
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1

Evolutionary Constrained Multiobjective
Optimization: Test Suite Construction

and Performance Comparisons
Zhongwei Ma and Yong Wang, Senior Member, IEEE

Abstract—For solving constrained multiobjective optimization
problems (CMOPs), many algorithms have been proposed in the
evolutionary computation research community during the past
two decades. Generally, the effectiveness of an algorithm for
CMOPs is evaluated by artificial test problems. However, after a
brief review of current artificial test problems, we have found that
they are not well-designed and fail to reflect the characteristics of
real-world applications (e.g., small feasibility ratio). Thus, in this
paper, we firstly propose a new constraint construction method
to facilitate the systematic design of test problems. Then, on
the basis of this method, we design a new test suite consisting
of 14 instances, which covers diverse characteristics extracted
from real-world CMOPs and can be divided into four types.
Considering that the comprehensive performance comparisons
among constraint-handing techniques (CHTs) remain scarce, we
choose several representative CHTs and compare their perfor-
mance on our test suite. The performance comparisons identify
the strengths and weaknesses of different CHTs on different types
of CMOPs and provide guidelines on how to select/design a CHT
in a specific scenario.

Index Terms—Test suite, constrained multiobjective optimiza-
tion, constraint-handling techniques, evolutionary algorithms,
performance comparisons.

I. INTRODUCTION

A. Constrained Multiobjective Optimization Problems

CONSTRAINED multiobjective optimization problems
(CMOPs) have received increasing attention during the

past two decades since they widely exist in many real-world
applications, such as scheduling [1], vehicle body design
[2], and systematic deployment optimization [3]. CMOPs are
featured with one or more constraints and multiple conflicting
objectives that need to be optimized simultaneously. CMOPs
pose a great challenge to evolutionary algorithms (EAs) due
to the fact that they require EAs to offer tradeoffs among the
conflicting objectives subject to all constraints [4], [5].

Without loss of generality, a CMOP can be formulated as:

min ~F (~x) =
(
f1(~x), f2(~x), . . . , fm(~x)

)T
s.t.


gj(~x) ≤ 0, j = 1, . . . , p

hj(~x) = 0, j = p+ 1, . . . , p+ q

xmink ≤ xk ≤ xmaxk , k = 1, . . . , n

(1)

where ~x = (x1, . . . , xn) ∈ S is an n-dimensional decision
vector, xk(k ∈ {1, . . . , n}) is the kth decision variable, S ⊂
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Rn is the decision space, ~F is the objective vector consisting
of m objectives, fi(~x)(i ∈ {1, . . . ,m}) is the ith objective,
gj(~x) ≤ 0 is the jth inequality constraint, p is the number
of inequality constraints, hj(~x) = 0 is the (j − p)th equality
constraint, q is the number of equality constraints, and xmink

and xmaxk are bound constraints of xk.
The constraint violation of ~x on the jth constraint can be

defined as follows:

CVj(~x) =

{
max(0, gj(~x)), j = 1, . . . , p

max(0, |hj(~x)|−δ), j = p+1, . . . , p+q
(2)

where δ is a very small tolerance value to relax equality
constraints (e.g., 10−4). Based on this definition, ~x is a feasible
solution if its total constraint violation, i.e.,

CV (~x) =

p+q∑
j=1

CVj(~x) (3)

is equal to 0; otherwise, ~x is an infeasible solution. The feasible
region is the set of all the feasible solutions, namely, Ω =
{~x|CV (~x) = 0, ~x ∈ S}.

B. Classification of CMOPs

In unconstrained multiobjective optimization (i.e., ignoring
the constraints in (1)), given two solutions ~a and ~b, ~a Pareto
dominates ~b (denoted as ~a ≺ ~b), if and only if fi(~a) ≤ fi(~b)
for every i ∈ {1, . . . ,m} and fj(~a) < fj(~b) for at least one
index j ∈ {1, . . . ,m}. ~x∗ is a Pareto optimal solution if there
does not exist any solution that Pareto dominates it. The set of
all the Pareto optimal solutions is the Pareto set. The Pareto
front (PF) is the image of the Pareto set in the objective space.

Due to the presence of constraints, it is more difficult to
obtain the PF of a CMOP, called constrained PF, than its
unconstrained counterpart [6]. Compared with unconstrained
multiobjective optimization, some original Pareto optimal
solutions may become infeasible in a CMOP and/or some
solutions on the boundary of the feasible region of a CMOP
may become the Pareto optimal solutions. In order to identify
the relationship between unconstrained and constrained PFs,
we classify CMOPs into the following four types:
• Type I: as shown in Fig. 1(a), the whole unconstrained

PF remains feasible, that is, the constrained PF is the
same with the unconstrained PF. Some CMOPs with
loose constraints often belong to this type, such as the
optimization of biped robot gaits [7], [8].
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Fig. 1. Classification of CMOPs. (a) Type I. (b) Type II. (c) Type III. (d) Type
IV. For the sake of clarity, in our following discussions, the feasible region
and the boundary of the feasible region specifically refer to their counterparts
in the objective space.

• Type II: as plotted in Fig. 1(b), the constrained PF is a part
of the unconstrained PF, since constraints make a portion
of the unconstrained PF infeasible. This type exists widely
in real-world CMOPs and a similar engineering problem
can be found in the topology optimization of multi-cell
tubes [9].

• Type III: the constrained PF consists of a part of the
unconstrained PF and a part of the boundary of the feasible
region. As shown in Fig. 1(c), constraints make a part of
the unconstrained PF infeasible and some solutions on the
boundary of the feasible region become the Pareto optimal
solutions. A real-world CMOP belonging to this type is
the reliability design problem in the field of automotive
body optimization [10], [11].

• Type IV: as plotted in Fig. 1(d), the unconstrained PF
is entirely located outside the feasible region. Thus, the
constrained PF is composed of a part of the boundary of
the feasible region. A typical CMOP of this type is the
robot gripper optimization problem [12].

When solving CMOPs, it is well known that we need to
seek a balance between objectives and constraints in the search
process [13]. However, there is little awareness on how to
reasonably apply this principle when facing different types of
CMOPs mentioned above. In particular, from Type I to Type IV,
the search bias should be gradually switched from objectives to
constraints. For Type I, to obtain the Pareto optimal solutions
on the constrained PF, more focuses should be placed on
objectives. Instead, for Type IV, more emphases should be put
on constraints since the Pareto optimal solutions are completely
located on the boundary of the feasible region.

C. Present Artificial Test Problems/Suites and Their Drawbacks

In general, it is impractical to assess the performance of
an algorithm by a specific real-world CMOP [14]. The reason
is because this assessment process may require some domain
knowledge and cannot effectively demonstrate an algorithm’s
generality. An alternative way is to use artificial test problems
that cover as many characteristics extracted from real-world
CMOPs as possible. If an algorithm achieves desirable results
on artificial test problems, we could believe that it has good
potential to solve real-world CMOPs. Some attempts have
been made on the design of artificial test problems for CMOPs.
Examples include SRN [15], TNK [16], OSY [17], CTPs [18],
CFs [19], NCTPs [20], and C-DTLZs [21].

SRN, TNK, and OSY are perhaps the earliest three test
problems and have been frequently considered for performance
comparisons of algorithms. SRN has a continuous constrained
PF that is a part of the unconstrained PF (i.e., Type II). TNK
has a disconnected constrained PF that completely lies on
the boundary of the feasible region (i.e., Type IV). OSY is a
Type-IV CMOP and has six constraints. OSY’s constrained
PF has five parts and each part is the intersection of certain
constraints.

Deb et al. [18] pointed out that the above three test problems
have the following shortcomings: 1) they have few decision
variables; 2) their objectives and constraints are not sufficiently
nonlinear; and 3) their difficulties are not tunable in terms
of constraints. Therefore, a general framework is suggested
in [18] to design CMOPs with constraints that have tunable
difficulties. Based on the proposed framework, seven instances
are proposed (called CTPs). Most of them have disconnected or
discrete constrained PFs. Note that, CTPs have large feasibility
ratios.

Following the framework of CTPs, Zhang et al. [19] con-
structed ten test problems (called CFs). CFs have disconnected
geometries of constrained PFs and belong to the Type-II and
Type-III CMOPs. CFs also introduce complicated variable
linkages. As a result, when solving CFs, an algorithm always
struggles on convergence. Besides, most of CFs have large
feasible regions.

Inspired by CTPs, Li et al. [20] proposed 18 new test
problems (called NCTPs). Compared with the original CTPs,
these test problems make the following improvements: 1) the
Ronsenbrock function is employed as the distance function
to increase the difficulty of convergence; 2) high-dimensional
decision spaces are considered; and 3) an extra constraint is
added to explicitly decrease the feasibility ratio.

Jain et al. designed a test suite of five CMOPs with scalable
number of objectives [21], which are extended versions of the
DTLZ problems used in the field of unconstrained multiob-
jective optimization. Specifically, three kinds of constraints
are introduced: 1) the first kind of constraints provides an
infeasible barrier, and the unconstrained PF remains feasible
(i.e., C1-DTLZs); 2) the second kind of constraints defines
several isolated feasible regions along the unconstrained PF,
and the constrained PF is a part of the unconstrained PF
(i.e., C2-DTLZs); and 3) the third kind of constraints makes
the unconstrained PF infeasible and the constrained PF is
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TABLE I
COMPARISON OF CURRENT TEST PROBLEMS AND THE PROPOSED TEST PROBLEMS. “

√
” AND “×” DENOTE THE PRESENCE AND ABSENCE OF THE

CORRESPONDING CHARACTERISTIC, RESPECTIVELY, AND “?” DENOTES THAT THE CORRESPONDING CHARACTERISTIC IS SATISFIED PARTIALLY.

SRN [15] TNK [16] OSY [17] CTPs [18] CFs [19] NCTPs [20] C-DTLZs [21] MWs
Type II IV IV II, III, IV II, III I, III, IV I, II, IV ALL
Small Feasibility Ratio

√ √ √
× × ? ?

√

Sufficient Nonlinearity of Constraints ×
√

×
√ √ √

×
√

More Than Two Constraints × ×
√

× × ×
√ √

Scalability of the Number of Objectives × × × × × ×
√ √

High-dimensional Decision Vector × × × ×
√ √ √ √

Proper Difficulty of Convergence × × × × ×
√ √ √

Diverse Geometries of Constrained PFs × × × × × × ×
√

made up of the boundary of the feasible region (i.e., C3-
DTLZs). According to our classification of CMOPs, C1-DTLZs,
C2-DTLZs, and C3-DTLZs belong to Types I, II, and IV,
respectively. It is worth noting that the constraints of C-DTLZs
are not sufficiently nonlinear, because the shape of the feasible
region is regular and simple (e.g., spherical feasible region
in C2-DTLZ2), and the boundary of the feasible region has
very small curvature (e.g., linear boundary in C1-DTLZ1 and
C3-DTLZ1). Besides, the feasibility ratios of some C-DTLZs
(e.g., C1-DTLZ3, C3-DTLZ1, and C3-DTLZ4) are greater than
30% based on our calculation.

Based on the above discussions, present artificial test
problems fail to comprehensively represent the characteristics
of real-world CMOPs:
• It is common that real-world CMOPs have very small

feasible regions and complex nonlinear constraints [22],
[23]. However, the feasibility ratios of current test prob-
lems are always large and/or their constraints are not
sufficiently nonlinear. Note that if the feasibility ratio of
a CMOP is very large, it is hard to identify the ability of
a constraint-handling technique (CHT).

