objectives. 
According to our analysis, MOMMOP provides a feasible 
answer to the above issue. After the above transformation, a 
MOEA can be tailored to solve the transformed problem and 
multiple optimal solutions of the original MMOP could be 
simultaneously located in a single run. We have also 
presented two new comparison criteria. The first comparison 
criterion enables MOMMOP to solve a special kind of 
MMOPs in which some optimal solutions have the same or 
similar values in certain decision variables. Additionally, 
MOMMOP has the capability to maintain an appropriate 
distribution of the population via the second comparison 
criterion. 

MOMMOP has been evaluated on 20 multimodal 
benchmark test functions in [25], after combining with a 
NSGA-II variant. The performance of MOMMOP has been 
compared with that of a number of methods for multimodal 
optimization, including four recent methods in IEEE 

TABLE XI 
RESULTS OF THE MULTIPLE-PROBLEM WILCOXON’S TEST FOR 

MOMMOP_DP1, MOMMOP_DP2, MOMMOP_DP3, AND MOMMOP_DP4 
AT A 0.05 SIGNIFICANCE LEVEL AND AT A 0.1 SIGNIFICANCE LEVEL 

 

Algorithm R+ R- p-value α=0.05 α=0.1
MOMMOP_dp3  

vs  
MOMMOP_dp1 

171.0 39.0 1.21E-02 Yes Yes 

MOMMOP_dp3 
 vs  

MOMMOP_dp2 
121.5 88.5 5.26E-01 No No 

MOMMOP_dp3 
 vs  

MOMMOP_dp4 
162.0 28.0 5.33E-03 Yes Yes 

 
TABLE XII 

RANKING OF MOMMOP_DP1, MOMMOP_DP2, MOMMOP_DP3, AND 
MOMMOP_DP4 BY THE FRIEDMAN’S TEST 

 

Algorithm Ranking 
MOMMOP_dp3 2.025 
MOMMOP_dp2 2.125 
MOMMOP_dp1 2.825 
MOMMOP_dp4 3.025 

 

TABLE XIII 
RESULTS OF THE MULTIPLE-PROBLEM WILCOXON’S TEST FOR 

MOMMOP_SP1, MOMMOP_SP2, MOMMOP_SP3, MOMMOP_SP4, AND 
MOMMOP_SP5 AT A 0.05 SIGNIFICANCE LEVEL AND AT A 0.1 

SIGNIFICANCE LEVEL 
 

Algorithm R+ R- p-value α=0.05 α=0.1
MOMMOP_sp3

 vs  
MOMMOP_sp1

151.0 39.0 2.23E-02 Yes Yes 

MOMMOP_sp3
 vs  

MOMMOP_sp2
137.5 52.5 9.15E-02 No Yes 

MOMMOP_sp3
 vs  

MOMMOP_sp4
122.0 68.0 2.68E-01 No No 

MOMMOP_sp3
 vs  

MOMMOP_sp5
182.5 27.5 3.59E-03 Yes Yes 

 
TABLE XIV 

RANKING OF MOMMOP_SP1, MOMMOP_SP2, MOMMOP_SP3, 
MOMMOP_SP4, AND MOMMOP_SP5 BY THE FRIEDMAN’S TEST 

 

Algorithm Ranking 
MOMMOP_sp3 2.375 
MOMMOP_sp4 2.7 
MOMMOP_sp2 2.8 
MOMMOP_sp1 3.45 
MOMMOP_sp5 3.675 
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CEC2013, four state-of-the-art single-objective optimization 
based methods, and two well-known multiobjective optimiza-
tion based approaches. The experimental results suggest that 
MOMMOP performs better than the ten competitors. Finally, 
the effectiveness of the two new comparison criteria and the 
effect of the parameter settings have been investigated by 
experiments. 

The future work includes five aspects: 
 In MOMMOP, we introduce a scaling factor ,η  the aim 

of which is to make a tradeoff between the decision 
variable and the objective function in equation (7). This 
paper employs a dynamic setting for .η  One future work 
is to adapt η  in an adaptive or self-adaptive way. 

