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Abstract—Nonlinear equation systems may have multiple 

optimal solutions. The main task of solving nonlinear equation 
systems is to simultaneously locate these optimal solutions in a 
single run. When solving nonlinear equation systems by 
evolutionary algorithms, usually a nonlinear equation system 
should be transformed into a kind of optimization problem. At 
present, various transformation techniques have been proposed. 
This paper presents a simple and generic transformation 
technique based on multiobjective optimization for nonlinear 
equation systems. Unlike the previous work, our transformation 
technique transforms a nonlinear equation system into a 
biobjective optimization problem which can be decomposed into 
two parts. The advantages of our transformation technique are 
twofold: 1) all the optimal solutions of a nonlinear equation 
system are the Pareto optimal solutions of the transformed 
problem, which are mapped into diverse points in the objective 
space, and 2) multiobjective evolutionary algorithms can be 
directly applied to handle the transformed problem. In order to 
verify the effectiveness of our transformation technique, it has 
been integrated with nondominated sorting genetic algorithm II 
to solve nonlinear equation systems. The experimental results 
have demonstrated that, overall, our transformation technique 
outperforms another state-of-the-art multiobjective optimization 
based transformation technique and four single-objective 
optimization based approaches on a set of test instances. The 
influence of the types of Pareto front on the performance of our 
transformation technique has been investigated empirically. 
Moreover, the limitation of our transformation technique has 
also been identified and discussed in this paper. 

Index Terms—Nonlinear equation systems, multiple optimal 
solutions, transformation technique, multiobjective optimization, 
evolutionary algorithms. 

I. INTRODUCTION 
Nonlinear equation systems (NESs) arise in many science 

and engineering areas such as chemical processes [1], 
robotics [2], electronic circuits [3], engineered materials [4], 
and physics [5]. A NES can be stated as follows: 
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where 1( ,..., )Dx x x S= ∈
G  is the decision vector consisting of D  

decision variables, S  is the decision space defined by the 
parametric constraints: 

,i i iL x U≤ ≤  1 i D≤ ≤                                (2) 

iL  and iU  are the lower and upper bounds of ix , respectively, 
( )ie xG  ( {1, , }i M∈ … ) is the ith equation, and M  is the number 

of equations. Usually, there is at least one nonlinear equation 
in a NES. If {1, , },i M∀ ∈ … *( ) 0,ie x =

G  then *xG  is called an 
optimal solution of a NES. 

Very often, a NES may contain multiple optimal solutions. 
Since all these optimal solutions are important for a given 
NES in the real-world applications, it is desirable to 
simultaneously locate them in a single run, such that the 
decision maker can select one final solution which matches at 
most his/her preference. 

For solving NESs, a lot of classic methods, like Newton-
type methods [6], [7], [8], have been proposed. However, 
these methods have some disadvantages such as they are 
heavily dependent on the starting point of the iterative 
process, easily trapped in a local optimal solution, and require 
derivative information [9]. More importantly, these methods 
aim at locating just one optimal solution rather than multiple 
optimal solutions when solving NESs. Evolutionary 
algorithms (EAs) are a class of metaheuristic algorithms 
inspired by nature. Due to the fact that they are insensitive to 
the shapes of the objective function such as non-convexity 
and discontinuity, and easy to implement, during the past 
decade, EAs have been widely applied to solve NESs [10]. 

Currently, one kind of the most successful EAs is 
multiobjective EAs (MOEAs) which are designed for dealing 
with multiobjective optimization problems (MOPs) [11], [12], 
[13], [14], [15]. Since the objectives in a MOP always 
conflict with each other, a MOP may have many or even 
infinite optimal solutions. The purpose of MOEAs is to find a 
set of representative optimal solutions called the Pareto 
optimal solutions in a single run. Recently, some researchers 
have demonstrated that MOEAs are not only effective for 
MOPs, but also can be extended to solve other kinds of 
optimization problems. For instance, Deb and Saha [16] used 
multiobjective optimization for solving multimodal 
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optimization problems. Bui et al. [17] investigated the use of 
MOEAs for dynamic optimization problems. Cai and Wang 
[18] incorporated multiobjective optimization into 
constrained optimization problems with the aim of balancing 
the objective function and constraints.  

As pointed out previously, when solving NESs by EAs, it 
is expected to locate multiple optimal solutions in a single run. 
Obviously, this is similar to the solution of MOPs by MOEAs. 
Therefore, a question arises naturally is whether a NES can 
be transformed into a MOP and, as a result, MOEAs can be 
used to solve the transformed problem. Motivated by this 
consideration, a simple yet generic transformation technique 
called MONES has been proposed in this paper. In MONES, 
a NES is transformed into a MOP with two objectives (i.e., a 
biobjective optimization problem). The transformed problem 
consists of two parts: the first part is the location function 
which is used to determine the location of the images of the 
optimal solutions of a NES in the objective space, and the 
second part is the system function which can reflect the basic 
characteristics of a NES. MONES has the following features: 

 No prior knowledge (such as the number of the optimal 
solutions of a NES) is required. 

 All the optimal solutions of a NES are the Pareto 
optimal solutions of the transformed problem. 

 The images of all the optimal solutions of a NES are 
located on the line segment defined by “y=1-x” in the 
objective space of the transformed problem. 

 The current MOEAs can be applied to solve the 
transformed problem in a straightforward manner. 
Therefore, multiple optimal solutions of a NES could be 
located simultaneously in a single run. 

 If a NES contains infinite optimal solutions, it is a 
natural way for the current MOEAs to find a number of 
representative optimal solutions, the images of which 
may be evenly distributed along the Pareto front in the 
objective space of the transformed problem. 

The rest of this paper is organized as follows. Section II 
introduces multiobjective optimization problems and the 
related concepts. Section III briefly reviews the related work. 
In Section IV, MONES is presented in detail. Moreover, the 
differences between MONES and another multiobjective 
optimization based transformation technique called CA have 
been analyzed. In Section V, MONES and CA are integrated 
with NSGA-II [14] to solve a set of test instances. The 
performance of MONES has been compared with that of CA 
and four single-objective optimization based approaches. The 
influence of the types of Pareto front on the performance and 
the limitation of MONES have also been studied in this 
section. Finally, Section VI concludes this paper. 

II. MULTIOBJECTIVE OPTIMIZATION PROBLEMS AND THE 
RELATED CONCEPTS 

Since in this paper, a NES is converted into a MOP with 
two objectives, next we will introduce MOPs and the related 
concepts. A MOP can be formulated as follows: 

minimize 1 2( ) ( ( ), ( ),..., ( ))Mf x f x f x f x=
G G G G G                (3) 

where 1( ,..., ) D
Dx x x X= ∈ ⊂ ℜ

G  is the decision vector 
containing D  decision variables, X  is the decision space, 

( ) Mf x Y∈ ⊂ ℜ
G G  is the objective vector containing M  

objectives, and Y  is the objective space. 
For a MOP, the comparison between two decision vectors 

is based on the concept of Pareto dominance. Let 
1( ,..., )Da a a=

G  and 1( ,..., )Db b b=
G

 be two decision vectors, aG  is 

said to Pareto dominate b
G

 (denoted as a b
GG ≺ ), if ( ) ( )i if a f b≤

GG  

for 1, , ,i M= …  and {1, , },j M∃ ∈ … ( ) ( ).j jf a f b<
GG  If a decision 

vector *xG  is not Pareto dominated by any other decision 
vector in the decision space, then it is called a Pareto optimal 
solution. The set of all the Pareto optimal solutions is called 
the Pareto set (denoted as PS). Note that each solution in the 
Pareto set is also called a nondominated solution. The Pareto 
front (denoted as PF) is the image of the Pareto set in the 
objective space: 

{ ( ) | }PF f x x PS= ∈
G G G                                 (4) 

A MOP may have many or even infinite Pareto optimal 
solutions. In general, it is impractical to obtain all the Pareto 
optimal solutions under this condition. A suitable way is to 
find a good approximation of the Pareto set/front in the 
decision/objective space, which is the essential task of the 
current MOEAs. 