• Most of current test problems have a single constraint,
which is much less than the number of constraints in
real-world CMOPs. For example, there are nine and 11
constraints in the ship parametric design problem [24]
and the speed-reducer design problem [25], respectively.

• Real-world CMOPs may have an arbitrary number of
objectives [26]. But current test problems (except C-
DTLZs) are CMOPs with two objectives, which cannot
be scalable in terms of the number of objectives.

• Some test problems consider few decision variables. For
example, the most commonly used test problems, i.e.,
SRN, TNK, OSY, and CTPs, have no more than six
decision variables.

In addition, some other limitations of current test problems
make them unsuitable for general use. First, some test problems
are unable to provide proper difficulties of convergence. Second,
some special geometries of constrained PFs are not suggested
in current test problems, such as the jagged geometry in the
aircraft landing scheduling problem [27]. Third, there is no
test suite containing all the four types of CMOPs according to
our taxonomy.

D. Motivation

Table I summarizes the drawbacks of current test problems.
It is clear from Table I that it is necessary to further investigate

the construction of artificial test problems in constrained mul-
tiobjective optimization. Motivated by the above consideration,
we propose a new constraint construction method. This method
enables us to design CMOPs with controllable sizes of the
feasible regions and complex geometries of constrained PFs.
Afterward, we suggest three kinds of distance functions that
can provide appropriate difficulties of convergence for CMOPs.
Based on the constraint construction method and the distance
functions, we propose a test suite containing 14 instances. They
cover all of the four types of CMOPs.

Besides, we choose several popular CHTs for performance
comparisons on our test suite, since the comparative studies
among CHTs have been scarcely reported. We compare six
and four representative CHTs under the frameworks of NSGA-
II [28] and MOEA/D [29], respectively, which are two well-
known paradigms of multiobjective EAs [30]. The performance
comparisons evaluate the performance of different CHTs on
different types of CMOPs and help us to select/design a suitable
CHT for a specific scenario.

The rest of this paper is organized as follows. Section
II presents the constraint construction method. Section III
gives the details of the distance functions and test suite.
The performance comparisons among CHTs are conducted
in Section IV. Finally, Section V concludes this paper.

II. PROPOSED CONSTRAINT CONSTRUCTION METHOD

The constraint construction method suggested in this paper
provides a way to design CMOPs with desirable constraints.
It consists of two main processes: a global control process
and a local adjustment process. The global control process
aims to control the size of the feasible region in the objective
space, while the local adjustment process helps to adjust the
complexity of the boundary of the feasible region and to
generate different geometries of constrained PFs.

A. Global Control Process
This process first chooses a set of similar functions. For

example, we use the following pair of functions:{
L1 : x2 + y2 − 12 = 0

L2 : x2 + y2 − 1.22 = 0
(4)

where L1 and L2 are similar functions since they have similar
mathematical forms and geometrical structures. Then, we
transform L1 and L2 into two functions related to f1 and
f2:

L1 ⇒ f21 + f22 − 12 = 0⇒ f2 =
√

1− f21 (5)
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Fig. 2. CMOPs with constraints defined by (a) L2 : x2 + y2− 1.22 = 0; (b) L2 : x2 + y2− 1.12 = 0; and (c) the local-adjusted L2 in (a) with A = −0.15,
B = 20, C = 1, and D = 1.
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Fig. 3. CMOPs with different types generated by similar parameter settings of local adjustment. (a) a discontinuous Type-II CMOP and the parameter settings
are the same as in (10) except A = −0.3. (b) a continuous Type-III CMOP and the parameter settings are the same with (a) except B = 2. (c) a discrete
Type-IV CMOP and the parameter settings are the same as in (10) except D = 20. The gray area(s) is/are the feasible region(s).

L2 ⇒ f21 + f22 − 1.22 = 0 (6)

where (5) can be used to produce a unconstrained PF because
it provides a conflicting relationship between f1 and f2. From
(6), it is easy to obtain an inequality constraint:

f21 + f22 − 1.22 ≤ 0 (7)

so, we can construct a CMOP as follows:

min

{
f1(~x) = x1

f2(~x) = g
√

1− f21
s.t. c(~x) = f21 + f22 − 1.22 ≤ 0

(8)

where the distance function g ≥ 1. The unconstrained PF and
the boundary of the feasible region in (8) are defined by (5)
and (6), respectively. As shown in Fig. 2(a), the feasible region
in the objective space is the grey area bounded by (5) and (6),
which are derived from L1 and L2, respectively. If we replace
L2 in (4) with “x2+y2−1.12 = 0”, as shown in Fig. 2(b), the
CMOP generated through the above process has a smaller size
of the feasible region in the objective space than the feasible
region produced by “x2 + y2 − 1.22 = 0”. In other words, the
similarity between similar functions determines the feasibility
ratios of the constructed CMOPs. By choosing appropriate
similar functions, we can explicitly control the size of the
feasible region in the objective space, which enables us to
design test problems with very small feasibility ratios as in
real-world CMOPs.

B. Local Adjustment Process

When solving CMOPs by EAs, constraints can cause difficul-
ties on both convergence and diversity. Moreover, constraints

may increase the hardness of obtaining feasible solutions and
change the feasibilities of the original Pareto optimal solutions.
Therefore, constraints play a critical role in determining the
difficulties of CMOPs.

Inspired by this fact, a local adjustment process is proposed
to enhance the nonlinearity of constraints. In this paper, the
local adjustment process is designed by adding a periodic
function into the constraints constructed in the global control
process. One possible formulation of the periodic function is:

A sin
(
B · l(~F )C

)D
(9)

where l(~F ) is a function related to the objective vector
~F . (9) can produce a series of local shapes. Moreover, it
has four parameters A, B, C, and D to control the local
shapes. Specifically, A controls the magnitude of the local
shapes, B determines the number of the local shapes, C
affects the distribution of the local shapes, and D reflects
the concave/convex degree of the local shapes. If we introduce
(9) into the constraint in (8) with A=−0.15, B=20, C=1,
and D=1, the following CMOP is generated:

min

{
f1(~x) = x1

f2(~x) = g
√

1− f21
s.t. c(~x) = f21 + f22 −

(
1.2− 0.15 sin(20l)

)2 ≤ 0,

l = arctan(f2/f1)

(10)

As shown in Fig. 2(c), the constraint has a higher nonlinearity
than that in (8). By carefully tuning the four parameters in (9),
the local adjustment process enables us to design CMOPs with
different types and diverse geometries of constrained PFs, such
as the disconnected Type-II CMOP in Fig. 3(a), the continuous
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TABLE II
CHARACTERISTICS OF OUR TEST PROBLEMS, WHERE “SCALABILITY” IS THE SCALABILITY IN TERMS OF THE NUMBER OF OBJECTIVES (“NOF”) OR THE

NUMBER OF DECISION VARIABLES (“NOX”), “NOC” IS THE NUMBER OF CONSTRAINTS, “UPF” IS THE UNCONSTRAINED PF, AND “CPF” IS THE
CONSTRAINED PF. IN ADDITION, A “MIXED” GEOMETRY DENOTES THAT IT INCLUDES BOTH CONVEX AND CONCAVE SEGMENTS.

Problem Type Scalability Constraint(s) Geometry Feasible Region Decision Space Distance FunctionNoF NoX NoC Nonlinearity UPF CPF Size Connectivity
MW1 II No Yes 1 Yes Linear Disconnected < 0.1‰ Disconnected [0, 1]n g1
MW2 I No Yes 1 Yes Linear Linear < 0.1‰ Disconnected [0, 1]n g2
MW3 III No Yes 2 Yes Linear Mixed < 0.1‰ Connected [0, 1]n g3
MW4 I Yes Yes 1 Yes Linear Linear < 0.1‰ Connected [0, 1]n g1
MW5 II No Yes 3 Yes Concave Discrete ≈ 0.3‰ Connected [0, 1]n g1
MW6 II No Yes 1 Yes Concave Disconnected < 0.1‰ Disconnected [0, 1.1]n g2
MW7 III No Yes 2 Yes Concave Disconnected < 0.1‰ Connected [0, 1]n g3
MW8 II Yes Yes 1 Yes Concave Disconnected < 0.1‰ Disconnected [0, 1]n g2
MW9 IV No Yes 1 Yes Convex Concave < 0.1‰ Connected [0, 1]n g1
MW10 III No Yes 3 Yes Concave Disconnected < 0.1‰ Disconnected [0, 1]n g2
MW11 IV No Yes 4 Yes Concave Disconnected < 0.1‰ Disconnected [0,

√
2]n g3

MW12 IV No Yes 2 Yes Mixed Mixed < 0.1‰ Disconnected [0, 1]n g1
MW13 III No Yes 2 Yes Disconnected Disconnected ≈ 6.5% Disconnected [0, 1.5]n g2
MW14 I Yes Yes 1 Yes Disconnected Disconnected ≈ 0.1‰ Connected [0, 1.5]n g3

Type-III CMOP in Fig. 3(b), and the discrete Type-IV CMOP in
Fig. 3(c) (note that the last two CMOPs require two constraints,
i.e., the constraints in (8) and (10) with minor modifications).

We would like to give the following remarks to the local
adjustment process:
• If the constraints constructed in the global control pro-

cess are able to provide sufficient difficulties, the local
adjustment process is not necessary. Under this condition,
A can be set to zero.

• We can also make use of the local adjustment to adjust
the unconstrained PF, with the aim of improving its
nonlinearity. It is because a complex unconstrained PF
can increase the difficulties in finding desirable Pareto
optimal solutions, especially for Types I, II, and III.

In summary, the proposed constraint construction method is
able to produce CMOPs with various characteristics, such as
small and controllable feasibility ratio, sufficient nonlinearity
in terms of constraints, and diverse geometries of constrained
PFs. In addition, if the global control process involves several
similar functions, we can construct test problems that has
multiple constraints, like real-world CMOPs.

III. PROPOSED TEST SUITE

Inspired by [31] and [32], the construction form of CMOPs
is shown as:

min


f1(~x) = g(~xII) · s1(~xI)

...
fm(~x) = g(~xII) · sm(~xI)

s.t. cj(~x) ≥ 0, j = 1, . . . , p

(11)

where si (i ∈ {1, . . . ,m}) is the shape function of the ith
objective, m is the number of objectives, cj (j ∈{1, . . . , p})
is the jth constraint, p is the number of constraints, g is
the distance function whose minimum value is 1, and ~xI =
(x1, . . . , xm−1) and ~xII =(xm, . . . , xn) are the subvectors of ~x.
In principle, the shape functions define the unconstrained PF,
the distance function determines the difficulty of convergence,
and the constraints control the difficulty of constraint handling.

In Section II, we have described the design process of
constraints and constrained PFs. In this section, to accomplish

the construction of test problems, we will present three kinds
of distance functions that can provide appropriate difficulties of
convergence. After that, we will introduce our newly designed
test problems.

A. Distance Functions

Three kinds of distance functions with different characte-
ristics are considered, namely, biased distance function, multi-
modal distance function, and distance function with variable
linkages. Note that these functions are scalable in terms of the
number of decision variables.

A biased distance function is defined as follows:

g1 =1+

n∑
i=m

(
1−exp

(
−10

(
zi−0.5− i− 1

2n

)2))
zi = xn−mi , xi ∈ ~xII

(12)

g1 reaches its minimum value if zi = 0.5+ i−1
2n (i∈{m, ..., n}).