 Recent studies introduced in Section III indicate that the 
neighborhood information and archiving turn out to be 
very useful in evolutionary multimodal optimization. 
The neighborhood information can be used to enhance 
the convergence speed and the solution quality of the 
population, and the archiving can maintain the optimal 
solutions found and make the method insensitive to the 
population size. Therefore, in the future we will exploit 
them to further improve the performance of MOMMOP. 

 When solving MMOPs by EAs, the search engine also 
plays a critical role. As the main focus of this paper is 
the transformation technique, a classic DE [26] has been 
used. In the future, we intend to design a more powerful 
search engine for MOMMOP. 

 Due to space limitations, in this paper, MOMMOP has 
only been combined with a NSGA-II variant. In the 
future, we will combine MOMMOP with other excellent 
MOEAs to solve MMOPs, such as SPEA2 [23] and 
MOEA/D [24]. 

 We are considering the application of MOMMOP to a 
few real-world MMOPs, such as electromagnetic 
optimization, clustering, finding Nash equilibrium of 
multi-player games, and so on. Moreover, we will use a 
set of tough MMOPs in [46] to test the effectiveness of 
MOMMOP in our future work. 

The Matlab source code of MOMMOP can be downloaded 
from Y. Wang’s homepage: http://ist.csu.edu.cn/YongWang. 
htm 

ACKNOWLEDGEMENT 
The authors would like to thank Prof. P. N. Suganthan, 

Prof. B. Y. Qu, and Prof. S. Das for providing the source 
codes of NCDE, NSDE, and LIPS, and Prof. X. Li for 
providing the source code of r2pso. The authors also 
sincerely thank the associate editor and the three anonymous 
reviewers for their constructive comments and suggestions. 

REFERENCES 
[1] E. Dilettoso and N. Salerno, “A self-adaptive niching genetic 

algorithm for multimodal optimization of electromagnetic devices,” 
IEEE Transactions on Magnetics, vol. 42, no.4, pp. 1203-1206, 2006. 

[2] C. Grappiolo, J. Togelius, and G. N. Yannakakis, “Shifting niches for 
community structure detection,” in Proc. CEC, 2013, pp. 111-118. 

[3] S. Das, S. Maity, B. Y. Qu, and P. Suganthan, “Real-parameter 
evolutionary multimodal optimization – a survey of the state-of-the-
art,” Swarm and Evolutionary Computation, vol. 1, no. 2, pp. 71-88, 
2011. 

[4] G. Guo and S. Yu, “Evolutionary parallel local search for function 
optimization”, IEEE Trans. Syst, Man, Cybern. B, vol. 33, no. 6, pp. 
864-876, 2003. 

[5] D. Cavicchio, “Adapting search using simulated evolution,” Ph.D. 
Dissertation, Univ. Michigan, Ann Arbor, 1970. 

[6] A Pétrowski, “A clearing procedure as a niching method for genetic 
algorithms,” in Proc. IEEE Int. Conf. Evol. Comput., 1996, pp. 798-
803. 

[7] D. E. Goldberg and J. Richardson, “Genetic algorithms with sharing 
for multimodal function optimization,” in Proceedings of the second 
International Conference on Genetic Algorithms, 1987, pp. 41-49. 

[8] K. A. De Jong, “An analysis of the behavior of a class of genetic 
adaptive systems,” Doctoral dissertation, Comput. Commun. Sci., 
Univ. Michigan, Ann Arbor, MI, 1975. 

[9] S. Mahfoud, “Niching methods for genetic algorithms,” Doctoral 
dissertation, Comput. Sci., Univ. Illinois, Urbana, IL, 1995. 

[10] O. Mengsheol and D. Goldberg, “Probabilistic crowding: 
Deterministic crowding with probabilistic replacement,” in Proc. 
GECCO, 1999, pp. 409-416. 

[11] G. R. Harik, “Finding multimodal solutions using restricted 
tournament selection,” in Proc. 6th Int. Conf. Genet. Algorithms, 1995, 
pp. 24-31. 

[12] J.-P. Li, M. E. Balazs, G. T. Parks, and P. J. Clarkson, “A species 
conserving genetic algorithm for multimodal function optimization,” 
Evol. Comput., vol. 10, no. 3, pp. 207-234, 2002. 