III. PREVIOUS WORK 
Recent years have witnessed significant progress in the 

development of EAs for NESs, and a considerable number of 
methods have been proposed. As shown in Fig. 1, the 
principle of the current methods can be summarized as 
follows: firstly a NES is transformed in to a kind of 
optimization problem, and then EAs are utilized to solve the 
transformed problem. 

At present, numerous transformation techniques have been 
introduced. Based on the characteristics of the transformation 
techniques, in this paper we classify the current methods into 
three categories: single-objective optimization based methods, 
constrained optimization based methods, and multiobjective 
optimization based methods. Next, we will briefly review 
them in turn. It is necessary to point out that each kind of 
methods corresponds to a kind of transformation techniques. 

A. Single-objective Optimization Based Methods 
In this kind of methods, a NES is usually transformed into 

one of the following single-objective optimization problems: 

 

Transformation 

Solving 

A nonlinear equation 
system (NES) 

A kind of optimization 
problem 

Evolutionary algorithms 
(EAs) 

Fig. 1. The schematic graph to illustrate the principle of solving a NES by 
EAs 
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After the above transformation, many studies have been 
conducted to optimize equation (5) or equation (6) by EAs. 
Wu and Kang [19] presented a parallel elite-subspace EA. 
Mhetre et al. [20] illustrated how genetic algorithm can be 
used to find the solution of a NES. Noriega et al. [21] applied 
evolution strategy to calculate the position of all the elements 
of the direct position problem, which can be modeled as a 
NES. Wang [22] introduced an immune genetic algorithm. 
Xie et al. [23] proposed an improved bat algorithm based on 
differential operator and Lévy flights trajectory. Wu et al. [24] 
combined Metropolis rule with social emotional optimization 
algorithm. Abdollahi et al. [25] employed the imperialist 
competitive algorithm and made a simple modification. Zhou 
et al. [26] proposed a glowworm swarm optimization 
algorithm with leader mechanism. Recently, particle swarm 
optimization (PSO) [27] has attracted a lot of research effort 
for solving NESs. For example, MO et al. [28] incorporated 
conjugate direction method into PSO. Jaberipour et al. [29] 
improved the position and velocity update of PSO. Voglis et 
al. [30] proposed a method named PSO with deliberate loss 
of information. 

It is noteworthy that the above work is usually biased 
towards finding a single optimal solution of a NES in one run, 
since no additional diversity mechanisms have been added. In 
order to locate multiple optimal solutions simultaneously, 
several attempts have been made. Brits et al. [31] adapted the 
standard PSO and implemented a niching strategy to guide 
the swarm towards different candidate solutions. Hirsch et al. 
[32] made use of a continuous global optimization heuristic 
called C-GRASP to solve NESs. Moreover, once an optimal 
solution has been found, C-GRASP will restart to optimize a 
modified objective function, with the aim of creating an area 
of repulsion around the optimal solutions that have been 
found. The modified objective function can be formulated as 
follows: 

minimize 2
1 1

( ) ( )jM k x x
i ji j

e x e x xρβ χ− −

= =
+ −∑ ∑

G GG G G            (7) 

where  
1, if 

( )
0, otherwiseρ

δ ρ
χ δ

≤⎧
= ⎨

⎩
,                               (8) 

jxG  is the jth optimal solution that has been found, β  is a 
large constant, and ρ  is a small constant. Pourjafari and 
Mojallali [33] proposed a novel approach which is composed 
of a two-phase root-finder and a fitness alteration technique. 
The two-phase root-finder adopts invasive weed optimization 
as the search engine and is used to detect some optimal 
solutions of a NES. In addition, like [32] the fitness alteration 
technique aims at creating a repulsion area around the earlier 
located optimal solutions. 

Despite the above three approaches have the capability to 
find multiple optimal solutions of a NES, some problem-
dependent parameters have been introduced, such as the 
number of individuals in each niching and the clustering 

radius. In addition, a certain level of prior knowledge is 
required by them, such as the number of the optimal solutions. 

B. Constrained Optimization Based Methods 
Kuri-Morales [34] transformed a NES into the following 

constrained optimization problem: 

1
minimize  | ( ) |
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M
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After the above transformation, a penalty function is designed 
to handle constraints and a rugged genetic algorithm is 
employed to search the optimal solution. 

In contrast, a complex NES is converted into the following 
constrained optimization problem by Pourrajabian et al. in 
[35]: 

1
minimize  | ( ) |

subject to  ( ) 0,   1, ,

M
ii

i

e x

e x i M
=

⎧⎪
⎨

= =⎪⎩

∑ G

G …
                      (10) 

Subsequently, genetic algorithm, coupled with augmented 
Lagrangian function, has been used to find the optimal 
solution. 

Similar to the first kind of methods, this kind of methods 
also cannot guarantee to obtain multiple optimal solutions of 
a NES in a single run, if no extra mechanisms have been 
incorporated to increase the diversity of the population. 

C. Multiobjective Optimization Based Methods 
Grosans and Abraham [36] proposed a very interesting 

piece of work (abbreviated as CA in this paper), which 
converts a NES into a MOP by considering each equation as 
an objective. The transformed problem can be expressed as 
follows: 

1
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                               (11) 

Then, this transformed problem is solved via a multiobjective 
optimization based iterative evolutionary model. According 
to the empirical study, CA is promising for dealing with 
NESs, and outperforms Effati and Nazemi’s method [37] and 
some classical methods. 

Note that in the community of evolutionary multiobjective 
optimization, MOPs with more than three objectives are 
termed many-objective optimization problems, which have 
posed a grand challenge to the current MOEAs [38]. In CA, 
the number of objectives in the transformed problem is equal 
to the number of equations in a NES and, consequently, the 
solution of the transformed problem by MOEAs will become 
a very challenging task as the number of equations increases. 

It is clear from the above introduction that the 
transformation techniques have a significant effect on the 
solution of NESs by EAs. There are three kinds of 
transformation techniques. The principle of the first kind of 
transformation techniques is easy to understand. Compared 
with the first kind of transformation techniques, the second 
kind of transformation techniques requires additional 
constraint-handling scheme due to the appearance of 
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constraints. Moreover, as pointed out previously, diversity 
mechanisms which drive a population towards different areas 
in the search space are worthwhile elaborated in these two 
kinds of transformation techniques, so as to locate multiple 
optimal solutions of a NES in one run. Nevertheless, the 
diversity mechanisms may lead to some problem-dependent 
parameters. The idea of the third kind of transformation 
techniques is interesting. However, it may suffer from the 
“curse of dimensionality” (i.e., many-objective). 

The above discussion motivates us to propose a more 
effective transformation technique. Our work in this study 
falls in the third kind. However, unlike the previous work, a 
NES is transformed into a MOP with two objectives. 

IV. A GENERIC TRANSFORMATION TECHNIQUE 

A. MONES 
This paper presents a generic transformation technique 

based on multiobjective optimization for NESs called 
MONES, which converts a NES into a biobjective 
optimization problem. Inspired by [39], the transformed 
problem is composed of two parts: the first part is the 
location function which includes the location information of 
the images of the optimal solutions of a NES in the objective 
space, and the other part is the system function which 
includes the basic information of a NES. 