Note that xn−mi tends to prevent zi from achieving its optimal
value (i.e., 0.5+i−1

2n ). The reason is that xn−mi is biased toward
zero for xi ∈ [0, 1] but the optimal value of zi is greater than
0.5.

A multimodal distance function is formulated as follows:

g2 =1+

n∑
i=m

(
1.5+

0.1

n
z2i −1.5 cos(2πzi)

)
zi=1−exp

(
−10

(
xi−

i− 1

n

)2)
, xi ∈ ~xII

(13)

g2 is mapped to the global minimum if zi = 0 (i ∈ {m, . . . , n}).
zi = 1− exp(−10(xi − i−1

n )2) ensures that when g2 reaches
the global minimum, the value of each xi (i ∈ {m, . . . , n}) is
different.

Besides, the distance function with variable linkages is given
as follows:

g3 =1+

n∑
i=m

2
(
xi+(xi−1−0.5)2−1

)2
(14)

g3 gets its minimum value when xi = 1 − (xi−1 − 0.5)2

(i ∈ {m, . . . , n}).
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B. Test Problems

Based on the constraint construction method and distance
functions, we design a set of 14 test problems (called MW1-
MW14) in this paper. They cover all the four types of
CMOPs according to our taxonomy and have considerably
small feasibility ratios, sufficiently nonlinear constraints, and
other important characteristics. Table II summarizes the main
characteristics of MWs.

MW1:

min

{
f1(~x)=x1

f2(~x)=g1(1−0.85f1/g1)

s.t. c(~x)=1−f1−f2+0.5 sin(2πl)8≥0,

l=
√

2f2−
√

2f1

(15)

This test problem is constructed by means of two similar
functions: “1 − 0.85x − y = 0” and “1 − x − y = 0”. The
former is used to produce the unconstrained PF. In addition,
by conducting the local adjustment process on the latter, the
constraint is generated. MW1 belongs to Type II and has a
disconnected geometry of constrained PF. It uses the biased
distance function (i.e., g1 in (12)). As shown in Fig. 4(a), the
grey areas are the feasible regions and the red points are the
images of the Pareto optimal solutions in the objective space.

MW2:

min

{
f1(~x)=x1

f2(~x)=g2(1−f1/g2)

s.t. c(~x)=1−f1−f2+0.5 sin(3πl)8≥0,

l=
√

2f2−
√

2f1

(16)

In this test problem, the unconstrained PF and the constraint
utilize the same similar function: “1− x− y = 0”. Moreover,
by conducting the local adjustment process on this similar
function, the constraint is designed. MW2’s constrained PF is
continuous and the same with the unconstrained PF. It adopts
the multimodal distance function (i.e., g2 in (13)). As shown
in Fig. 4(b), the grey areas are the feasible regions and the red
points are the images of the Pareto optimal solutions in the
objective space.

MW3:

min

{
f1(~x)=x1

f2(~x)=g3(1−f1/g3)

s.t. c1(~x)=1.05−f1−f2+0.45 sin(0.75πl)6≥0,

c2(~x)=0.85−f1−f2+0.3 sin(0.75πl)2≤0,

l=
√

2f2−
√

2f1

(17)

This test problem takes three similar functions into account. The
unconstrained PF is produced by “1−x−y = 0”. Additionally,
through the local adjustment process on “0.85 − x − y = 0”
and “1.05−x−y = 0”, two constraints c1 and c2 are designed,
respectively. MW3 is a Type-III CMOP, that is, its constrained
PF contains a part of the unconstrained PF and a part of the
boundary of the feasible region. The distance function with
variable linkages is employed (i.e., g3 in (14)). As shown in
Fig. 4(c), the grey areas are the feasible regions and the red
points are the images of the Pareto optimal solutions in the

objective space. Due to the fact that MW3 has some narrow
parts in its feasible region, it is a hard task to find the Pareto
optimal solutions on these parts.

MW4:

min


f1(~x)=g1

m−1∏
i=1

(1− xi)

fk=2:m−1(~x)=g1xm−k+1
m−k∏
i=1

(1−xi)

fm(~x)=g1x1

s.t. c(~x)=(1+0.4 sin(2.5πl)8)−f1−· · ·−fm≥0,

l=fm−f1−· · ·−fm−1

(18)

Since our constraint construction method can be extended to
a high-dimensional objective space, it enables us to design
CMOPs with scalable number of objectives. In MW4, the
unconstrained PF is defined by the hyperplane “1− x− y −
z − · · · = 0”. Additionally, by applying the local adjustment
process to this function, the constraint is obtained (like MW2,
the unconstrained PF and the constraint utilize the same similar
function). MW4 is a Type-I CMOP and uses the biased distance
function (i.e., g1 in (12)). Fig. 4(d) shows the relationship
between the mth objective and any two other objectives fk
and fh from {f1, f2, . . . , fm−1}. The feasible region is the
area bounded by the grey surface and the blue plane, and the
red points are samples of the images of the Pareto optimal
solutions in the objective space.

MW5:

min

{
f1(~x)=g1x1

f2(~x)=g1
√

1−(f1/g1)2

s.t. c1(~x)=
(
1.7−0.2 sin(2l1)

)2−f21−f22 ≥0,

c2(~x)=
(
1+0.5 sin(6l32)

)2−f21−f22 ≤0,

c3(~x)=
(
1−0.45 sin(6l32)

)2−f21−f22 ≤0,

l1 =arctan(f2/f1),

l2 =0.5π−2
∣∣ arctan(f2/f1)−0.25π

∣∣

(19)

This test problem takes two similar functions into account:
“1−x2−y2 = 0” and “1.72−x2−y2 = 0”. The unconstrained
PF is defined by the former. By applying the local adjustment
process to the former, two constraints c2 and c3 are generated.
In addition, by conducting the local adjustment process on the
latter, the constraint c1 is generated. MW5’s constrained PF
contains several discrete Pareto optimal solutions. Its distance
function is g1 in (12). MW5 is plotted in Fig. 4(e), where
the grey area is the feasible region and the red points are the
images of the Pareto optimal solutions in the objective space.
The hardness of MW5 is that the images of the discrete Pareto
optimal solutions are at the end of the tunnel-like feasible
region.

MW6:

min

{
f1(~x)=g2x1

f2(~x)=g2
√

1.12−(f1/g2)2

s.t. c(~x)=1−
(
f1/(1+0.15l)

)2−(f2/(1+0.75l)
)2≥0,

l = cos
(
6 arctan(f2/f1)4

)10
(20)
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Fig. 4. Visualization of MWs. (a) MW1. (b) MW2. (c) MW3. (d) MW4.
(e) MW5. (f) MW6. (g) MW7. (h) MW8. The unconstrained PFs are shown
in blue and the red points are the images of the Pareto optimal solutions in
the objective space. In (a)-(c) and (e)-(g), the grey area(s) is/are the feasible
region(s), in (d) the feasible region is the area bounded by the grey surface
and the blue plane, and in (h) the feasible regions are the areas bounded by
the grey surfaces and the blue surface.

This test problem is constructed by making use of two similar
functions: “1.12−x2−y2 =0” and “1−x2−y2 =0”. The former
is used to produce the unconstrained PF. Besides, by conducting
the local adjustment process on the latter, the constraint is
produced. MW6 belongs to Type II as the constraint makes a
part of the unconstrained PF infeasible. Its distance function
is g2 in (13). MW6 is plotted in Fig. 4(f), where the grey
areas are the feasible regions and the red points are the images
of the Pareto optimal solutions in the objective space. MW6
is a highly disconnected CMOP and its feasible regions are
distributed irregularly.
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Fig. 5. Visualization of MWs. (a) MW9. (b) MW10. (c) MW11. (d) MW12.
(e) MW13. (f) MW14. The unconstrained PFs are shown in blue and the red
points are the images of the Pareto optimal solutions in the objective space.
In (a)-(e), the grey area(s) is/are the feasible region(s), and in (f), the feasible
region is the area bounded by the grey surface and the surfaces that define
the unconstrained PF (i.e., the four blue parts).

MW7:

min

{
f1(~x)=g3x1

f2(~x)=g3
√

1−(f1/g3)2

s.t. c1(~x)=
(
1.2+0.4 sin(4l)16

)2−f21−f22 ≥0,

c2(~x)=
(
1.15−0.2 sin(4l)8

)2−f21−f22 ≤0,

l=arctan(f2/f1)

(21)

This test problem includes three similar functions. “1− x2 −
y2 = 0” is used to generate the unconstrained PF. In addition,
by conducting the local adjustment process on “1.2−x2−y2 =
0” and “1.15 − x2 − y2 = 0”, two constraints c1 and c2 are
generated, respectively. MW7 is a Type-III CMOP, that is, its
constrained PF contains a part of the unconstrained PF and a
part of the boundary of the feasible region. Its distance function
is g3 in (14). MW7 is plotted in Fig. 4(g), where the grey area
is the feasible region and the red points are the images of the
Pareto optimal solutions in the objective space. It is difficult
to find the Pareto optimal solutions on the boundary of the
feasible region because the feasible region near them is very
narrow.
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MW8:

min


f1(~x)=g2

m−1∏
i=1

cos(0.5πxi)

fk=2:m−1(~x)=g2 sin(0.5πxm−k+1)
m−k∏
i=1

cos(0.5πxi)

fm(~x)=g2 sin(0.5πx1)

s.t. c(~x)=
(
1.25−0.5 sin(6l)2

)2−f21−· · ·−f2m≥0,

l=arcsin(fm/
√
f21 +. . .+ f2m)

(22)

This test problem is scalable in terms of objectives and it is
constructed by making use of two similar functions: “1−x2−
y2 − z2 − · · · = 0” and “1.252 − x2 − y2 − z2 − · · · = 0”.
The unconstrained PF is defined by the former. Additionally,
through the local adjustment process on the latter, the constraint
is defined. MW8 is a disconnected Type-II CMOP and uses the
multimodal distance function (i.e., g2 in (13)). Fig. 4(h) shows
the relationship between the mth objective and any two other
objectives fk and fh from {f1, f2, . . . , fm−1}. The feasible
regions are the areas bounded by the grey surfaces and the
blue surface, and the red points are samples of the images of
the Pareto optimal solutions in the objective space.

MW9:

min

{
f1(~x)=g1x1

f2(~x)=g1
(
1−(f1/g1)0.6

)
s.t. c(~x)=min{T1, T2 ·T3}≤0,

T1 =
(
1−0.64f21−f2

)(
1−0.36f21−f2

)
,

T2 =1.352−(f1 + 0.35)2−f2,
T3 =1.152−(f1 + 0.15)2−f2

(23)

This test problem considers five similar functions. The un-
constrained PF is defined by “1 − x0.6 − y = 0” and the
constraints are produced by “(1 + ai)

2 − (x+ ai)
2 − y = 0”

and “1 − bjx2 − y = 0”, where ai ∈ {0.35, 0.15}(i = 1, 2)
and bj ∈ {0.64, 0.36}(j = 1, 2). MW9 is a Type-IV CMOP
because its constrained PF is a part of the boundary of the
feasible region. Besides, its distance function is g1 in (12). As
shown in Fig. 5(a), the grey area is the feasible region and the
red points are the images of the Pareto optimal solutions in
the objective space.