[13] O. J. Mengshoel and D. E. Goldberg, “The crowding approach to 
niching in genetic algorithms,” Evol. Comput., vol. 16, no. 3, pp. 315-
354, 2008. 

[14] L. N. de Castro and J. Timmis, “An artificial immune network for 
multimodal function optimization,” in Proc. CEC, 2002, pp. 699-704. 

[15] J. Barrera and C. A. Coello Coello, “A review of particle swarm 
optimization methods used for multimodal optimization,” in Swarm 
Intelligence for Knowledge-Based Systems, Springer-Verlag, 2010. 

[16] R. Thomsen, “Multimodal optimization using crowding-based 
differential evolution,” in Proc. CEC, 2004, pp. 1382-1389. 

[17] O. M. Shir, M. Emmerich, and T. Bäck, “Adaptive niche radii and 
niche shapes approaches for niching with the CMA-ES,” Evol. 
Comput., vol. 18, no. 1, pp. 97-126, 2010. 

[18] X. S. Yang, “Firefly algorithms for multimodal optimization,” in 
Stochastic Algorithms: Foundations and Applications, SAGA 2009, 
Lecture Notes in Computer Science, vol. 5792, Springer-Verlag, 
Berlin, 2009, pp. 169-178. 

[19] J. Yao, N. Kharma, and P. Grogono, “Bi-objective multipopulation 
genetic algorithm for multimodal function optimization”, IEEE Trans. 
Evol. Comput., vol. 14, no. 1, pp. 80-102, 2010. 

[20] K. Deb and A. Saha, “Multimodal optimization using a bi-objective 
evolutionary algorithm,” Evol. Comput., vol. 20, no. 1, pp. 27-62, 
2012. 

[21] A. Basak, S. Das, and K. C. Tan, “Multimodal optimization using a bi-
objective differential evolution algorithm enhanced with mean 
distance based selection,” IEEE Trans. Evol. Comput., vol. 17, no. 5, 
pp. 666-685, 2013. 

[22] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist 
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. 
Comput., vol. 6, no. 2, pp. 182-197, 2002. 

[23] E. Zitzler, M. Laumannns, and L. Thiele, “SPEA2: Improving the 
strength Pareto evolutionary algorithm for multiobjective 
optimization,” in Proc. of the EUROGEN 2001—Evolutionary 
Methods for Design, Optimization and Control with Applications to 
Industrial Problem, 2001, pp. 95-100. 

[24] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary 
algorithm based on decomposition,” IEEE Trans. Evol. Comput., vol. 
11, no. 6, pp. 712-731, 2007. 

[25] X. Li, A. Engelbrecht, and M. G. Epitropakis, “Benchmark functions 
for CEC’2013 special session and competition on niching methods for 
multimodal function optimization,” Evolutionary Computation and 
Machine Learning Group, RMIT University, Melbourne, Australia, 
Tech. Rep., 2013. 

[26] R. Storn and K. Price, “Differential evolution: A simple and efficient 
adaptive scheme for global optimization over continuous spaces,” 
Berkeley, CA, Tech. Rep. TR-95-012, 1995. 



IEEE Transactions on Cybernetics 14

[27] M. Preuss, “Niching the CMA-ES via nearest-better clustering,” in 
Proc. GECCO, 2010, pp. 1711-1718. 

[28] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evolut. Comput., vol. 9, no. 2, pp. 
159-195, 2001. 

[29] X. Li, “Niching without niching parameters: particle swarm 
optimization using a ring topology,” IEEE Trans. Evol. Comput., vol. 
14, no. 1, pp. 150-169, 2010. 

[30] R. C. Eberhart and J. Kennedy, “A new optimizer using particle 
swarm theory,” in Proc. 6th Int. Symp. Micromachine Human Sci., 
Nagoya, Japan, 1995, pp. 39-43. 

[31] M. G. Epitropakis, V. P. Plagianakos, and M. N. Vrahatis, “Finding 
multiple global optima exploiting differential evolution’s niching 
capability,” in 2011 IEEE Symposium on Differential Evolution (SDE), 
2011, pp. 1-8. 