The location function can be formulated as follows: 
1 1

2 1

minimize  ( )
minimize  ( ) 1

x x
x x

α
α

=⎧
⎨ = −⎩

G
G                          (12) 

where 1( ,..., )Dx x x S= ∈
G  is the decision vector and 1x  is the 

first decision variable of a NES. 
The relationship between 1( )xα G  and 2 ( )xα G  has been 

depicted in Fig. 2. As shown in Fig. 2(a), with respect to 
1,x 1( )xα G  is a strictly monotone increasing function and 2 ( )xα G  

is a strictly monotone decreasing function. Therefore, as the 
two objectives of the location function, 1( )xα G  and 2 ( )xα G  
conflict with each other. According to the concepts 
introduced in Section II, it can be easily deduced that each 
decision vector in the decision space of a NES is a Pareto 
optimal solution of the location function. Moreover, as shown 
in Fig. 2(b), the Pareto front of the location function is a line 
segment defined by “y=1-x” in the objective space. 

The system function has the following form: 

1 1

2 1

minimize  ( ) | ( ) |

minimize  ( ) * max(| ( ) |,...,| ( ) |)

M
ii

M

x e x

x M e x e x

β

β
=

⎧ =⎪
⎨

=⎪⎩

∑G G

G G G           (13) 

where 1( ,..., )Dx x x S= ∈
G  is the decision vector, and 1( ),...,e xG  

( )Me xG  are the M  equations of a NES. 
In the system function, 1( )xβ G  is the sum of the absolute 

values of all the equations, and 2 ( )xβ G is the maximum 
absolute value of all the equations multiplied by the number 
of equations .M  Since the maximum absolute value is one 
element of the absolute values of all the equations, M  is used 
to make 1( )xβ G  and 2 ( )xβ G  have the similar scale. There are 
two properties for 1( )xβ G  and 2 ( ) :xβ G  1) both 1( )xβ G  and 2 ( )xβ G  
are nonnegative, and 2) for an optimal solution *xG of a NES, 

* *
1 2( ) ( ) 0.x xβ β= =
G G  

By combining the location function with the system 
function, the transformed biobjective optimization problem 
can be obtained: 

1 1 1
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2 2 2
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Theorem 1: All the optimal solutions of a NES are the 
Pareto optimal solutions of the transformed problem. 

Proof: Let *xG  be one of the optimal solutions and x′G  be 
a decision vector in the decision space of a NES. According 
to the property of the location function, *xG  cannot be Pareto 
dominated by x′G  in terms of equation (12). Furthermore, 
since * *

1 2( ) ( ) 0x xβ β= =
G G  and 1 2( ), ( ) 0,x xβ β′ ′ ≥

G G  *xG  also cannot 
be Pareto dominated by x′G  in terms of equation (14). 
Therefore, *xG  is a Pareto optimal solution of the transformed 
problem. 

Theorem 1 reflects the relationship between a NES and the 
transformed problem. 

Theorem 2: The images of all the optimal solutions of a 
NES are located on the line segment defined by “y=1-x” in 
the objective space. 

Proof: Let *xG  be one of the optimal solutions of a NES. 
According to Theorem 1, *xG  is a Pareto optimal solution of 
the transformed problem. Since * *

1 2( ) ( ) 0,x xβ β= =
G G  equation 
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(a)                                                                          (b)  

Fig. 2. The relationship between 1( )xα G  and 2 ( ).xα G  (a) The relationship in the decision space. (b) The relationship in the objective space. 



IEEE Transactions on Evolutionary Computation 5

(14) is equivalent to equation (12) under this condition. As a 
result, *xG  is also a Pareto optimal solution of the location 
function. As shown in Fig. 2(b), the image of *xG  is located on 
the line segment defined by “y=1-x” in the objective space. 

Theorem 2 verifies that the location information of the 
images of all the optimal solutions of a NES in the objective 
space is determined by the location function. 

Remark 1: After the above transformation, MOEAs can be 
directly applied to solve the transformed problem (i.e., 
equation (14)). When using MOEAs to solve the transformed 
problem, the goal is to find diverse Pareto optimal solutions 
in a single run. Consequently, multiple optimal solutions of a 
NES could be located concurrently according to Theorem 1. 
In addition, a NES may contain infinite optimal solutions. In 
this case, MOEAs can also be applied to produce a good 
approximation to the Pareto set in a single run, the image of 
which may be evenly located on the Pareto front in the 
objective space. 

B. The Differences between CA and MONES 
It is worth noting that both CA [36] and MONES belong to 

the third kind of transformation techniques introduced in 
Section III-C. However, there are three major differences 
between CA and MONES which have been summarized as 
follows. 

1) The first difference is that CA transforms a NES into a 
MOP with M  objectives, while MONES transforms a NES 
into a MOP with two objectives. As mentioned previously, 
CA may suffer from the “curse of dimensionality”, because 
the number of objectives is equal to the number of equations 
in a NES. Clearly, MONES is a possible way to overcome 
this shortcoming since only two objectives are needed to 
consider. 

2) Due to the fact that the transformed objectives in CA 
and MONES are distinct, there is a difference between CA 
and MONES in the objective space. To better understand the 
second difference, we employ the following NES as an 
example: 

2 2
1 1 2

2 1 2

1 2

( ) 1 0
( ) 0

1 , 1

e x x x
e x x x

x x

⎧ = + − =
⎪

= − =⎨
⎪− ≤ ≤⎩

G
G                           (15) 

This NES includes two decision variables and two equations. 
The shapes of the first and second equations are a circle and a 
line segment, respectively. There are two optimal solutions of 
this NES in the decision space, which are the intersection 
points of the circle and the line segment: *

1 (0.707,0.707)x =
G  

and *
2 ( 0.707, 0.707).x = − −
G  

Based on equation (11), CA will transform this NES into 
the following MOP: 

2 2
1 1 2

2 1 2

minimize  ( ) | 1 |
minimize  ( ) | |

f x x x
f x x x

⎧ = + −⎪
⎨

= −⎪⎩

G
G                    (16) 

In contrast, the following MOP will be taken into account 
by MONES based on equation (14): 

2 2
1 1 1 2 1 2

2 2
2 1 1 2 1 2

minimize  ( ) | 1 | | |

minimize  ( ) 1 2 * max(| 1 |,| |)

f x x x x x x

f x x x x x x

⎧ = + + − + −⎪
⎨

= − + + − −⎪⎩

G
G     (17) 

Fig. 3 is utilized to explain the second difference between 
CA and MONES. In Fig. 3(a), we choose 441 solutions 
uniformly sampled from the decision space and the two 
optimal solutions. Fig. 3 (b) and Fig. 3(c) present the images 
of the above 443 solutions in the objective space defined by 
CA and MONES, respectively. 

As can be observed from Fig. 3(b) and Fig. 3(c), both the 
two optimal solutions of the given NES are the Pareto 
optimal solutions, regardless of the transformation techniques. 
However, it is interesting to note that for CA, the images of 
these two optimal solutions are the same in the objective 
space (i.e., many-to-one mapping as shown in Fig. 3(b)). This 
mapping might have a side effect on concurrently keeping 
multiple optimal solutions. It is because when using MOEAs 
to solve a MOP, the selection process is implemented based 
only on the information in the objective space and, as a result, 
some of the optimal solutions found in the decision space 
might be neglected unreasonably. On the contrary, multiple 
optimal solutions can survive at the same time in MONES, 
since the images of the optimal solutions of the given NES 
are different in the objective space (i.e., one-to-one mapping 
as shown in Fig. 3(c)). 

3) In order to search for multiple optimal solutions of a 
NES in a single run, the individual which is close to one of 
the optimal solutions is promising and should survive into the 
next population. Indeed, there is a significant difference 
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Fig. 3. The difference between CA and MONES in the objective space. (a) 443 solutions in the decision space: “.” represents the uniformly chosen solutions and 
“+” represents the optimal solutions. (b) The images of these 443 solutions in the objective space defined by CA. (c) The images of these 443 solutions in the 
objective space defined by MONES. 
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between CA and MONES in maintaining such potential 
individuals. 