MW10:

min

{
f1(~x)=g2x

n
1

f2(~x)=g2
(
1−(f1/g2)2

)
s.t. c1(~x)=(2−4f21−f2)(2−8f21−f2)≥0,

c2(~x)=(2−2f21−f2)(2−16f21−f2)≤0,

c3(~x)=(1−f21−f2)(1.2−1.2f21−f2)≤0

(24)

This test problem is constructed based on six similar functions.
The unconstrained PF is defined by “1 − x2 − y = 0” and
the constraints are produced by “2 − aix

2 − y = 0” and
“bj − bjx2 − y = 0”, where ai ∈ {2, 4, 8, 16}(i = 1, . . . , 4)
and bj ∈ {1.0, 1.2}(j = 1, 2). MW10 is a disconnected Type-
III CMOP and adopts the multimodal distance function (i.e., g2
in (13)). As shown in Fig. 5(b), the grey areas are the feasible

regions and the red points are the images of the Pareto optimal
solutions in the objective space. MW10 has island-like feasible
regions and the polynomial bias in f1 prevents an algorithm
from finding them.

MW11:

min

{
f1(~x)=g3x1

f2(~x)=g3
√

2−(f1/g3)2

s.t. c1(~x)=(3−f21−f2)(3−2f21−f2)≥0,

c2(~x)=(3−0.625f21−f2)(3−7f21−f2)≤0,

c3(~x)=(1.62−0.18f21−f2)(1.125−0.125f21−f2)≥0,

c4(~x)=(2.07−0.23f21−f2)(0.63−0.07f21−f2)≤0
(25)

This test problem includes nine similar functions. The un-
constrained PF is produced by “2 − x2 − y2 = 0” and the
constraints are generated on the basis of “3− aix2 − y = 0”
and “cj − bjx

2 − y = 0”, where ai ∈ {0.625, 1, 2, 7}(i =
1, . . . , 4), bj ∈ {0.23, 0.18, 0.125, 0.07}(j = 1, . . . , 4), and
cj ∈ {2.07, 1.62, 1.125, 0.63}(j = 1, . . . , 4). MW11’s con-
strained PF consists of an isolated point (1, 1) and a part of
the boundaries of the feasible regions. In addition, its distance
function is g3 in (14). As shown in Fig. 5(c), the grey areas
are the feasible regions and the red points are the images of
the Pareto optimal solutions in the objective space. It is an
important task for an algorithm to find the isolated optimal
solution because it Pareto dominates one patch of the feasible
regions.

MW12:

min

{
f1(~x)=g1x1

f2(~x)=g1
(
0.85−0.8f1/g1−0.08

∣∣ sin(3.2πf1/g1)
∣∣)

s.t. c1(~x)=T1 ·T4≤0, c2(~x)=T2 ·T3≥0,

T1 =1−0.8f1−f2+0.08 sin
(
2π(f2−f1/1.5)

)
,

T2 =1−0.625f1−f2+0.08 sin
(
2π(f2−f1/1.6)

)
,

T3 =1.4−0.875f1−f2+0.08 sin
(
2π(f2/1.4−f1/1.6)

)
,

T4 =1.8−1.125f1−f2+0.08 sin
(
2π(f2/1.8−f1/1.6)

)
(26)

This test problem is constructed through five similar func-
tions: “0.85 − 0.8x − y = 0” and “ai − bix − y =
0”, where ai ∈ {1, 1, 1.4, 1.8}(i = 1, . . . , 4) and bi ∈
{0.8, 0.625, 0.875, 1.125}(i = 1, . . . , 4). By conducting the
local adjustment process on the first one, the unconstrained PF
is generated. Furthermore, by conducting the local adjustment
process on the others, the constraints are generated. MW12 is a
Type-IV CMOP and uses the biased distance function (i.e., g1
in (12)). As shown in Fig. 5(d), the grey areas are the feasible
regions and the red points are the images of the Pareto optimal
solutions in the objective space.
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MW13:

min

{
f1(~x)=g2x1

f2(~x)=g2
(
5−exp(f1/g2)−0.5

∣∣ sin(3πf1/g2)
∣∣)

s.t. c1(~x)=T1 ·T4≤0, c2(~x)=T2 ·T3≥0

T1 =5−exp(f1)−0.5 sin(3πf1)−f2,
T2 =5−(1+f1+0.5f21 )−0.5 sin(3πf1)−f2,
T3 =5−(1+0.7f1)−0.5 sin(3πf1)−f2,
T4 =5−(1+0.4f1)−0.5 sin(3πf1)−f2

(27)

The Taylor’s expansion, i.e., “ex = 1 +x/1! +x2/2! +x3/3! +
· · · ”, is considered in this test problem to form a set of similar
functions. They are defined by “5 − αi(x) − y = 0”, where
αi(x) ∈ {ex, 1 + x+ 0.5x2, 1 + 0.7x, 1 + 0.4x}(i = 1, . . . , 4).
By conducting the local adjustment process on “5−ex−y = 0”,
the unconstrained PF is defined. Additionally, by conducting
the local adjustment process on all the similar functions, the
constraints are produced. MW13 is a Type-III CMOP and
has a disconnected geometry of constrained PF. It adopts the
multimodal distance function (i.e., g2 in (13)). As shown in Fig.
5(e), the grey areas are the feasible regions and the red points
are the images of the Pareto optimal solutions in the objective
space. When approximating the Pareto optimal solutions of
MW13, an algorithm will encounter infeasible barriers.

MW14:

min

fk=1:m−1(~x)=xk

fm(~x)=g3/(m−1)
m−1∑
i=1

(
6−exp(fi)−1.5 sin(1.1πf2i )

)
s.t. c(~x)=1/(m−1)

m−1∑
i=1

(
6.1−α(i)

)
−fm≥0,

α(i)=1+fi+0.5f2i +1.5 sin(1.1πf2i )
(28)

This test problem is scalable in terms of objectives and it is
constructed based on two similar functions: “6− ex − y=0”
and “6.1 − (1 + x + 0.5x2) − y = 0”. By implementing the
local adjustment process on the former, the unconstrained PF is
produced. In addition, by applying the local adjustment process
to the latter, the constraint is generated. MW14 is a Type-I
CMOP and has a disconnected geometry caused by Pareto
dominance. The distance function with variable linkages is
employed (i.e., g3 in (14)). Fig. 5(f) shows the relationship
between the mth objective and any two other objectives fk and
fh from {f1, f2, . . . , fm−1}. The feasible region is the area
bounded by the grey surface and the surfaces that define the
unconstrained PF (i.e., the four blue parts), and the red points
are samples the images of the Pareto optimal solutions in the
objective space.

Remark 1: In our test suite, MW4, MW8, and MW14 are
scalable in terms of the number of objectives, and all MWs
are scalable in terms of the number of decision variables since
the distance functions adopted in MWs can be extended to any
number of decision variables.

Remark 2: To the best of our knowledge, over 80 research
papers have focused on solving current artificial test problems
(e.g., CTPs, CFs, and C-DTLZs) during the past two decades.

Some very recent studies [33]–[35] have reported highly
competitive results on these test problems. Compared with
current artificial test problems, our test problems can provide
new challenges to constrained multiobjective EAs (CMOEAs),
which have been introduced in Table I, Table II, Fig. 4, and
Fig. 5, and will be further validated in Section IV.

IV. EXPERIMENTAL STUDY

In this section, several representative CHTs under the
frameworks of NSGA-II and MOEA/D are compared on the
proposed test problems. Furthermore, we systematically analyze
the performance of different CHTs, and briefly discuss the
advantages of our test problems.

A. Performance Metrics

In our experiments, three performance metrics were used,
namely, inverted generational distance (IGD) [36], maximum
spread (MS) [37], and generational distance (GD) [38]. Specif-
ically, IGD measures the convergence and diversity of an
algorithm, and MS and GD evaluate the degree of coverage
and convergence of an algorithm, respectively. In this paper,
our analysis was mainly based on IGD, whereas MS and GD
were taken as auxiliary metrics. Note that all the metrics only
considered the feasible solutions in the final population.

Suppose that P is an obtained approximation in an imple-
mentation and P∗ is a set of sampling points evenly distributed
on the true PF. IGD is calculated as follows:

IGD =
1

|P∗|
∑
i∈P∗

d(i,P) (29)

where |P∗| is the cardinality of P∗, and d(i,P) is the minimum
Euclidean distance between the ith member in P∗ and all the
members in P . If P∗ is large enough, it can well represent
the whole PF. For our test problems (except MW5), over 1000
samples are provided in P∗. It is apparent that the smaller the
IGD value, the better the performance.

MS is defined as follows:

MS=

√√√√ 1

m

m∑
k=1

[
min(P∗k ,Pk)−max(P∗k ,Pk)

P∗k−P∗k

]2
(30)

where P∗k and P∗k are the maximum and minimum values
of the kth objective in P∗, respectively, and Pk and Pk are
the maximum and minimum values of the kth objective in P ,
respectively. The larger the MS value, the better the coverage
of P . Additionally, for CMOPs with multiple and separated
feasible regions, this metric can reflect whether P covers these
feasible regions widely.

GD is formulated as follows:

GD =
1

|P|
∑
i∈P

d(i,P∗) (31)

where |P| is the cardinality of P , and d(i,P∗) is the minimum
Euclidean distance between the ith member in P and all the
members in P∗. The smaller the GD value, the better the
convergence performance.
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Remark 3: In particular, if all the members in P are evenly
distributed on the true PF, the values of IGD, MS, and GD
will be zero, one, and zero, respectively.

B. Representative Constraint-Handling Techniques

Several popular CHTs were chosen for performance com-
parisons in our experimental studies. Under the framework of
NSGA-II, six CHTs were selected.

Constrained dominance principle (CDP) is the simplest and
the most commonly used CHT in constrained multiobjective
optimization. CDP is first proposed to solve CMOPs in the
constrained version of NSGA-II [28]. In CDP, feasible solutions
are considered to be consistently better than infeasible ones.

Penalty functions have shown great potential for constrained
single-objective optimization. This kind of methods always
tunes the penalty factors to provide a proper degree of penalty.
However, the penalty factors are generally problem-dependent.
This limitation promotes the development of self-adaptive
penalty functions, denoted as SP, whose penalty factors are
adjusted adaptively based on the feedback information from
the search. In [39], Woldesenbet et al. designed a new SP for
CMOPs and achieved competitive results.

In stochastic ranking (SR) [40], when an infeasible solution
is compared with another solution, a user-defined parameter
(i.e., Pf ) is utilized to determine the comparison criterion, that
is, comparing their constraint violations with the probability
(1−Pf ) or comparing their objective values with the probability
Pf . In [41], Geng et al. proposed an infeasible elitists and SR
based algorithm. Considering that the objective values may
be incomparable based on Pareto dominance between two
solutions, this algorithm assigns each solution a scalar value
based on its ranking in nondominated sorting and its crowding
distance.

In ε-constrained method [42] (called ε in this paper), a
decreasing ε-level is defined to relax the constraint violations of
infeasible solutions. When ε reduces to zero, the ε-constrained
method is equivalent to CDP. Under this condition, infeasible
solutions will be eliminated. In [43], Qian et al. exploited this
kind of CHT to solve CMOPs.

By taking constraints as one or more extra objectives,
researchers proposed some multiobjective optimization-based
CHTs (called MO in this paper). A successful attempt is the
infeasible driven EA proposed by Ray et al. [44]. When not
all solutions are feasible, this algorithm maintains a certain
number of desirable infeasible solutions during the search,
aiming to guide the population toward the boundary of the
feasible region from both the feasible and infeasible sides.