[32] B. Y. Qu, P. N. Suganthan, and J. J. Liang, “Differential evolution 
with neighborhood mutation for multimodal optimization,” IEEE 
Trans. Evol. Comput., vol. 16, no. 5, pp. 601-614, 2012. 

[33] B. Y. Qu, J. J. Liang, and P. N. Suganthan, “Niching particle swarm 
optimization with local search for multi-modal optimization,” Inf. Sci., 
vol. 197, pp. 131-143, 2012. 

[34] B. Y. Qu, P. N. Suganthan, and S. Das, “A distance-based locally 
informed particle swarm model for multimodal optimization,” IEEE 
Trans. Evol. Comput., vol. 17, no. 13, pp. 387-402, 2013. 

[35] S. Biswas, S. Kundu, and S. Das, “An improved parent-centric 
mutation with normalized neighborhoods for inducing niching 
behavior in differential evolution,” IEEE Trans. Cybern., 2014, in 
press. 

[36] M. G. Epitropakis, X. Li, and E. K. Burke, “A dynamic archive 
niching differential evolution algorithm for multimodal optimization,” 
in Proc. CEC, 2013, pp. 79-86. 

[37] J. Zhang and A. Sanderson, “JADE: adaptive differential evolution 
with optional external archive,” IEEE Trans. Evol. Comput., vol. 13, 
no. 5, pp. 945-958, 2009. 

[38] Z. Zhai and X. Li, “A dynamic archive based niching particle swarm 
optimizer using a small population size,” in Proceedings of the 
Australian Computer Science Conference (ACSC 2011), M. Reynolds, 
Ed. Perth, Australia: ACM, 2011, pp. 1-7. 

[39] D. Molina, A. Puris, R. Bello, and F. Herrera, “Variable mesh 
optimization for the 2013 CEC Special Session Niching Methods for 
Multimodal Optimization,” in Proc. CEC, 2013, pp. 87-94. 

[40] Z. Xu, M. Polojarvi, M. Yamamoto, and M. Furukawa, “Attraction 
basin estimating GA: An adaptive and efficient technique for 
multimodal optimization,” in Proc. CEC, 2013, pp. 333-340. 

[41] S. Bandaru and K. Deb, “A parameterless-niching-assisted bi-
objective approach to multimodal optimization,” in Proc. CEC, 2013, 
pp. 95-102. 

[42] S. Wessing, M. Preuss, and G. Rudolph, “Niching by 
multiobjectivization with neighbor information: Trade-offs and 
benefits,” in Proc. CEC, 2013, pp. 103-110. 

[43] B. Y. Qu and P. N. Suganthan, “Multi-objective evolutionary 
algorithms based on the summation of normalized objectives and 
diversified selection,” Inf. Sci., vol. 180, no. 7, pp. 3170-3181, 2010. 

[44] S. García, D. Molina, M. Lozano, and F. Herrera, “A study on the use 
of non-parametric tests for analyzing the evolutionary algorithms’ 
behaviour: A case study on the CEC’2005 special session on real 
parameter optimization,” Journal of Heuristics, vol. 15, no. 6, pp: 617-
644, 2009. 

[45] J. Alcalá-Fdez, L. Sánchez, S. García, M. J. del Jesus, S. Ventura, J. M. 
Garrell, J. Otero, C. Romero, J. Bacardit, V. M. Rivas, J. C. Fernández, 
and F. Herrera, “KEEL: A software tool to assess evolutionary 
algorithms to data mining problems,” Soft Comput., vol. 13, no. 3, pp. 
307-318, 2009. 

[46] B. Y. Qu and P. N. Suganthan, “Novel multimodal problems and 
differential evolution with ensemble of restricted,” in Proc. CEC, 
2010, pp. 1-7. 

 
Yong Wang (M’08) was born in Hubei, China, in 1980. 
He received the B.S. degree in automation from the 
Wuhan Institute of Technology, Wuhan, China, in 2003, 
and the M.S. degree in pattern recognition and intelligent 
systems and the Ph.D. degree in control science and 
engineering both from the Central South University 
(CSU), Changsha, China, in 2006 and 2011, respectively. 