To investigate the third difference, equation (15) is still 
adopted as an example. Suppose that the population contains 
six individuals, the information of which has been 
summarized in Table I. Based on the information in Table I, 
Fig. 4(a) depicts these six individuals in the decision space. In 
addition, Fig. 4(b) and Fig. 4(c) present the images of these 
six individuals in the objective space defined by CA and 
MONES, respectively. From the concepts introduced in 
Section II, it can be deduced that individuals B and D are the 
nondominated individuals in Fig. 4(b) and individuals B and 
E are the nondominated individuals in Fig. 4(c). These two 
groups of the nondominated individuals in the decision space 
have been shown in Fig. 4(d) and Fig. 4(e), respectively. 

If only two individuals can be preserved into the next 
population, then CA will prefer individuals B and D, and 
MONES will place more emphasis on individuals B and E. 
Obviously, CA is not capable of maintaining the potential 
individuals under this condition, since individual E which is 
close to one of the optimal solutions has been removed. As a 
consequence, CA is very likely to miss some optimal 
solutions in the end. Compared with CA, MONES seems to 
be more powerful. 

V. EXPERIMENTAL STUDY 

A. Test Instances 
In this paper, seven test instances (denoted as F1-F7) with 

different characteristics are used to investigate the 
effectiveness of MONES. The first five test instances are 
designed in this paper and the remaining two test instances 
are real-world applications from the neurophysiology [40] 
and the economics modeling [41], respectively. The details of 
these seven test instances have been reported in Table II, 
including the number of the decision variables, the decision 
space, the number of the linear equations, the number of the 
nonlinear equations, and the number of the optimal solutions. 
These test instances can be categorized into three groups, 
according to the number of the optimal solutions: 

1) F1 and F2 have two optimal solutions. Note that F1 has 
been introduced in Section IV-B. F2 includes 20 decision 
variables and is designed to evaluate the performance of an 
algorithm in a high-dimensional decision space. In principle, 
F2 can be regarded as a generalized implementation of F1. 
The optimal solutions of F1 and F2 are the same in the 1 2x x−  
space. 

TABLE I 
THE INFORMATION OF SIX INDIVIDUALS 

 

Individual 
Position The objective function values in CA The objective function values in MONES 

1x  2x  1f  2f  1f  2f  
A -0.95 -0.75 0.4650 0.2000 -0.2850 2.8800 
B -0.60 -0.70 0.1500 0.1000 -0.3500 1.9000 
C 0.45 -0.80 0.1575 1.2500 1.8575 3.0500 
D 0.50 -0.90 0.0600 1.4000 1.9600 3.3000 
E 0.75 0.40 0.2775 0.3500 1.3775 0.9500 
F 0.80 0.20 0.3200 0.6000 1.7200 1.4000 
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Fig. 4. The difference between CA and MONES in maintaining the potential individuals. (a) The six individuals of Table I in the decision space. (b) The images 
of these six individuals in the objective space defined by CA. (c) The images of these six individuals in the objective space defined by MONES. (d) The 
nondominated individuals in the decision space with CA. (e) The nondominated individuals in the decision space with MONES. 
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2) F3 and F4 have more than two optimal solutions. 
Concretely, F3 has 11 optimal solutions and F4 has 15 
optimal solutions. In these two test instances, some optimal 
solutions are very close to each other, which makes them 
very difficult for an algorithm to locate all the optimal 
solutions in a single run. 

3) F5, F6, and F7 have infinite optimal solutions. In F7, 
{1, , 1},k D∀ ∈ −… 0.kc =  For these three test instances, it is 

impossible to obtain all the optimal solutions in a single run. 
Therefore, one has to find a set of representative optimal 
solutions in one run, which can well approximate the whole 
optimal set. In addition, F6 and F7 can be exploited to show 
the limitations of CA, since they include six and 20 equations, 
respectively. Under this condition, CA will have six and 20 
objectives (i.e., many-objective), respectively. 

B. Using MOEAs to Solve the Transformed Problem 
It is necessary to emphasize that the primary focus of this 

paper is the transformation technique. Since CA and MONES 
belong to the same kind of transformation techniques, the 
performance comparison is mainly conducted between them 
in this paper. Essentially, the current MOEAs can be applied 
to solve the MOPs transformed by CA and MONES in a 
straightforward way. In this paper, one of the most popular 
MOEAs, nondominated sorting genetic algorithm II (NSGA-
II) [14], has been chosen as an example. The implementation 
of NSGA-II for solving the transformed problem has been 
introduced as follow. 

Step 1 0G = ;     // G  is the generation number 

Step 2 Randomly generate an initial population GP  of size 
N  from the decision space; 

Step 3 Evaluate each individual in GP  based on equation 
(11) or equation (14); 

Step 4 Implement the binary tournament selection, 
simulated binary crossover, and polynomial 
mutation to generate the offspring population GQ ; 

Step 5 Evaluate each individual in GQ  based on equation 
(11) or equation (14); 

Step 6 G G GH P Q= ∪ ; 
Step 7 Divide GH  into several nondomination levels 

(denoted as 1 2, , )ND ND …  according to a fast 
nondominated sorting; 

Step 8 1GP φ+ =  and 1i = ; 
Step 9 While 1| |GP N+ <  
Step 10    1 1G G iP P ND+ += ∪  and 1i i= + ; 
Step 11 End While 
Step 12 Let 1 1 1\ ,G G iP P ND+ + −= delete 1 1(| | | | )i GND P N− ++ −  

individuals with the smallest crowding-distance 
values in 1iND − , and let 1 1 1G G iP P ND+ + −= ∪ ; 

Step 13 If the stopping criterion is satisfied, stop and 
output the final population, otherwise 1G G= +  
and go to step 4. 

In the above procedure, 1| |GP +  and 1| |iND −  are the 
numbers of individuals in 1GP +  and 1,iND −  respectively. The 
details of the fast nondominated sorting and the crowding-

TABLE II 
DETAILS OF THE SEVEN TEST INSTANCES 

 

Test instance 
Number of 
the decision 

variables 

The decision 
space 

Number of the 
linear equations

Number of  the 
nonlinear 
equations 

Number of the 
optimal 

solutions 

F1 
2 2
1 2

1 2

1 0
0

x x
x x

+ − =
− =

 2 [-1,1]2 1 1 2 

F2 
2

1

2
1 2 3

1 0

| | 0

D
ii

D
ii

x

x x x
=

=

− =

− + =

∑
∑  

20 [-1,1]20 0 2 2 

F3 1 2

1 2

sin(5* * ) 0
0

x x
x x

π− =
− =

 2 [-1,1]2 1 1 11 

F4 1 2
2 2
1 2

cos(4* * ) 0

1

x x

x x

π− =

+ =
 2 [-1,1]2 0 2 15 

F5 1 2 3

3
1 2

1 0

0

x x x

x x

+ + − =

− =
 3 [-1,1]3 1 1 infinite 

F6 

2 2
1 3

2 2
2 4

3 3
5 3 6 4

3 3
5 1 6 2

2 2
5 1 3 6 4 2

2 2
5 1 3 6 2 4

1

1

0

0

0

0

x x

x x

x x x x

x x x x

x x x x x x

x x x x x x

+ =

+ =

+ =

+ =

+ =

+ =

 6 [-1,1]6 0 6 infinite 

F7 

1

1

1

1

( ) 0, 1 1

1 0

D k
k i D ki i k

D

l l

x x x x c k D

x

− −

= +

−

=

+ − = ≤ ≤ −

+ =

∑
∑

 20 [-1,1]20 1 19 infinite 
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distance calculation refer to [14]. In our experiments, we used 
the same parameter settings as in [14]: the crossover 
probability 0.9,cp =  the mutation probability 1 / ,mp D=  and 
the distribution indexes for crossover and mutation were 

20cη =  and 20,mη =  respectively. 