Researchers have developed some hybrid CHTs that combine
several popular CHTs together [45]. An example is the adaptive
tradeoff model (ATM) presented by Wang et al. [46]. ATM
divides the search into three scenarios. If there is no feasible
solution, the population is ranked by nondominance sorting
with an extra objective defined by constraint violation, and the
first half of nondominated solutions are selected in ascending
order of constraint violation. This process is repeated until
the population reaches its predefined size. If the population
contains both feasible and infeasible solutions, ATM adopts

a penalty function to select solutions for the next generation.
When the population is entirely feasible, the solutions are
compared based only on their objective values. Despite that
ATM is originally designed for constrained single-objective
optimization, its performance is still investigated by combining
it with NSGA-II in this paper.

To make the comparisons fair, the above six CHTs (i.e.,
CDP [28], SP [39], SR [41], ε [43], MO [44], and ATM [46])
employed the original NSGA-II as the optimization algorithm,
and the corresponding CMOEAs were denoted as CDP-NSGA-
II, SP-NSGA-II, SR-NSGA-II, ε-NSGA-II, MO-NSGA-II, and
ATM-NSGA-II, respectively. Note that, some special operators
were not considered, such as the elitist preservations in [41]
and [43].

Besides, some CHTs are developed under the framework of
MOEA/D [29] or MOEA/D-DE [47]. For instance, Jan et al.
[48] introduced a new SP into the Tchebycheff aggregation
function. They also compared two CHTs, i.e., CDP and SR,
in [49]. Fan et al. [50] improved the ε-constrained method
and investigated its performance in MOEA/D-DE. Similarly,
these four CHTs (i.e., CDP [49], SP [48], SR [49], and ε
[50]) adopted the original MOEA/D in our comparison, and
their corresponding CMOEAs were denoted as CDP-MOEA/D,
SP-MOEA/D, SR-MOEA/D, and ε-MOEA/D, respectively.

C. Parameter Settings

Our experiments were implemented under the following
parameter settings:
• Number of independent runs: 100;
• Maximum generation number: G = 600;
• Population size: NP = 100;
• Number of decision variables: n = 15;
• Number of objectives for MW4, MW8, and MW14: m =

3;
• Number of objectives for MW1-MW3, MW5-MW7, and

MW9-MW13: m = 2.
Both NSGA-II and MOEA/D used simulated binary

crossover (SBX) [28] and polynomial mutation (PM) [28]
as the reproduction operators:
• SBX: crossover probability pc = 0.9 and distribution

index ηc = 20;
• PM: mutation probability pm = 1/n and distribution index
ηm = 20.

In addition, some preliminary experiments show that the
parameter settings of ε-NSGA-II provided in [43] seem not to
be effective for our test problems. Therefore, we tuned them
as follows:
• θ = 0.1NP and Tc = 0.6G;
• cp = (−5− log ε0)/ log(0.05), as suggested in [50].

D. Comparisons under the Framework of NSGA-II

First, we compared the results obtained by six CHTs under
the framework of NSGA-II. Table S-R-I, Table S-R-II, and
Table S-R-III in the supplementary file show the results in
terms of IGD, MS, and GD, respectively, including the average
and standard deviation over 100 independent runs. In these
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tables, the best result of each test problem was highlighted in
boldface.

As shown in Table S-R-I, the results in terms of IGD are quite
divergent, that is, different CHTs show promising performance
on different types of CMOPs. To be specific, ε-NSGA-II obtains
better results than other compared algorithms on five test
problems (i.e., MW1, MW2, MW6, MW8, and MW10), which
are mainly Type-II CMOPs; SP-NSGA-II performs the best
on MW3, MW7, and MW13 that belong to Type III; MO-
NSGA-II significantly outperforms others on the Type-IV test
problems (i.e., MW9, MW11, and MW12); and ATM-NSGA-II
wins on MW4 and MW14 that are Type-I CMOPs. In addition,
SR-NSGA-II approximates the constrained PF well on MW5,
which is the only one with a discrete geometry.

As shown in Table S-R-II, the cases on MS are roughly
similar to those on IGD. ε-NSGA-II obtains the best results
on seven test problems (i.e., MW1-MW3, MW6, MW8,
MW10, MW14), for which ε-NSGA-II also exhibits superior
performance in terms of IGD. SP-NSGA-II outperforms the
five competitors on MW4, MW7, and MW13, and gets near-
best result on MW3. MO-NSGA-II achieves the best on MW5,
MW9, MW11, and MW12. Despite that ATM-NSGA-II is not
the best algorithm on MW4 and MW14, it still has competitive
results in terms of MS.

It can be observed from Table S-R-III that ε-NSGA-II
performs the best in terms of GD on a majority of test problems
(i.e., MW1-MW4, MW6, MW7, MW9, MW10, and MW14),
which implies that it shows better performance of convergence
than others in most cases. On MW8 and MW11, CDP-NSGA-
II can well converge toward the constrained PFs. In addition,
SP-NSGA-II, MO-NSGA-II, and ATM-NSGA-II beat others on
MW13, MW12, and MW5, respectively. The above results also
indicate that sometimes good values of GD do not correspond
to good values of IGD.

From the above discussions, for each test problem, an
algorithm that performs the best in terms of IGD generally has
the best or near-best result of MS. This demonstrates that a good
spread of population will facilitate an algorithm to approximate
the whole constrained PF. It is mainly attributed to the fact that
the feasible regions of our test problems are generally narrow
and separated; thus, some parts of the constrained PF will be
lost without exploring the feasible regions widely. Additionally,
under the framework of NSGA-II, different CHTs have their
advantages on different types of CMOPs, which will be further
discussed later.

E. Comparisons under the Framework of MOEA/D

This subsection compared the results derived from four
CHTs combined with MOEA/D. Table S-R-IV, Table S-R-V,
and Table S-R-VI in the supplementary file provide the results
in terms of IGD, MS, and GD, respectively. They include
the average and standard deviation over 100 independent runs.
Similarly, the best result of each test problem was highlighted
in boldface.

As shown in Table S-R-IV, ε-MOEA/D provides better
results than other compared algorithms on ten test problems
(i.e., MW1-MW3, MW5-MW8, MW10, MW11, and MW14).

TABLE III
RANKINGS OF CHTS UNDER THE FRAMEWORK OF NSGA-II BASED ON

THE WILCOXON’S RANK-SUM TEST AT A 0.05 SIGNIFICANCE LEVEL.

Type Problem 1st (b/e/w) 2nd (b/e/w)

I
MW2 ε (5/0/0) CDP, SP, ATM (1/3/1)
MW4 ATM (2/3/0) CDP, ε, MO (1/4/0)
MW14 ATM (2/3/0) CDP, SP, ε (1/4/0)

II

MW1 ε (5/0/0) SP (2/2/1)
MW5 SR (4/0/1) MO (2/3/0)
MW6 ε (5/0/0) SP (1/3/1)
MW8 ε (4/1/0) CDP (1/4/0)

III

MW3 SP (5/0/0) ε (4/0/1)
MW7 SP (5/0/0) SR (3/1/1)
MW10 ε (5/0/0) SR (2/2/1)
MW13 SP (5/0/0) CDP, ATM (3/1/1)

IV
MW9 MO (5/0/0) SP (1/3/1)
MW11 MO (5/0/0) ε (1/3/1)
MW12 MO (5/0/0) SP (1/3/1)

TABLE IV
RANKINGS OF CHTS UNDER THE FRAMEWORK OF MOEA/D BASED ON

THE WILCOXON’S RANK-SUM TEST AT A 0.05 SIGNIFICANCE LEVEL.

Type Problem 1st (b/e/w) 2nd (b/e/w)

I
MW2 ε (2/1/0) SP (0/3/0)
MW4 CDP, ε (2/1/0) SP, SR (0/1/2)

MW14 ε (3/0/0) CDP, SP, SR (0/2/1)

II

MW1 ε (3/0/0) SR (2/0/1)
MW5 ε (3/0/0) CDP, SP (1/1/1)
MW6 ε (2/1/0) SP, SR (0/2/1)
MW8 ε (3/0/0) CDP, SP, SR (0/2/1)

III

MW3 ε (3/0/0) CDP (1/1/1)
MW7 ε (3/0/0) CDP, SP (1/1/1)

MW10 ε (1/2/0) SP (0/2/1)
MW13 CDP, SP (2/1/0) ε (1/0/2)

IV
MW9 CDP, SP (2/1/0) ε (1/0/2)

MW11 ε (3/0/0) CDP, SP (1/1/0)
MW12 SP (3/0/0) CDP (2/0/1)

Thus, ε-MOEA/D can provide feasible solutions with good
convergence and diversity on most of test problems, mainly
including Types I, II, and III. In addition, CDP-MOEA/D
achieves the best results on MW4 and MW9, and SP-MOEA/D
shows encouraging performance on MW12 and MW13.

Again, similar phenomenon can be observed from Table
S-R-V in terms of MS. ε-MOEA/D obtains the best results
on nine test problems (i.e., MW1-MW3, MW5-MW8, MW11,
and MW14), and very near-best result on MW10. Additionally,
CDP-MOEA/D performs the best on MW4, MW9, and MW10,
and SP-MOEA/D outperforms others on MW12 and MW13.

From Table S-R-VI, it can be seen that ε-MOEA/D performs
the best in terms of GD, which suggests that it has a better
overall ability of convergence. It achieves better results than
other compared algorithms on 11 test problems (i.e., MW1-
MW8, MW11, MW13, and MW14). With regard to the
remaining three test problems (i.e., MW9, MW10, and MW12),
SP-MOEA/D surpasses others. It is interesting to note that
although CDP-MOEA/D has the best results on MW4 and
MW9 in terms of both IGD and MS, the corresponding results
provided by CDP-MOEA/D are not good in terms of GD.

In summary, ε-MOEA/D has the best overall performance
under the framework of MOEA/D, especially on Types I, II,
and III. Similar to NSGA-II, on each test problem, the best
IGD value is supported by the best or near-best MS value,
which means that maintaining a good spread of population
plays an important role in solving our test problems.
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F. Performance Analysis

In order to further analyze the performance of CHTs, the
Wilcoxon’s rank-sum test at a 0.05 significance level was
implemented to demonstrate whether the result obtained by
an algorithm is significantly different from that resulting from
another compared algorithm in terms of IGD on each test
problem. In this paper, “b/e/w” indicate the number of CHTs
that the current one is significantly better than, equivalent to,
and significantly worse than, respectively. Then, CHTs are
ranked in the lexicographical order: a CHT that has a higher
“b” will have a better ranking; if two CHTs have the same
“b”, their values of “e” will be compared, and so forth; and if
two CHTs have the same “b/e/w”, they will share the same
ranking. Clearly, a CHT with a better ranking indicates that it
has better performance. The rankings of different CHTs under
the frameworks of NSGA-II and MOEA/D are shown in Table
III and Table IV, respectively. Due to the space limitation,
these tables only show the CHTs that rank the first (i.e., 1st)
and the second (i.e., 2nd). First, based on the rankings in Table
III, we provide the following analysis on the performance of
different CHTs under the framework of NSGA-II.

• On the Type-II CMOPs, the ε-constrained method perform-
s the best. This method relaxes the constraint violations
of all infeasible solutions in the early search process;
thus, some infeasible solutions satisfy the ε-level and are
considered as feasible solutions (called pseudo-feasible
solutions). Under this condition, these pseudo-feasible
solutions will be evolved toward the unconstrained PF.
Due to the fact that the constrained PF of each Type-II
CMOP is a part of the unconstrained PF, the population
will promptly approach the constrained PF. As ε reduces to
zero, the found objective-optimal solutions that are in the
infeasible region will be eliminated and the real feasible
solutions are maintained in the population. In a word, the ε-
constrained method switches from “optimality priority” to
“feasibility priority”. This property makes the ε-constrained
method suitable for this type of CMOPs. In addition, SR
outperforms others on MW5 (i.e., the test problem with the
discrete constrained PF). SR defines a certain probability
that an infeasible solution is compared with others based
on objectives. Therefore, some infeasible solutions with
good objective values are likely to be preserved. This
property encourages the infeasible solutions near the
discrete Pareto optimal solutions. In contrast, the ε-
constrained method will eliminate the promising infeasible
solutions with good objective values after ε reduces to
zero. As a result, it is not as competitive as SR on MW5.