Currently, he is an Associate Professor with the School of Information 
Science and Engineering, CSU. His current research interests include 
evolutional computation, single-objective optimization, constrained 
optimization, multiobjective optimization, and their real-world applications. 
Dr. Wang is a member of the IEEE CIS Task Force on Nature-Inspired 
Constrained Optimization and the IEEE CIS Task Force on Differential 
Evolution. He was a reviewer of 30+ international journals and a PC member 
of 20+ international conferences. 
 
 

Han-Xiong Li (S’94-M’97-SM’00-F’11) received his B.E. 
degree in aerospace engineering from the National 
University of Defense Technology, China, M.E. degree in 
electrical engineering from Delft University of Technology, 
The Netherlands, and Ph.D. degree in electrical engineering 
from the University of Auckland, New Zealand. 

Currently, he is a professor in the Department of Systems 
Engineering and Engineering Management, the City 

University of Hong Kong. Over last thirty years, he has worked in different 
fields, including military service, industry, and academia. He published over 
150 SCI journal papers with SCI h-index 27. His current research interests 
are in system intelligence and control, process design and control integration, 
distributed parameter systems with applications to electronics packaging. 

Dr. Li serves as Associate Editor of IEEE Transactions on Cybernetics, 
and IEEE Transactions on Industrial Electronics. He was awarded the 
Distinguished Young Scholar (overseas) by the China National Science 
Foundation in 2004, a Chang Jiang professor by the Ministry of Education, 
China in 2006, and a national professorship in China Thousand Talents 
Program in 2010. He serves as a distinguished expert for Hunan Government 
and China Federation of Returned Overseas. He is a fellow of the IEEE. 
 
 

Gary G. Yen (S’87-M’88-SM’97-F’09) received the Ph.D. 
degree in electrical and computer engineering from the 
University of Notre Dame in 1992. Currently he is a 
Regents Professor in the School of Electrical and Computer 
Engineering, Oklahoma State University (OSU). Before 
joined OSU in 1997, he was with the Structure Control 
Division, U.S. Air Force Research Laboratory in 
Albuquerque. His research is supported by the DoD, DoE, 

EPA, NASA, NSF, and Process Industry. His research interest includes 
intelligent control, computational intelligence, conditional health monitoring, 
signal processing and their industrial/defense applications. He is an IEEE 
Fellow-class of 2009. 

Dr. Yen was an associate editor of the IEEE Control Systems Magazine, 
IEEE Transactions on Control Systems Technology, Automatica, 
Mechantronics, IEEE Transactions on Systems, Man and Cybernetics, Parts 
A and B and IEEE Transactions on Neural Networks. He is currently serving 
as an associate editor for the IEEE Transactions on Evolutionary 
Computation and the IEEE Transactions on Cybernetics. He served as the 
General Chair for the 2003 IEEE International Symposium on Intelligent 
Control held in Houston, TX and 2006 IEEE World Congress on 
Computational Intelligence held in Vancouver, Canada. Dr. Yen served as 
Vice President for the Technical Activities in 2005-2006 and then President 
in 2010-2011 of the IEEE Computational intelligence Society. He was the 
founding editor-in-chief of the IEEE Computational Intelligence Magazine, 
2006-2009. In 2011, he received Andrew P Sage Best Transactions Paper 
award from IEEE Systems, Man and Cybernetics Society and in 2014, he 
received Meritorious Service award from IEEE Computational Intelligence 
Society. 
 
 

Wu Song was born in Hunan, China, in 1982. He 
received the B.S. degree in computer science and 
technology and the M.S. degree in computer software 
and theory both from Xiangtan University, Xiangtan, 
China, in 2004 and 2007, respectively. He is currently 
working toward the Ph.D. degree from Central South 
University, Changsha, China. 

At present, he is a Lecturer with the College of 
Electronics and Information Engineering, QiongZhou University, Sanya, 
China. His current research interests include evolutional computation and 
multiobjective optimization. 

 



IEEE Transactions on Cybernetics 1

Supplemental file of MOMMOP 

Figure Caption 

 Fig. S1. The average number of optimal solutions found by MOMMOP during the evolution. 