C. Performance Indicators 
In this paper, two performance indicators are employed to 

investigate the capability of an algorithm to concurrently 
locate multiple optimal solutions of a NES. 

1) The inverted generational distance (IGD) [42]: Let IP  
be a set of the images of the individuals of a population in the 

objective space, and *IP  be a set of the images of all the 
optimal solutions of a NES in the objective space: *IP =  

*1 | |
{ , , }.

IP
v vG G…  The IGD indicator is computed as 

*| |

* 1
*

( , )
( , )

| |

IP
ii

d v IP
IGD IP IP

IP
== ∑ G

                        (18) 

where ( , )id v IPG  is the minimum Euclidean distance between 

ivG  and the points in .IP  Note that if a NES (such as F5, F6, or 
F7) has infinite optimal solutions, *IP  is a set of uniformly 
distributed points in the objective space along the Pareto front. 
In this paper, the number of points in *IP (i.e., *| |IP ) is set to 
100 for F5, F6, and F7. Besides, to make the comparison 

TABLE III 
EXPERIMENTAL RESULTS OF CA AND MONES OVER 30 INDEPENDENT RUNS ON SEVEN TEST INSTANCES IN TERMS OF TWO PERFORMANCE INDICATORS. THE 

BETTER MEAN IGD-INDICATOR VALUE AND MEAN NOF-INDICATOR VALUE FOR EACH TEST INSTANCE ARE HIGHLIGHTED IN BOLDFACE. 
 

Test instance Status IGD NOF 
CA MONES CA MONES 

F1 

Best 9.97E-01 1.47E-04 1.00E+00 2.00E+00 
Mean 9.99E-01 2.01E-04 1.00E+00 2.00E+00 
Worst 1.00E+00 3.77E-04 1.00E+00 2.00E+00 

Std Dev 4.09E-04 4.74E-05 0.00E+00 0.00E+00 

F2 

Best 9.90E-01 2.06E-04 1.00E+00 2.00E+00 
Mean 9.99E-01 4.44E-04 1.00E+00 2.00E+00 
Worst 1.00E+00 9.25E-04 1.00E+00 2.00E+00 

Std Dev 1.98E-03 1.95E-04 0.00E+00 0.00E+00 

F3 

Best 5.51E-01 1.11E-03 1.00E+00 1.10E+01 
Mean 1.16E+00 2.12E-03 1.00E+00 1.10E+01 
Worst 1.30E+00 4.45E-03 1.00E+00 1.10E+01 

Std Dev 2.26E-01 7.48E-04 0.00E+00 0.00E+00 

F4 

Best 7.36E-01 2.82E-03 1.00E+00 1.50E+01 
Mean 7.83E-01 1.06E-02 1.00E+00 1.41E+01 
Worst 1.18E+00 2.90E-02 1.00E+00 1.10E+01 

Std Dev 1.10E-01 7.52E-03 0.00E+00 1.16E+00 

F5 

Best 3.14E-01 1.63E-02 1.00E+00 5.00E+01 
Mean 6.11E-01 4.24E-02 1.00E+00 3.73E+01 
Worst 7.07E-01 2.12E-01 1.00E+00 2.10E+01 

Std Dev 1.12E-01 3.80E-02 0.00E+00 7.05E+00 

F6 

Best 6.55E-01 1.28E-02 0.00E+00 8.10E+01 
Mean 1.66E+00 2.31E-02 0.00E+00 7.31E+01 
Worst 3.11E+00 5.13E-02 0.00E+00 6.60E+01 

Std Dev 6.03E-01 9.45E-03 0.00E+00 3.81E+00 

F7 

Best 2.62E-01 4.46E-02 8.00E+00 3.80E+01 
Mean 8.41E-01 1.15E-01 1.80E+00 2.02E+01 
Worst 3.45E+00 2.37E-01 0.00E+00 0.00E+00 

Std Dev 6.59E-01 6.05E-02 1.81E+00 1.15E+01 
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Fig. 5. The mean of IGD-indicator values in CA and MONES during the evolution over 30 independent runs. 
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convenient, the individuals in the final populations derived 
from an algorithm are mapped to the objective space defined 
by MONES. 

This indicator is able to measure both the diversity and 
convergence of .IP  In an ideal case, *( , ) 0.IGD IP IP =  If a 
NES contains several optimal solutions (rather than infinite 
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Fig. 6. Plots of the 30 final populations in the decision space obtained by CA. 
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Fig. 7. Plots of the 30 final populations in the decision space obtained by MONES. 
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Fig. 8. Plots of the 30 final populations in the objective space obtained by CA. 
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Fig. 9. Plots of the 30 final populations in the objective space obtained by MONES. 
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optimal solutions), *( , ) 0IGD IP IP =  indicates all the optimal 
solutions have been found in a single run. In addition, if a 
NES contains infinite optimal solutions, *( , ) 0IGD IP IP =  
indicates that all the points in IP  are located on the Pareto 
front and cover the Pareto front uniformly. 

2) Number of the optimal solutions found (NOF): The 
NOF indicator is computed in this paper according to 
equations (19) and (20) 

*| |*
1

( , ) ( )IP
ii

NOF IP IP flag v
=

= ∑ G                      (19) 

  
*( ) 1, if ( , ) ,  

( ) 0, otherwise
i i i

i

flag v d v IP v IP
flag v

ε=⎧ ≤ ∈
⎨ =⎩

G G G
G              (20) 

where the parameter ε  is a user-defined threshold value. In 
this paper, ε  was set to 0.01 for F5 and 0.02 for the other six 
test instances, respectively. In general, the larger the NOF-
indicator value, the better the performance of an algorithm. 

D. Comparison between CA and MONES 
To have a fair comparison, for both CA and MONES, the 

population size N  was set 100, 30 independent runs were 
executed on each test instance, and the maximum generation 
number was set to 500 (i.e., the maximum number of fitness 
evaluations was 50000). Moreover, CA and MONES were 
combined with the same version of NSGA-II with the same 
parameter settings as introduced in Section V-B. 

Table III presents the best, mean, worst, and standard 
deviation of the IGD-indicator values and the NOF-indicator 
values derived from CA and MONES. With respect to the 
IGD indicator, we also implemented a statistical test (i.e., 
Wilcoxon’s rank sum test at a 0.05 significance level) 
between CA and MONES. The statistical test reveals that 
MONES is significantly better than CA on all the test 
instances. In terms of the NOF indicator, it is clear that 
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(a) 20 iterations                                             (b) 100 iterations                                          (c) 500 iterations 

Fig. 10. The convergence behavior in a typical run provided by CA in the decision space for F1. 
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Fig. 11. The convergence behavior in a typical run provided by CA in the objective space for F1. 
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Fig. 12. The convergence behavior in a typical run provided by CA in the decision space for F4. 
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Fig. 13. The convergence behavior in a typical run provided by CA in the objective space for F4. 
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MONES can successfully locate all the optimal solutions for 
F1-F3 over 30 runs. For F4, MONES is able to find all the 
optimal solutions over a majority of runs. Since *| |IP  was set 
to 100 for F5-F7 as introduced in Section V-C, the default 
number of the optimal solutions in F5-F7 is 100 in this paper. 
For these three test instances, MONES has the capability to 
maintain a lot of the optimal solutions in the final populations. 
However, it seems to be very challenging for CA to locate 
multiple optimal solutions in a single run on all the test 
instances. Specifically, CA tends to find only one optimal 
solution for F1-F5, and fails in converging to any of the 
optimal solutions for F6. 