• ATM performs the best on the Type-I test problems. Since
their feasible regions contain some narrow parts, it is
difficult to find feasible solutions in these narrow parts.
For ATM, as the feasibility proportion of population rises,
the degree of penalty on infeasible solutions decreases (i.e.,
Property 3 in [46]). That is, the infeasible solutions with
relatively small constraint violations are likely to survive
if there exist enough feasible solutions in the population,
which encourages the search around these narrow parts.
The ε-constrained method obtains competitive results on

these test problems. The reason is similar to that explained
in Type II. But this method cannot well exploit infeasible
solutions, making it not as good as ATM.

• On the Type-III CMOPs, SP outperforms others. SP prefer-
s those solutions with better objective values and lower
constraint violations. Therefore, during the evolution, the
population is capable of approaching the unconstrained PF
and the boundary of the feasible region simultaneously.
Moreover, in the later stage of evolution, contrary to
ATM, SP increases the degree of penalty with the increase
of the feasibility proportion of population [39]. This
property ensures the feasibilities of solutions. Besides, the
ε-constrained method achieves the best result on MW10.
It is because over three fourths of the constrained PF
is the unconstrained PF. Therefore, this method has an
advantage in solving MW10, as illustrated previously.

• MO clearly surpasses others on the Type-IV CMOPs.
There are two main reasons: 1) when not all solutions
are feasible, this method always preserves a certain
number of infeasible solutions; and 2) it considers the
constraint violation as an extra objective when infeasible
solutions are compared with each other, which supports
the infeasible ones with lower constraint violations. As
the constrained PF is a part of the boundary of the feasible
region in each of these test problems, the population can
approximate the boundary of the feasible region from both
feasible and infeasible sides by utilizing such infeasible
solutions.

Subsequently, based on the rankings in Table IV, we analyze
the performance of the compared CHTs under the framework
of MOEA/D in the following.

• Obviously, the ε-constrained method shows the best per-
formance on Types I, II, and III, for which the constrained
PFs entirely/partly come from the unconstrained PFs.
As analyzed previously, the ε-constrained method has
natural advantages in approaching the unconstrained PF.
Different from ε-NSGA-II, ε-MOEA/D achieves good
performance on Type III. This is mainly attributed to
MOEA/D’s ability of maintaining diversity via a set of
evenly distributed weights. As ε decreases, the infeasible
solutions close to the unconstrained PF can be pulled to
the boundary of the feasible region through the weights
(note that these infeasible solutions are directly eliminated
under the framework of NSGA-II). Actually, when the
boundary of the feasible region is not very complicated,
this mechanism is also effective, even on the Type-IV test
problems (e.g., MW11).

• However, for the Type-IV CMOPs, the superiority of the
ε-constrained method degrades because the nonlinearity
of the boundary of the feasible region increases. For these
test problems, overall, CDP and SP perform better than the
ε-constrained method. This phenomenon can be explained
in the following. SP maintains two penalty factors and
gives a stronger punishment to the infeasible solutions
with higher constraint violations than those with lower
constraint violations. This property enables the population
to converge toward the boundary of the feasible region
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from both the feasible and infeasible sides. In addition,
with the aid of uniformly distributed weights, CDP can
concentrate on the search of the boundary of the feasible
region.

G. Comparisons Cross Two Frameworks

The comparisons cross two frameworks (i.e., NSGA-II
and MOEA/D) were conducted in this subsection. The four
CHTs used in both NSGA-II and MOEA/D in the previous
experiments were considered: CDP, SP, SR, and ε. As shown
in Table S-R-VII in the supplementary file, for each CHT, the
results of IGD obtained under the frameworks of NSGA-II
and MOEA/D were compared on each test problem, and the
better one was highlighted in boldface. Note that the results in
Table S-R-VII were directly taken from Table S-R-I and Table
S-R-IV.

It can be seen from Table S-R-VII that NSGA-II performs
better than MOEA/D on most test problems, which are mainly
CMOPs with disconnected/discrete constrained PFs. While,
MOEA/D is better than NSGA-II on MW4, and similar to
NSGA-II on MW9, MW11, and MW12, which are mainly
CMOPs with connected constrained PFs. Therefore, MOEA/D
is sensitive to the geometry of the constrained PF. The reason
is straightforward: the disconnected constrained PF contains
some disconnected segments caused by the infeasible regions
and/or Pareto dominance; thus, the weight vectors distributed
outside these disconnected segments have no intersection with
the constrained PF. This will result in several weight vectors
corresponding to the same Pareto optimal solution. In this way,
there exist many duplicates in the final population, leading to
two consequences: 1) the computational resources are wasted,
and 2) the population cannot cover the constrained PF as well
as that obtained by NSGA-II.

H. Comparisons under the Framework of NSGA-III on MWs
with Higher Numbers of Objectives

As pointed out in [51], the proportion of nondominated
solutions in the population grows exponentially with the
increase of the number of objectives. Therefore, multiobjective
EAs (e.g., NSGA-II [28]) that employ Pareto dominance as
a major selection criterion are not able to provide sufficient
selection pressure to guide the population toward the true
PF. Due to this fact, a well-known many-objective EA, i.e.,
NSGA-III [52], was considered as the optimization algorithm
on MW4, MW8, and MW14 with higher numbers of objectives.
Under the framework of NSGA-III, five representative CHTs
(i.e., CDP [28], SP [39], SR [40], ε [42], and ATM [46])
were compared. The corresponding algorithms were denoted
as CDP-NSGA-III (i.e., the constrained version of NSGA-
III in [21]), SP-NSGA-III, SR-NSGA-III, ε-NSGA-III, and
ATM-NSGA-III, respectively. NSGA-III works with a set of
weight vectors that are predefined according to the number
of objectives and the population size. For the CHT based on
multiobjective optimization (i.e., MO [44]), the population
is divided into a feasible subpopulation and an infeasible
subpopulation, and they are sorted separately. Note that, the
infeasible subpopulation has a varying size and an extra

objective measured by the constraint violation of an infeasible
solution. Therefore, MO is absent in the comparison, since
NSGA-III is not able to process these two subpopulations
simultaneously using one set of weight vectors. Besides, as a
hybrid CHT, ATM treats the constraints as an extra objective
if there is no feasible solution in the population. For the same
reason, we used CDP as the replacement in this scenario.

For MW4, MW8, and MW14, we tested five numbers of
objectives, i.e., m= 3, 5, 8, 10, and 15, and the number of
decision variables was set as n = m−1+k, where k = 13.
According to the suggestions in [52], the number of weight
vectors (NW ) and the population size (NP ) for different
numbers of objectives were summarized in Table S-R-VIII
in the supplementary file. For other parameter settings, they
were consistent with the suggestions in Section V-C.

Table S-R-IX in the supplementary file provides the average
and standard deviation of IGD values obtained by the five
compared algorithms over 100 independent runs. It can be
seen that ε-NSGA-III surpasses others on all the test problems
except MW4 with m=3 and 5 and MW14 with m=8, where
CDP-NSGA-III and ATM-NSGA-III are better. To be specific,
CDP-NSGA-III achieves the best on MW4 with m= 3 and
5, and ATM-NSGA-III obtains the best result on MW14 with
m= 8. In addition, the Wilcoxon’s rank-sum test at a 0.05
significance level was conducted to demonstrate the statistical
differences between the results obtained by the best algorithm
and its competitors on each test problem. We can observe that
ε-NSGA-III is the best algorithm and CDP-NSGA-III is also
competitive.

The excellent performance of ε-NSGA-III is mainly attribut-
ed to the fact that the constrained PFs of MW4, MW8, and
MW14 are derived from the unconstrained PFs. As analyzed in
Section V-F, the ε-constrained method has natural advantages
in finding the unconstrained PF. Besides, the reason for the
competitive performance of CDP-NSGA-III is obvious. With
the aid of uniformly distributed weight vectors, CDP is able to
provide sufficient selection pressure for solutions to approach
the feasible region and make the population approximate the
constrained PF from diverse directions. This is similar to the
situation in CDP-MOEA/D.

I. Advantages of the Proposed Test Problems

Based on the above comparisons and analyses, the advantages
of the proposed test problems can be summarized as follows:
• Proper difficulties: As revealed by the experimental results,

our test problems can distinguish different algorithms
through performance comparisons.

• Diverse characteristics (as shown in Table I): These
characteristics help us to systematically investigate an
algorithm’s performance and understand its strengths and
weaknesses, which plays an important role in further
enhancing its performance.

• Four different types: As these four types are extracted
from real-world CMOPs, they can sufficiently reflect the
features of practical engineering problems. By testing an
algorithm on different types, we can ascertain the types
on which it shows superiority. This will provide important
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information for us to apply an algorithm to real-world
CMOPs reasonably.

V. CONCLUSION

Artificial test problems can attract more researchers to design
EAs for solving CMOPs. However, a careful investigation
has demonstrated that current artificial test problems are not
well-designed, since they more or less ignore some important
characteristics of real-world CMOPs: small feasibility ratio,
sufficient nonlinearity of constraints, multiple constraints,
scalable number of objectives, high-dimensional decision vector,
and so on.

Recognizing their limitations, this paper presented a new
constraint construction method, which can be considered as a
guideline to design CMOPs. Then, a test suite of 14 instances
was suggested based on our constraint construction method. We
also equipped them with different kinds of distance functions.
Moreover, to promote the understanding on the performance of
different CHTs, several representative CHTs were compared
under the frameworks of NSGA-II and MOEA/D on the
proposed test problems.

Under the framework of NSGA-II, we found that: 1) the
ε-constrained method [43] can well solve Types I and II of
CMOPs; 2) ATM [46] shows remarkable superiority on the
Type-I CMOPs with narrow feasible regions; 3) SP [39] can
well approximate the unconstrained PF and the boundary of
the feasible region simultaneously on Type III; and 4) MO [44]
significantly outperforms others on Type IV. In addition, under
the framework of MOEA/D, the ε-constrained method [50] has
advantages on Type I, II, and III of CMOPs, and CDP [49]
and SP [48] are more successful on the Type-IV CMOPs. We
also observed that the performance of some CHTs (e.g., CDP)
is improved due to the fact that MOEA/D has the capability
to maintain the diversity. However, as MOEA/D is sensitive
to the geometry of the constrained PF, CHTs combined with
MOEA/D performs not as well as combined with NSGA-II on
the disconnected constrained PFs.

Based on the experimental comparisons, we would like to
give the following suggestions when designing a CHT:
• For the Type-I CMOPs, good population diversity should

be maintained to avoid the loss of some parts of the
unconstrained PF.

• For the Type-II CMOPs, we can follow the principle that
switches from “objective priority” to “constraint priority”,
like the ε-constrained method.

• For CMOPs with Type III, an effective way is to keep
solutions with better objective values and lower constraint
violations simultaneously, like self-adaptive penalty func-
tions.

• For the Type-IV CMOPs, more focuses should be put
on constraints and some mechanisms should also be
incorporated to preserve good infeasible solutions.