 

Table Captions 

 Table S1 Peak ratio (PR) and success rate (SR) of MOMMOP 

 Table S2 Comparison of MOMMOP with respect to dADE/nrand/1, NVMO, PNSGA-II, and MNSGA-II in terms of the 

peak ratio (PR) with 1.0E 04.ε = −  The best PR value is highlighted in boldface for each test function. 

 Table S3 Comparison of MOMMOP with respect to NCDE, NSDE, LIPS, and r2pso in terms of the peak ratio (PR) with 

1.0E 04.ε = −  The best PR value is highlighted in boldface for each test function. 

 Table S4 Comparison of MOMMOP with respect to MOBiDE and BMPGA in terms of the peak ratio (PR). The best PR 

value is highlighted in boldface for each test function. 

 Table S5 Comparison of MOMMOP with respect to MOMMOP1 and MOMMOP2 in terms of the peak ratio (PR) with 

1.0E 04.ε = −  The best PR value is highlighted in boldface for each test function. 

 Table S6 Comparison of MOMMOP with varying distance parameter in terms of the peak ratio (PR) with 1.0E 04.ε = −   

The best PR value is highlighted in boldface for each test function. 

 Table S7 Comparison of MOMMOP with varying scaling parameter in terms of the peak ratio (PR) with 1.0E 04.ε = −  The 

best PR value is highlighted in boldface for each test function. 
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Fig. S1. The average number of optimal solutions found by MOMMOP during the evolution. 
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TABLE S1 
PEAK RATIO (PR) AND SUCCESS RATE (SR) OF MOMMOP 

 

Accuracy Level ε F1 F2 F3 F4 F5 
PR SR PR SR PR SR PR SR PR SR 

1.0E-01 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
1.0E-02 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
1.0E-03 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
1.0E-04 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
1.0E-05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Accuracy Level ε F6 F7 F8 F9 F10 
PR SR PR SR PR SR PR SR PR SR 

1.0E-01 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
1.0E-02 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
1.0E-03 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
1.0E-04 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.940 1.000 1.000 
1.0E-05 1.000 1.000 1.000 1.000 1.000 1.000 0.977 0.100 1.000 1.000 

Accuracy Level ε F11 F12 F13 F14 F15 
PR SR PR SR PR SR PR SR PR SR 

1.0E-01 1.000 1.000 0.995 0.960 0.960 0.780 0.783 0.000 0.675 0.000 
1.0E-02 0.990 0.940 0.985 0.880 0.933 0.640 0.727 0.000 0.645 0.000 
1.0E-03 0.940 0.640 0.965 0.740 0.667 0.000 0.667 0.000 0.623 0.000 
1.0E-04 0.717 0.020 0.960 0.700 0.667 0.000 0.667 0.000 0.605 0.000 
1.0E-05 0.670 0.000 0.840 0.120 0.667 0.000 0.667 0.000 0.588 0.000 

Accuracy Level ε F16 F17 F18 F19 F20 
PR SR PR SR PR SR PR SR PR SR 

1.0E-01 0.667 0.000 0.528 0.000 0.500 0.000 0.250 0.000 0.125 0.000 
1.0E-02 0.667 0.000 0.528 0.000 0.500 0.000 0.250 0.000 0.125 0.000 
1.0E-03 0.667 0.000 0.528 0.000 0.500 0.000 0.250 0.000 0.125 0.000 
1.0E-04 0.667 0.000 0.518 0.000 0.500 0.000 0.250 0.000 0.125 0.000 
1.0E-05 0.667 0.000 0.490 0.000 0.500 0.000 0.250 0.000 0.125 0.000 
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TABLE S2 
COMPARISON OF MOMMOP WITH RESPECT TO DADE/NRAND/1, NVMO, PNSGA-II, AND MNSGA-II IN TERMS OF THE PEAK RATIO (PR) 

WITH 1.0E 04.ε = − THE BEST PR VALUE IS HIGHLIGHTED IN BOLDFACE FOR EACH TEST FUNCTION. 
 