Fig. 5 shows the evolution of the mean IGD-indicator 
values provided by CA and MONES for all the test instances 
over 30 independent runs. As depicted in Fig. 5, CA is stuck 
in terms of the IGD indicator after about 100 generations for 
all the test instances. Moreover, it is interesting to see that for 
F1, F3, F4, F5, and F6, the IGD-indicator values in CA 
increase as the search proceeds before 100 generations. The 
above phenomenon can be explained as follows. Due to the 
relatively smaller decision space of F1, F3, F4, F5, and F6, 
the IGD-indicator value of the initial population which 
consists of N  individuals randomly and uniformly sampled 
from the decision space is small (between 0.1 and 1.1 based 
on our observation). Since CA tends to converge to one of the 

optimal solutions, the population may cluster in a small area 
of the decision space gradually. As a result, the IGD-indicator 
value of the initial population is even smaller than that of the 
population which approximates the Pareto front, and the 
IGD-indicator value gradually increases before 100 
generations. In addition, although very few optimal solutions 
can be found by CA for F2 and F7, the IGD-indicator values 
in CA gradually decrease at the early stage because of the 
relatively larger decision space (i.e., [-1,1]20), which results in 
the relatively larger IGD-indicator value of the initial 
population. In contrast, MONES can reduce the IGD-
indicator values continually during the evolution. 

Figs. 6-9 plot the distribution of the 30 final populations 
obtained by CA and MONES in both the objective space and 
the decision space. Due to the fact that the number of the 
decision variables is larger than three for F2, F6, and F7, the 
distribution information of these three test instances has not 
been provided in the decision space. In Figs. 6 and 8, we can 
observe that different optimal solutions can be located by CA 
over 30 trials, although it may find only one optimal solution 
in each trial. However, Figs. 6 and 8 also imply that using CA 
with different starting populations gives no guarantee of 
finding all the optimal solutions. For example, with respect to 
F3 and F4, some optimal solutions still cannot be found by 
CA over 30 trials. Moreover, some parts of the Pareto front 
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Fig. 14. The convergence behavior in a typical run provided by CA in the decision space for F5. 
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Fig. 15. The convergence behavior in a typical run provided by CA in the objective space for F5. 
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Fig. 16. The convergence behavior in a typical run provided by CA in the objective space for F6. 
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are missed in the objective space for F5. It is also interesting 
to note that some additional solutions which are far away 
from the optimal solutions have been maintained by CA in 
the final populations, see, for example, F1, F3, and F4. This 
observation is consistent with our analysis in Fig. 4. It might 
be an inherent drawback of the transformation manner of CA. 
Finally, for F6 and F7, CA cannot well approximate the 
Pareto fronts and the distribution of the populations is 
irregular in the objective space. It is because the problems 
transformed by CA are many-objective optimization 
problems and the individuals in the population are frequently 
nondominated with each other, therefore, the behavior of CA 
is similar to random walk for F6 and F7. Compared with CA, 
MONES is much more effective to locate multiple optimal 
solutions for all the test instances as shown in Figs. 7 and 9. 

E. The Convergence Behaviors of CA and MONES in one 
Run 

This subsection aims at further investigating the 
convergence behaviors of CA and MONES in a single run. 
Figs. 10-23 show, in both the decision space and objective 
space, the distribution of the final populations provided by 
CA and MONES over a typical run on four representative test 
instances, i.e., F1, F4, F5, and F6. Similar to Section V-D, the 
distribution information of F6 in the decision space has not 
been provided. 

As shown in Figs. 10-15, at the early stage (about 20 
iterations), some potential regions can be covered by the 
population of CA. However, after 100 iterations the 
population converges to only one of the optimal solutions. As 
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Fig. 17. The convergence behavior in a typical run provided by MONES in the decision space for F1. 
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Fig. 18. The convergence behavior in a typical run provided by MONES in the objective space for F1. 
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Fig. 19. The convergence behavior in a typical run provided by MONES in the decision space for F4. 
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Fig. 20. The convergence behavior in a typical run provided by MONES in the objective space for F4. 
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analyzed in Section IV-B, the disappearance of some 
potential solutions might be due to two facts: 1) in CA all the 
optimal solutions of a NES are mapped into the same point in 
the objective space and, as a result, some of the optimal 
solutions are neglected in the selection process unreasonably; 
and 2) in CA some potential individuals are Pareto dominated 
by other individuals in the population and they are eliminated 
during the evolution. In addition, as shown in Fig. 16, the 
convergence behavior of CA is quite random for F6 because 
of the many-objective feature of the transformed problem. 

Figs. 17-23 exhibit the convergence behavior of MONES. 
It is clear from Figs. 17-20 that after 100 iterations, MONES 
can locate all the optimal solutions for F1 and F4 except that 
one optimal solution is missed for F4. Moreover, for F4 the 
missed optimal solution can be found when the evolution 
terminates. For F5 and F6, MONES can yield a set of 
representative optimal solutions in a typical run after 500 
iterations as shown in Figs. 21-23. An interesting observation 
is that for F4, some basins of attraction, one of which contain 
an optimal solution, could not be covered by the population at 
the early stage of search (about 20 iterations), however, 
during the evolution such basins of attraction can be 
gradually explored and the entire population is distributed 
around different optimal solutions in the end. This could be 
attributed to the fact that MONES maps the optimal solutions 
of a NES into different points in the objective space and at 

the same time NSGA-II supports the coexistence of these 
points. 

The above experimental results, in conjunction with the 
experimental results in Section V-D reveal that, overall, as a 
transformation technique, MONES is more effective than CA 
for solving NESs. 

F. Comparison with Four Single-objective Optimization 
Based Methods 

In this subsection, we compared MONES with four single-
objective optimization based methods. As introduced in 
Section III-A, Hirsch et al. [32] designed a modified 
objective function (i.e., equation (7)) to generate an area of 
repulsion around the optimal solutions that have been found. 
Moreover, C-GRASP is used as the search engine. Note that 
C-GRASP is a point-to-point algorithm and the 
implementation process of C-GRASP is quite complicated. 
Recognizing that the population based metaheuristic 
algorithm is usually more powerful than the point-to-point 
algorithm, we replaced C-GRASP with particle swarm 
optimization (PSO) [27] and differential evolution (DE) [43] 
respectively to make the method in [32] more effective. As a 
result, we obtained two methods in this paper denoted as 
RepulsionPSO and RepulsionDE, respectively. Following the 
suggestion in [32], β  was set to 1000 and ρ  was set to 0.01 
in equation (7) for both RepulsionPSO and RepulsionDE. 
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Fig. 21. The convergence behavior in a typical run provided by MONES in the decision space for F5. 
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Fig. 22. The convergence behavior in a typical run provided by MONES in the objective space for F5. 
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Fig. 23. The convergence behavior in a typical run provided by MONES in the objective space for F6. 
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On the other hand, after transforming a NES into a single-
objective optimization problems (i.e., equation (5) or 
equation (6)), the transformed problem is essentially similar 
to a multimodal optimal problems since both of them may 
include multiple optimal solutions. Thus, the niching methods 
[44] designed for multimodal optimal problems could also be 
applicable to locate multiple optimal solutions of a NES in a 
single run. In order to test the effectiveness of the niching 
methods for solving NESs, two well-known niching methods 
have been chosen. One is the niching PSO using a ring 
topology (denoted as rpso) [45] and the other is the crowding 
based DE (denoted as CDE) [46]. When applying rpso and 
CDE to solve a NES, equation (5) is considered as the 
objective function in this paper. 