The source code of MW can be available from
http://www.escience.cn/people/yongwang1/index.html
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S-I. SUPPLEMENTARY RESULTS

TABLE S-R-I
STATISTICS OF THE IGD METRIC OBTAINED BY SIX CHTS UNDER THE FRAMEWORK OF NSGA-II, WHERE “AVG” AND “STD DEV” ARE THE AVERAGE
AND STANDARD DEVIATION OVER 100 INDEPENDENT RUNS, RESPECTIVELY. THE BEST RESULT FOR EACH TEST PROBLEM AMONG THE SIX COMPARED

ALGORITHMS IS HIGHLIGHTED IN BOLDFACE.

Type Prob. Statistics CDP-NSGA-II SP-NSGA-II SR-NSGA-II ε-NSGA-II MO-NSGA-II ATM-NSGA-II

I

MW2
Avg 2.402E-02 2.112E-02 2.786E-02 1.723E-02 2.645E-02 2.529E-02

(± Std Dev) (± 8.811E-03) (± 8.180E-03) (± 1.217E-02) (± 7.518E-03) (± 1.783E-02) (± 1.357E-02)

MW4
Avg 5.565E-02 5.484E-02 6.012E-02 5.474E-02 5.519E-02 5.464E-02

(± Std Dev) (± 3.193E-03) (± 1.994E-03) (± 2.682E-03) (± 2.238E-03) (± 2.194E-03) (± 2.162E-03)

MW14
Avg 1.394E-01 1.403E-01 1.951E-01 1.397E-01 1.416E-01 1.373E-01

(± Std Dev) (± 1.188E-02) (± 1.064E-02) (± 9.138E-02) (± 1.244E-02) (± 2.813E-02) (± 1.779E-02)

II

MW1
Avg 1.058E-02 6.874E-03 9.043E-03 5.341E-03 1.572E-02 1.354E-02

(± Std Dev) (± 2.364E-02) (± 7.976E-03) (± 1.837E-02) (± 6.263E-03) (± 3.761E-02) (± 2.419E-02)

MW5
Avg 1.753E-01 8.316E-02 3.219E-02 1.144E-01 4.133E-02 1.553E-01

(± Std Dev) (± 2.541E-01) (± 1.496E-01) (± 5.436E-02) (± 7.011E-02) (± 3.150E-02) (± 2.332E-01)

MW6
Avg 1.022E-01 5.102E-02 1.286E-01 2.883E-02 1.313E-01 1.350E-01

(± Std Dev) (± 1.470E-01) (± 8.227E-02) (± 1.666E-01) (± 1.935E-02) (± 1.666E-01) (± 1.702E-01)

MW8
Avg 6.917E-02 7.754E-02 8.732E-02 6.864E-02 7.199E-02 7.141E-02

(± Std Dev) (± 2.311E-02) (± 3.186E-02) (± 3.464E-02) (± 2.841E-02) (± 2.584E-02) (± 2.565E-02)

III

MW3
Avg 3.763E-02 8.404E-03 1.147E-02 8.603E-03 8.433E-02 4.243E-02

(± Std Dev) (± 1.222E-01) (± 1.766E-02) (± 4.574E-03) (± 2.498E-03) (± 2.278E-01) (± 1.661E-01)

MW7
Avg 2.647E-02 6.001E-03 1.499E-02 6.772E-02 2.066E-02 5.507E-02

(± Std Dev) (± 7.914E-02) (± 7.880E-03) (± 1.938E-02) (± 2.276E-02) (± 5.992E-02) (± 1.295E-01)

MW10
Avg 1.296E-01 1.362E-01 9.592E-02 4.555E-02 1.765E-01 1.447E-01

(± Std Dev) (± 1.326E-01) (± 1.457E-01) (± 8.494E-02) (± 3.387E-02) (± 1.927E-01) (± 1.489E-01)

MW13
Avg 1.956E-01 1.817E-01 2.947E-01 2.727E-01 2.764E-01 1.957E-01

(± Std Dev) (± 1.233E-01) (± 2.154E-01) (± 1.593E-01) (± 2.334E-01) (± 1.348E-01) (± 1.340E-01)

IV

MW9
Avg 2.105E-02 1.624E-02 5.649E-02 3.943E-01 1.562E-02 2.242E-02

(± Std Dev) (± 5.162E-03) (± 1.772E-02) (± 1.008E-01) (± 2.282E-01) (± 4.110E-03) (± 3.449E-02)

MW11
Avg 6.131E-01 5.865E-01 6.118E-01 4.864E-01 1.351E-01 6.177E-01

(± Std Dev) (± 1.695E-01) (± 1.999E-01) (± 1.681E-01) (± 2.428E-01) (± 1.597E-01) (± 1.691E-01)

MW12
Avg 5.337E-02 2.064E-02 5.190E-02 1.940E-02 8.126E-03 8.661E-02

(± Std Dev) (± 8.647E-02) (± 4.460E-02) (± 1.321E-01) (± 1.621E-02) (± 2.101E-02) (± 1.259E-01)
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TABLE S-R-II
STATISTICS OF THE MS METRIC OBTAINED BY SIX CHTS UNDER THE FRAMEWORK OF NSGA-II, WHERE “AVG” AND “STD DEV” ARE THE AVERAGE
AND STANDARD DEVIATION OVER 100 INDEPENDENT RUNS, RESPECTIVELY. THE BEST RESULT FOR EACH TEST PROBLEM AMONG THE SIX COMPARED

ALGORITHMS IS HIGHLIGHTED IN BOLDFACE.

Type Prob. Statistics CDP-NSGA-II SP-NSGA-II SR-NSGA-II ε-NSGA-II MO-NSGA-II ATM-NSGA-II

I

MW2
Avg 9.467E-01 9.540E-01 9.427E-01 9.601E-01 9.495E-01 9.466E-01

(± Std Dev) (± 1.349E-02) (± 2.165E-02) (± 1.077E-02) (± 2.464E-02) (± 1.943E-02) (± 1.389E-02)

MW4
Avg 9.983E-01 9.997E-01 9.892E-01 9.995E-01 9.994E-01 9.986E-01

(± Std Dev) (± 7.496E-03) (± 9.337E-04) (± 1.220E-02) (± 1.521E-03) (± 2.625E-03) (± 6.987E-03)

MW14
Avg 9.996E-01 9.990E-01 9.772E-01 9.999E-01 9.963E-01 9.981E-01

(± Std Dev) (± 1.310E-03) (± 4.632E-03) (± 3.538E-02) (± 4.058E-04) (± 2.783E-02) (± 1.171E-02)

II

MW1
Avg 8.984E-01 8.991E-01 9.105E-01 9.240E-01 8.658E-01 8.705E-01

(± Std Dev) (± 1.143E-01) (± 7.769E-02) (± 1.030E-01) (± 7.760E-02) (± 1.297E-01) (± 1.151E-01)

MW5
Avg 7.743E-01 9.237E-01 9.909E-01 1.000E+00 1.000E+00 7.943E-01

(± Std Dev) (± 3.575E-01) (± 2.188E-01) (± 3.666E-02) (± 7.103E-06) (± 2.415E-07) (± 3.385E-01)

MW6
Avg 9.002E-01 9.677E-01 8.711E-01 9.941E-01 8.675E-01 8.647E-01

(± Std Dev) (± 1.827E-01) (± 1.059E-01) (± 2.008E-01) (± 2.547E-02) (± 2.081E-01) (± 2.141E-01)

MW8
Avg 9.935E-01 9.892E-01 9.799E-01 9.999E-01 9.939E-01 9.937E-01

(± Std Dev) (± 1.824E-02) (± 2.163E-02) (± 1.760E-02) (± 6.755E-05) (± 1.700E-02) (± 1.102E-02)

III

MW3
Avg 9.176E-01 9.953E-01 9.945E-01 9.980E-01 8.598E-01 9.385E-01

(± Std Dev) (± 1.850E-01) (± 1.630E-02) (± 1.625E-02) (± 1.338E-03) (± 2.700E-01) (± 1.984E-01)

MW7
Avg 9.765E-01 9.995E-01 9.931E-01 9.471E-01 9.882E-01 9.311E-01

(± Std Dev) (± 1.239E-01) (± 5.317E-04) (± 7.119E-03) (± 5.493E-02) (± 8.813E-02) (± 2.069E-01)

MW10
Avg 6.515E-01 6.510E-01 6.985E-01 7.974E-01 6.004E-01 6.291E-01

(± Std Dev) (± 1.861E-01) (± 2.045E-01) (± 1.378E-01) (± 9.411E-02) (± 2.639E-01) (± 1.986E-01)

MW13
Avg 7.838E-01 8.191E-01 6.957E-01 7.655E-01 6.995E-01 7.835E-01

(± Std Dev) (± 1.227E-01) (± 1.609E-01) (± 1.345E-01) (± 1.825E-01) (± 1.153E-01) (± 1.299E-01)

IV

MW9
Avg 9.898E-01 9.973E-01 9.589E-01 4.749E-01 9.983E-01 9.948E-01

(± Std Dev) (± 3.390E-02) (± 1.477E-02) (± 1.334E-01) (± 4.462E-01) (± 1.346E-02) (± 3.097E-02)

MW11
Avg 4.169E-01 3.993E-01 4.180E-01 4.692E-01 8.425E-01 4.131E-01

(± Std Dev) (± 1.675E-01) (± 2.100E-01) (± 1.681E-01) (± 2.380E-01) (± 1.654E-01) (± 1.693E-01)

MW12
Avg 8.610E-01 9.523E-01 9.323E-01 9.874E-01 9.976E-01 8.092E-01

(± Std Dev) (± 1.846E-01) (± 1.119E-01) (± 1.643E-01) (± 4.674E-03) (± 5.843E-03) (± 2.265E-01)

TABLE S-R-III
STATISTICS OF THE GD METRIC OBTAINED BY SIX CHTS UNDER THE FRAMEWORK OF NSGA-II, WHERE “AVG” AND “STD DEV” ARE THE AVERAGE
AND STANDARD DEVIATION OVER 100 INDEPENDENT RUNS, RESPECTIVELY. THE BEST RESULT FOR EACH TEST PROBLEM AMONG THE SIX COMPARED

ALGORITHMS IS HIGHLIGHTED IN BOLDFACE.