Test Function dADE/nrand/1 NVMO PNSGA-II MNSGA-II MOMMOP 
F1 1.000 1.000 1.000 0.930 1.000 
F2 1.000 1.000 1.000 1.000 1.000 
F3 1.000 1.000 1.000 1.000 1.000 
F4 1.000 1.000 0.985 0.320 1.000 
F5 1.000 1.000 1.000 0.900 1.000 
F6 0.984 0.670 0.473 0.001 1.000 
F7 0.823 0.901 0.709 0.509 1.000 
F8 0.967 0.198 0.275 0.000 1.000 
F9 0.431 0.275 0.298 0.140 1.000 
F10 1.000 1.000 1.000 0.953 1.000 
F11 0.667 0.667 0.680 0.033 0.717 
F12 0.740 0.713 0.642 0.010 0.960 
F13 0.667 0.667 0.663 0.000 0.667 
F14 0.667 0.667 0.663 0.000 0.667 
F15 0.627 0.623 0.470 0.000 0.605 
F16 0.667 0.653 0.417 0.000 0.667 
F17 0.403 0.413 0.300 0.000 0.518 
F18 0.633 0.470 0.110 0.000 0.500 
F19 0.018 0.130 0.017 0.000 0.250 
F20 0.005 0.000 0.000 0.000 0.125 
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TABLE S3 
COMPARISON OF MOMMOP WITH RESPECT TO NCDE, NSDE, LIPS, AND R2PSO IN TERMS OF THE PEAK RATIO (PR) WITH 1.0E 04.ε = − THE BEST PR VALUE 

IS HIGHLIGHTED IN BOLDFACE FOR EACH TEST FUNCTION. 
 

Test Function NCDE NSDE LIPS r2pso MOMMOP 
F1 1.000 1.000 0.000 0.000 1.000 
F2 1.000 1.000 1.000 0.992 1.000 
F3 1.000 1.000 1.000 1.000 1.000 
F4 1.000 0.995 1.000 0.670 1.000 
F5 1.000 1.000 1.000 1.000 1.000 
F6 0.972 0.993 0.998 0.388 1.000 
F7 0.917 0.685 0.527 0.509 1.000 
F8 0.062 0.793 0.876 0.000 1.000 
F9 0.668 0.384 0.268 0.091 1.000 
F10 0.998 0.981 0.987 0.788 1.000 
F11 0.667 0.990 0.993 0.667 0.717 
F12 0.053 0.990 0.960 0.448 0.960 
F13 0.667 0.667 0.770 0.660 0.667 
F14 0.667 0.667 0.667 0.003 0.667 
F15 0.373 0.497 0.590 0.003 0.605 
F16 0.663 0.667 0.667 0.000 0.667 
F17 0.250 0.275 0.498 0.000 0.518 
F18 0.357 0.547 0.500 0.000 0.500 
F19 0.020 0.243 0.250 0.000 0.250 
F20 0.000 0.000 0.000 0.000 0.125 
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TABLE S4 
COMPARISON OF MOMMOP WITH RESPECT TO MOBIDE AND BMPGA IN TERMS OF THE PEAK RATIO (PR). THE BEST PR VALUE IS HIGHLIGHTED IN 

BOLDFACE FOR EACH TEST FUNCTION. 
 

Test Function The niche radius r ε MOBiDE BMPGA MOMMOP 
F1 0.5 1E-06 1.000 0.750 1.000 
F2 0.01 1E-06 1.000 0.928 1.000 
F3 0.01 1E-06 1.000 1.000 1.000 
F4 0.5 5E-04 1.000 0.835 1.000 
F5 0.5 1E-05 1.000 0.620 1.000 
F6 0.2 5E-02 0.967 0.762 1.000 
F7 0.2 1E-03 0.983 0.882 1.000 
F9 0.1 1E-03 0.814 0.563 1.000 
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TABLE S5 
COMPARISON OF MOMMOP WITH RESPECT TO MOMMOP1 AND MOMMOP2 IN TERMS OF THE PEAK RATIO (PR) WITH 1.0E 04.ε = − THE BEST PR VALUE 

IS HIGHLIGHTED IN BOLDFACE FOR EACH TEST FUNCTION. 
 