For the four single-objective optimization based methods, 
i.e., RepulsionPSO, RepulsionDE, rpso, and CDE, 30 
independent runs were conducted on the seven test functions. 
To make the comparison fair, the population size was set to 
100 and the maximum generation number was set to 500 
which are the same as those in MONES. For RepulsionDE 
and CDE, the scaling factor and the crossover control 
parameter of DE were set to 0.9 and 0.1, respectively. In 
addition, RepulsionPSO and rpso employ the constricted PSO 
[47] as the search engine. Note that in RepulsionPSO, the 
gbest constricted PSO has been used. However, in rpso the 
lbest constricted PSO with a ring topology has been adopted. 

The NOF-indicator values of RepulsionPSO, RepulsionDE, 
rpso, CDE, and MONES have been summarized in Table IV. 
Table IV indicates that MONES performs better than 
RepulsionPSO and rpso on all the test instances. In addition, 
MONES has an edge over RepulsionDE and CDE on six test 
instances and exhibits similar performance with RepulsionDE 
and CDE on F1. In particular, RepulsionDE and CDE fail to 
find any of the optimal solutions for F2. 

The above comparison suggests that although the single-
objective formulation of a NES has the capability to find 
multiple optimal solutions for some test instances by 
integrating with the creation of repulsion area or the niching 
techniques, its performance is less reliable and robust than 
MONES. Compared with the single-objective formulation, 
the main superiority of MONES is that the distribution of the 
optimal solutions of a NES can be controlled in the objective 
space of the transformed biobjective optimization problem. 

G. The Influence of the Types of Pareto Front 
In MONES, the Pareto front of the transformed biobjective 

optimization problem is determined by the location function 
(i.e., equation (12)), which leads to a linear Pareto front. One 
may be interested in the influence of other types of Pareto 
front on the performance of MONES. Actually, the types of 
Pareto front can be adapted by changing equation (12) into 
the following equation: 

TABLE IV 
EXPERIMENTAL RESULTS OF REPULSIONPSO, REPULSIONDE, RPSO, CDE, AND MONES OVER 30 INDEPENDENT RUNS ON SEVEN TEST INSTANCES. “MEAN 

NOF” AND “STD DEV” INDICATE THE AVERAGE AND STANDARD DEVIATION OF THE NUMBER OF THE OPTIMAL SOLUTIONS FOUND IN 30 RUNS, RESPECTIVELY. 
WILCOXON’S RANK SUM TEST AT A 0.05 SIGNIFICANCE LEVEL IS PERFORMED BETWEEN MONES AND EACH OF REPULSIONPSO, REPULSIONDE, RPSO, AND 

CDE. 
 

Test Instance RepulsionPSO RepulsionDE rpso CDE MONES 
Mean NOF±Std Dev Mean NOF±Std Dev Mean NOF±Std Dev Mean NOF±Std Dev Mean NOF±Std Dev 

F1 1.73E+00±5.21E-01－ 2.00E+00±0.00E+00≈ 1.43E+00±6.26E-01－ 2.00E+00±0.00E+00≈ 2.00E+00±0.00E+00 
F2 4.67E-01±5.07E-01－ 0.00E+00±0.00E+00－ 3.50E-01±5.57E-01－ 0.00E+00±0.00E+00－ 2.00E+00±0.00E+00 
F3 1.63E+00±8.09E-01－ 6.13E+00±1.22E+00－ 1.60E+00±8.14E-01－ 4.43E+00±1.72E+00－ 1.10E+01±0.00E+00 
F4 3.43E+00±1.33E+00－ 8.07E+00±1.82E+00－ 2.97E+00±1.21E+00－ 8.26E+00±1.86E+00－ 1.41E+01±1.16E+00 
F5 2.77E+00±1.38E+00－ 6.70E+00±1.62E+00－ 2.63E+00±1.27E+00－ 1.45E+01±3.15E+00－ 3.73E+01±7.05E+00 
F6 6.67E-02±2.54E-01－ 1.50E+00±6.29E-01－ 1.00E-01±3.05E-01－ 1.95E+01±4.30E+00－ 7.31E+01±3.81E+00 
F7 5.57E+00±1.63E+00－ 1.63E+00±6.69E-01－ 9.47E+00±2.26E+00－ 6.57E+00±3.09E+00－ 2.02E+01±1.15E+01 
－ 7 6 7 6  
＋ 0 0 0 0  
≈ 0 1 0 1  

“－”, “＋”, and “≈” denote that the performance of the corresponding algorithm is worse than, better than, and similar to that of MONES, respectively 
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Fig. 24. The Pareto fronts with five different γ  values for equation (21) with 10 1.x≤ ≤  
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G
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where 0γ >  is a coefficient. 
With respect to equation (21), if 1 0,x ≥ 1( )xα G  is a strictly 

monotone increasing function and 2 ( )xα G  is a strictly 
monotone decreasing function. Consequently, 1( )xα G  and 

2 ( )xα G  conflict with each other, and each value of 1x  is an 
optimal solution of equation (21). Moreover, if 0 1,γ< ≤  the 
Pareto front is convex and if 1,γ >  the Pareto front is concave 

[48]. Fig. 24 plots the Pareto fronts with five different α  
values when 10 1.x≤ ≤  

However, it is necessary to note that the search range of 
ix ( {1, , })i D∈ … is [-1,1] in this paper. If 11 0,x− ≤ <  the 

following three cases will occur according to the value of :γ  
1) γ  is a fraction number (such as 1/2 and 17/5): in this 

case 1x γ  may be a complex number (for example, 1/ 2( 0.5)−  
and 17/5( 0.8)−  are complex numbers), which inevitably causes 
an algorithm to have difficulty in finding the Pareto optimal 
solutions of the transformed problem. 
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Fig. 25. The relationship between 1( )xα G  and 2 ( )xα G  in the objective space for 2γ =  and 11 1.x− ≤ ≤  
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Fig. 26. The Pareto fronts in the case of γ =1, 3, 5, and 7 for equation (21) with 11 1.x− ≤ ≤  

 
TABLE V 

EXPERIMENTAL RESULTS OF MONES WITH FOUR DIFFERENT γ  ON SEVEN TEST INSTANCES. “MEAN NOF” AND “STD DEV” INDICATE THE AVERAGE AND 

STANDARD DEVIATION OF THE NUMBER OF THE OPTIMAL SOLUTIONS FOUND IN 30 RUNS, RESPECTIVELY. WILCOXON’S RANK SUM TEST AT A 0.05 
SIGNIFICANCE LEVEL IS PERFORMED BETWEEN MONES WITH 1γ =  AND EACH OF MONES WITH 3,γ =  MONES WITH 5,γ =  and MONES WITH 7.γ =  

 

Test Instance 3γ =  5γ =  7γ =  1γ =  
Mean NOF±Std Dev Mean NOF±Std Dev Mean NOF±Std Dev Mean NOF±Std Dev 

F1 2.00E+00±0.00E+00≈ 2.00E+00±0.00E+00≈ 2.00E+00±0.00E+00≈ 2.00E+00±0.00E+00 
F2 1.77E+00±4.31E-01－ 1.23E+00±4.30E-01－ 1.23E+00±4.30E-01－ 2.00E+00±0.00E+00 
F3 8.83E+00±8.74E-01－ 6.80E+00±8.87E-01－ 6.13E+00±6.29E-01－ 1.10E+01±0.00E+00 
F4 1.04E+01±1.06E+00－ 7.50E+00±1.04E+00－ 6.17E+00±1.14E+00－ 1.41E+01±1.16E+00 
F5 3.51E+01±7.72E+00≈ 2.52E+01±1.03E+01－ 1.77E+01±1.16E+01－ 3.73E+01±7.05E+00 
F6 5.89E+01±7.05E+00－ 4.07E+01±5.37E+00－ 3.24E+01±5.25E+00－ 7.31E+01±3.81E+00 
F7 1.60E+01±1.13E+01≈ 1.36E+01±1.03E+01－ 1.13E+01±7.83E+00－ 2.02E+01±1.15E+01 
－ 4 6 6  
＋ 0 0 0  
≈ 3 1 1  

“－”, “＋”, and “≈” denote that the performance of the corresponding algorithm is worse than, better than, and similar to that of MONES with 1γ =  
respectively. 
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2) γ  is a positive even number (such as 2, 4, and 6): in this 
case 1( )xα G  does not conflict with 2 ( ).xα G  Fig. 25 gives an 
example of 2.γ =  As shown in Fig. 25, both 1( )xα G  and 2 ( )xα G  
are strictly monotone increasing functions for 11 0.x− ≤ <  
Note that if 1( )xα G  does not conflict with 2 ( ),xα G  Theorem 1 in 
Section IV-A which reflects the relationship between a NES 
and the transformed problem does not hold. 

3) γ  is a positive odd number (such as 1, 3, and 5): in this 
case 1( )xα G  conflicts with 2 ( ).xα G  

According to the characteristics of the above three cases, 
we can conclude that the third case is appropriate for 
MONES, since it ensures that Theorem 1 holds. Fig. 26 
depicts the Pareto fronts in the case of γ =1, 3, 5, and 7 for 
equation (21) with 11 1.x− ≤ ≤  From Fig. 26, it is clear that the 
Pareto front in the objective space is nonlinear when γ  is a 
positive odd number larger than 1. Moreover, some segments 
of the Pareto front are almost horizontal or vertical with the 
increase of ,γ  which poses a great challenge to MOEAs for 
approximating them [49]. 

In order to investigate the effect of the parameter γ  on the 
performance of MONES, we replaced equation (12) with 
equation (21) and tested MONES with four different γ : 1, 3, 
5, and 7. It is necessary to emphasize that all the optimal 
solutions of a NES are located on the nonlinear Pareto front 
for MONES with 3,γ =  MONES with 5,γ =  and MONES 
with 7.γ =  Table V summarizes the NOF-indicator values of 
the seven test instances. The parameter settings are the same 
as those introduced in Section V-D. 

One of the first observations from Table V is that in terms 
of the NOF indicator, MONES with 1γ =  outperforms 
MONES with 3,γ =  MONES with 5,γ =  and MONES with 

7γ =  on four, six, and six test instances, respectively. 
However, the three competitors cannot surpass MONES with 

1γ =  even on one test instance. In the case of 3,γ =  5, and 7, 
the corresponding algorithms lose some optimal solutions 
located on the segments of the Pareto front which are almost 
horizontal or vertical. We choose F3 as an example to explain 
this. Fig. 27 shows the images of the solutions of the final 
population in a typical run and the images of the 11 optimal 
solutions of F3 in the objective space, in the case of 3,γ =  5, 
and 7. From Fig. 27, it is evident that some optimal solutions 
of F3, the images of which are located on the almost 
horizontal segments of the Pareto front, cannot be found. 

In addition, as can be seen from Table V, the performance 
of MONES gradually degrades with the increase of .γ  Fig. 27 
also verifies this. In Fig. 27, the number of the optimal 
solutions found by MONES constantly decreases with the 
increase of .γ  It is not difficult to understand since the larger 
the γ  value the longer the segments of the Pareto front which 
are almost horizontal and vertical [49]. 

In summary, the value of the parameter γ  in equation (21) 
can be set to a positive odd number. If γ  is a positive odd 
number larger than 1, the Pareto front of the transformed 
problem will become nonlinear. The experimental results 
have demonstrated that the nonlinear Pareto fronts have an 
effect impact on the performance of MONES, compared 
against the linear Pareto front (i.e., 1γ = ). In the community 
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Fig. 27. The images of the solutions of the final population in a typical run and the images of the 11 optimal solutions in the objective space in the case of γ =3, 
5, and 7 for F3. 
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Fig. 28. An example to illustrate the limitation of MONES. “+” represents the optimal solutions and “.” represents an unreasonable solution. 
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of evolutionary multiobjective optimization, in order to 
compare the performance of different MOEAs, the Pareto 
front usually exhibits complicated nonlinear characteristics. 
However, the main aim of this paper is to present a simple 
and effective transformation technique for solving a NES and, 
consequently, the linear Pareto front is recommended. 

H. Limitation 
To the best of our knowledge, CA is the first attempt to 

introduce multiobjectivity for the solution of NESs. In this 
paper, we try to design a different multiobjective 
transformation called MONES for solving NESs. 

A NES may include several optimal solutions. According 
to Theorem 2 introduced in Section IV-A, the images of these 
optimal solutions will be discretely distributed on the line 
segment defined by “y=1-x” in the objective space of the 
transformed biobjective optimization problem. It is likely that 
some individuals in the population, which are far away from 
the optimal solutions, are nondominated with the optimal 
solutions. As a result, the final population of MONES may 
contain such unreasonable solutions other than the optimal 
solutions when the evolution halts. Fig. 28 gives an example 
to illustrate the above limitation of MONES. Suppose that 
there are two optimal solutions of a NES in Fig. 28, the 
images of which are discretely located on the line segment 
defined by “y=1-x”. As shown in Fig. 28, individual A is not 
an optimal solution. However, individual A may be 
maintained in the final population of MONES since it is 
nondominated with the two optimal solutions.  

It is necessary to point out that in this paper the above 
limitation of MONES has not been observed in all the 
experiments on the seven test functions, while it exists 
theoretically. To address the above limitation, a simple 
method is introduced as follows. Firstly, all the individuals in 
the final population are used to evaluate the objective 
function in equation (5). If the objective function value of an 
individual is larger than a predefined threshold value, then it 
should be eliminated. 

The reason of the above limitation is due to the fact that the 
images of the optimal solutions are discrete in the objective 
space for some NESs. If a NES involves infinite optimal 
solutions and if the images of the optimal solutions are 
continuously distributed on the Pareto front (such as F5-F7), 
the above limitation of MONES does not exist, since all the 
solutions other than the optimal solutions will be Pareto 
dominated by the optimal solutions. 

VI. CONCLUSION 
Nonlinear equation systems (NESs) may have multiple 

optimal solutions. During the past decade, evolutionary 
algorithms (EAs) have attracted much attention to solve 
NESs. When using EAs to solve NESs, the transformation 
technique, the aim of which is to transform a NES into a kind 
of optimization problem, plays a critical role.  

This paper presents a simple and generic transformation 
technique based on multiobjective optimization for NESs, 
called MONES. It transforms a NES into a biobjective 

optimization problem. Afterward, the transformed problem 
can be directly optimized by the current MOEAs. Due to the 
fact that CA [36] and MONES belong to the same kind of 
transformation techniques, the principal differences between 
them have been analyzed in depth and extensive experiments 
have been carried out to compare their performance. In order 
to make the comparison fair, NSGA-II [14] has been 
combined with CA and MONES in a straightforward way. 
The experimental results suggest that compared with CA, 
MONES exhibits a superior performance on seven test 
instances in terms of two performance indicators, and that 
MONES has the capability to simultaneously locate multiple 
optimal solutions of a NES in a single run. The effectiveness 
of MONES has been further verified by comparing with four 
single-objective optimization based methods. Moreover, we 
have experimentally studied the influence of the types of 
Pareto front on the performance of MONES and discussed 
the limitation of MONES. 

It is necessary to emphasize that in order to test the 
effectiveness of the transformation technique, NSGA-II 
adopted in this paper have not been fine-tuned for the test 
suite. In the future, we will improve the baseline NSGA-II or 
propose more powerful MOEAs and combine them with 
MONES to solve NESs with more complex characteristics. In 
addition, we are also considering the possibility of 
generalizing MONES to solve the differential equation 
systems. 

The source code of MONES is written in MATLAB and 
can be obtained from the corresponding author (Yong Wang) 
upon request. 
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