Test Function MOMMOP1 MOMMOP2 MOMMOP 
F1 1.000 1.000 1.000 
F2 1.000 1.000 1.000 
F3 1.000 1.000 1.000 
F4 1.000 0.015 1.000 
F5 1.000 1.000 1.000 
F6 1.000 1.000 1.000 
F7 0.853 0.994 1.000 
F8 0.422 0.887 1.000 
F9 0.509 0.961 1.000 
F10 1.000 1.000 1.000 
F11 0.680 0.567 0.717 
F12 0.865 0.570 0.960 
F13 0.667 0.470 0.667 
F14 0.667 0.060 0.667 
F15 0.478 0.015 0.605 
F16 0.667 0.006 0.667 
F17 0.125 0.192 0.518 
F18 0.180 0.000 0.500 
F19 0.125 0.010 0.250 
F20 0.125 0.125 0.125 
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TABLE S6 
COMPARISON OF MOMMOP WITH VARYING DISTANCE PARAMETER IN TERMS OF THE PEAK RATIO (PR) WITH 1.0E 04.ε = −  THE BEST PR VALUE IS 

HIGHLIGHTED IN BOLDFACE FOR EACH TEST FUNCTION. 
 

Test Function 0.001 (MOMMOP_dp1) 0.005 (MOMMOP_dp2) 0.01 (MOMMOP_dp3) 0.05 (MOMMOP_dp4) 
F1 1.000 1.000 1.000 1.000 
F2 1.000 1.000 1.000 1.000 
F3 1.000 1.000 1.000 0.903 
F4 0.305 1.000 1.000 0.975 
F5 1.000 1.000 1.000 1.000 
F6 1.000 1.000 1.000 0.413 
F7 1.000 1.000 1.000 0.690 
F8 1.000 1.000 1.000 0.333 
F9 0.998 0.999 1.000 0.713 
F10 1.000 1.000 1.000 1.000 
F11 0.696 0.710 0.717 0.706 
F12 0.952 0.948 0.960 0.932 
F13 0.667 0.670 0.667 0.667 
F14 0.667 0.667 0.667 0.667 
F15 0.557 0.640 0.605 0.602 
F16 0.667 0.667 0.667 0.667 
F17 0.412 0.490 0.518 0.395 
F18 0.453 0.500 0.500 0.500 
F19 0.167 0.250 0.250 0.255 
F20 0.125 0.125 0.125 0.125 
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TABLE S7 
COMPARISON OF MOMMOP WITH VARYING SCALING PARAMETER IN TERMS OF THE PEAK RATIO (PR) WITH 1.0E 04.ε = − THE BEST PR VALUE IS 

HIGHLIGHTED IN BOLDFACE FOR EACH TEST FUNCTION. 
 

Test Function 10 (MOMMOP_sp1) 30 (MOMMOP_sp2) 40 (MOMMOP_sp3) 50 (MOMMOP_sp4) 80 (MOMMOP_sp5) 
F1 1.000 1.000 1.000 1.000 1.000 
F2 1.000 1.000 1.000 1.000 1.000 
F3 1.000 1.000 1.000 1.000 1.000 
F4 0.015 1.000 1.000 1.000 0.970 
F5 1.000 1.000 1.000 1.000 0.986 
F6 1.000 1.000 1.000 1.000 1.000 
F7 1.000 1.000 1.000 1.000 1.000 
F8 1.000 1.000 1.000 1.000 1.000 
F9 0.983 1.000 1.000 1.000 1.000 
F10 1.000 1.000 1.000 1.000 1.000 
F11 0.690 0.707 0.717 0.717 0.713 
F12 0.845 0.940 0.960 0.935 0.930 
F13 0.660 0.657 0.667 0.657 0.645 
F14 0.667 0.667 0.667 0.667 0.667 
F15 0.462 0.598 0.605 0.605 0.582 
F16 0.667 0.667 0.667 0.667 0.633 
F17 0.015 0.502 0.518 0.497 0.475 
F18 0.500 0.500 0.500 0.500 0.483 
F19 0.250 0.250 0.250 0.250 0.185 
F20 0.125 0.125 0.125 0.125 0.125 