Type Prob. Statistics CDP-NSGA-II SP-NSGA-II SR-NSGA-II ε-NSGA-II MO-NSGA-II ATM-NSGA-II

I

MW2
Avg 1.779E-02 1.494E-02 2.041E-02 1.107E-02 2.058E-02 1.923E-02

(± Std Dev) (± 9.241E-03) (± 8.227E-03) (± 1.332E-02) (± 7.219E-03) (± 1.851E-02) (± 1.445E-02)

MW4
Avg 1.319E-02 1.249E-02 1.474E-02 1.215E-02 1.298E-02 1.233E-02

(± Std Dev) (± 8.339E-03) (± 2.017E-03) (± 2.026E-03) (± 1.386E-03) (± 2.197E-03) (± 1.748E-03)

MW14
Avg 4.809E-02 4.172E-02 7.058E-02 3.942E-02 4.528E-02 4.756E-02

(± Std Dev) (± 2.218E-02) (± 1.887E-02) (± 4.070E-02) (± 1.665E-02) (± 2.083E-02) (± 2.055E-02)

II

MW1
Avg 1.334E-03 1.617E-03 1.274E-03 3.727E-04 3.604E-03 1.648E-03

(± Std Dev) (± 1.714E-03) (± 1.596E-03) (± 1.045E-03) (± 4.706E-04) (± 2.126E-03) (± 1.547E-03)

MW5
Avg 3.901E-03 3.975E-03 5.332E-03 4.232E-03 4.781E-03 2.818E-03

(± Std Dev) (± 4.251E-03) (± 2.570E-03) (± 4.051E-03) (± 3.344E-03) (± 4.370E-03) (± 2.098E-03)

MW6
Avg 3.182E-02 3.090E-02 3.780E-02 2.710E-02 3.380E-02 3.249E-02

(± Std Dev) (± 2.131E-02) (± 1.440E-02) (± 2.040E-02) (± 1.406E-02) (± 2.049E-02) (± 1.626E-02)

MW8
Avg 3.354E-02 3.937E-02 4.699E-02 3.445E-02 3.610E-02 3.597E-02

(± Std Dev) (± 2.217E-02) (± 2.965E-02) (± 3.403E-02) (± 3.106E-02) (± 2.296E-02) (± 2.842E-02)

III

MW3
Avg 7.277E-03 2.428E-03 4.639E-03 1.630E-03 2.159E-02 1.194E-02

(± Std Dev) (± 3.469E-02) (± 1.419E-03) (± 1.985E-03) (± 5.340E-04) (± 6.726E-02) (± 4.854E-02)

MW7
Avg 1.773E-03 1.685E-03 2.920E-03 1.399E-03 1.916E-03 1.650E-03

(± Std Dev) (± 6.591E-04) (± 4.620E-04) (± 7.574E-04) (± 5.042E-04) (± 6.721E-04) (± 5.786E-04)

MW10
Avg 2.468E-02 2.376E-02 2.686E-02 1.580E-02 2.596E-02 2.551E-02

(± Std Dev) (± 8.351E-03) (± 9.386E-03) (± 9.509E-03) (± 8.377E-03) (± 1.208E-02) (± 8.930E-03)

MW13
Avg 5.749E-02 5.075E-02 7.005E-02 5.407E-02 6.141E-02 5.662E-02

(± Std Dev) (± 1.451E-02) (± 1.582E-02) (± 1.595E-02) (± 2.394E-02) (± 1.563E-02) (± 1.486E-02)

IV

MW9
Avg 5.588E-02 4.162E-02 8.975E-02 2.973E-03 4.979E-02 5.559E-02

(± Std Dev) (± 1.228E-02) (± 2.698E-02) (± 8.692E-02) (± 4.687E-03) (± 9.844E-03) (± 3.856E-02)

MW11
Avg 3.397E-02 5.666E-02 4.900E-02 8.974E-02 1.255E-01 4.115E-02

(± Std Dev) (± 5.986E-02) (± 7.344E-02) (± 7.903E-02) (± 1.296E-01) (± 7.845E-02) (± 6.844E-02)

MW12
Avg 2.324E-02 2.174E-02 4.331E-02 1.144E-02 1.068E-02 4.302E-02

(± Std Dev) (± 2.698E-02) (± 3.398E-02) (± 1.038E-01) (± 4.179E-03) (± 3.129E-03) (± 6.591E-02)
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TABLE S-R-IV
STATISTICS OF THE IGD METRIC OBTAINED BY FOUR CHTS UNDER THE FRAMEWORK OF MOEA/D, WHERE “AVG” AND “STD DEV” ARE THE AVERAGE

AND STANDARD DEVIATION OVER 100 INDEPENDENT RUNS, RESPECTIVELY. THE BEST RESULT FOR EACH TEST PROBLEM AMONG THE FOUR
COMPARED ALGORITHMS IS HIGHLIGHTED IN BOLDFACE.

Type Prob. Statistics CDP-MOEA/D SP-MOEA/D SR-MOEA/D ε-MOEA/D

I

MW2
Avg 1.203E-01 1.206E-01 1.280E-01 9.909E-02

(± Std Dev) (± 9.683E-02) (± 1.044E-01) (± 1.015E-01) (± 7.266E-02)

MW4
Avg 4.918E-02 4.996E-02 5.067E-02 4.952E-02

(± Std Dev) (± 7.887E-04) (± 1.167E-03) (± 1.505E-03) (± 9.050E-04)

MW14
Avg 4.013E-01 4.435E-01 3.966E-01 3.400E-01

(± Std Dev) (± 3.404E-01) (± 4.164E-01) (± 3.345E-01) (± 2.639E-01)

II

MW1
Avg 9.300E-02 6.505E-02 5.760E-02 2.454E-02

(± Std Dev) (± 1.547E-01) (± 1.069E-01) (± 1.039E-01) (± 3.690E-02)

MW5
Avg 5.431E-01 5.561E-01 6.539E-01 2.038E-01

(± Std Dev) (± 3.090E-01) (± 3.076E-01) (± 2.129E-01) (± 2.014E-01)

MW6
Avg 3.478E-01 3.165E-01 3.339E-01 2.595E-01

(± Std Dev) (± 2.414E-01) (± 2.198E-01) (± 2.277E-01) (± 2.079E-01)

MW8
Avg 1.569E-01 1.618E-01 1.579E-01 1.320E-01

(± Std Dev) (± 1.075E-01) (± 7.599E-02) (± 8.391E-02) (± 5.711E-02)

III

MW3
Avg 3.286E-01 4.820E-01 9.603E-02 1.148E-02

(± Std Dev) (± 4.180E-01) (± 4.457E-01) (± 1.926E-01) (± 1.957E-03)

MW7
Avg 2.939E-01 2.895E-01 3.231E-01 8.892E-02

(± Std Dev) (± 2.048E-01) (± 1.931E-01) (± 1.591E-01) (± 8.317E-02)

MW10
Avg 2.367E-01 2.681E-01 2.387E-01 2.320E-01

(± Std Dev) (± 2.005E-01) (± 2.041E-01) (± 1.861E-01) (± 1.962E-01)

MW13
Avg 2.653E-01 2.216E-01 4.910E-01 2.862E-01

(± Std Dev) (± 3.177E-01) (± 2.442E-01) (± 2.425E-01) (± 1.194E-01)

IV

MW9
Avg 1.340E-02 1.958E-02 2.127E-01 7.737E-02

(± Std Dev) (± 3.390E-03) (± 1.377E-02) (± 1.086E-01) (± 8.013E-02)

MW11
Avg 4.793E-01 5.004E-01 7.497E-01 2.878E-01

(± Std Dev) (± 2.233E-01) (± 2.335E-01) (± 2.301E-01) (± 3.048E-01)

MW12
Avg 5.912E-03 5.760E-03 1.098E-01 2.157E-02

(± Std Dev) (± 4.947E-04) (± 4.488E-04) (± 5.504E-02) (± 2.489E-02)

TABLE S-R-V
STATISTICS OF THE MS METRIC OBTAINED BY FOUR CHTS UNDER THE FRAMEWORK OF MOEA/D, WHERE “AVG” AND “STD DEV” ARE THE AVERAGE

AND STANDARD DEVIATION OVER 100 INDEPENDENT RUNS, RESPECTIVELY. THE BEST RESULT FOR EACH TEST PROBLEM AMONG THE FOUR
COMPARED ALGORITHMS IS HIGHLIGHTED IN BOLDFACE.

Type Prob. Statistics CDP-MOEA/D SP-MOEA/D SR-MOEA/D ε-MOEA/D

I

MW2
Avg 8.809E-01 8.792E-01 8.715E-01 9.025E-01

(± Std Dev) (± 1.114E-01) (± 1.221E-01) (± 8.721E-02) (± 5.580E-02)

MW4
Avg 8.549E-01 8.470E-01 8.350E-01 8.456E-01

(± Std Dev) (± 2.454E-02) (± 1.946E-02) (± 2.270E-02) (± 2.802E-02)

MW14
Avg 7.404E-01 7.271E-01 7.523E-01 7.755E-01

(± Std Dev) (± 1.521E-01) (± 1.892E-01) (± 1.430E-01) (± 1.316E-01)

II

MW1
Avg 6.708E-01 7.214E-01 7.426E-01 8.362E-01

(± Std Dev) (± 2.411E-01) (± 2.150E-01) (± 2.216E-01) (± 1.570E-01)

MW5
Avg 2.743E-01 2.574E-01 1.930E-01 9.008E-01

(± Std Dev) (± 3.966E-01) (± 3.950E-01) (± 3.730E-01) (± 2.814E-01)

MW6
Avg 6.767E-01 7.071E-01 6.944E-01 7.485E-01

(± Std Dev) (± 2.011E-01) (± 2.003E-01) (± 1.967E-01) (± 2.031E-01)

MW8
Avg 9.374E-01 9.294E-01 9.434E-01 9.519E-01

(± Std Dev) (± 4.873E-02) (± 4.534E-02) (± 3.732E-02) (± 2.230E-02)

III

MW3
Avg 5.846E-01 4.341E-01 8.618E-01 9.720E-01

(± Std Dev) (± 4.330E-01) (± 4.546E-01) (± 2.354E-01) (± 7.291E-03)

MW7
Avg 5.424E-01 5.432E-01 4.631E-01 9.237E-01

(± Std Dev) (± 3.179E-01) (± 3.053E-01) (± 2.365E-01) (± 1.546E-01)

MW10
Avg 5.021E-01 4.573E-01 4.632E-01 4.906E-01

(± Std Dev) (± 2.494E-01) (± 2.491E-01) (± 2.144E-01) (± 2.414E-01)

MW13
Avg 7.970E-01 8.212E-01 5.875E-01 7.364E-01

(± Std Dev) (± 2.073E-01) (± 1.653E-01) (± 1.737E-01) (± 1.224E-01)

IV

MW9
Avg 9.899E-01 9.626E-01 9.612E-01 9.723E-01

(± Std Dev) (± 2.067E-03) (± 5.948E-02) (± 5.364E-02) (± 8.375E-02)

MW11
Avg 5.553E-01 5.323E-01 2.667E-01 6.564E-01

(± Std Dev) (± 2.172E-01) (± 2.254E-01) (± 2.020E-01) (± 2.696E-01)

MW12
Avg 9.776E-01 9.784E-01 8.692E-01 9.690E-01

(± Std Dev) (± 4.615E-03) (± 4.254E-03) (± 1.070E-01) (± 4.984E-02)
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TABLE S-R-VI
STATISTICS OF THE GD METRIC OBTAINED BY FOUR CHTS UNDER THE FRAMEWORK OF MOEA/D, WHERE “AVG” AND “STD DEV” ARE THE AVERAGE

AND STANDARD DEVIATION OVER 100 INDEPENDENT RUNS, RESPECTIVELY. THE BEST RESULT FOR EACH TEST PROBLEM AMONG THE FOUR
COMPARED ALGORITHMS IS HIGHLIGHTED IN BOLDFACE.

Type Prob. Statistics CDP-MOEA/D SP-MOEA/D SR-MOEA/D ε-MOEA/D

I

MW2
Avg 1.137E-01 1.099E-01 1.208E-01 9.476E-02

(± Std Dev) (± 8.903E-02) (± 8.297E-02) (± 9.805E-02) (± 7.239E-02)

MW4
Avg 1.131E-02 1.126E-02 1.123E-02 1.082E-02

(± Std Dev) (± 5.561E-04) (± 3.473E-04) (± 5.274E-04) (± 5.502E-04)

MW14
Avg 1.957E-02 2.113E-02 1.817E-02 1.703E-02

(± Std Dev) (± 2.015E-02) (± 1.872E-02) (± 1.551E-02) (± 1.436E-02)

II

MW1
Avg 1.518E-02 1.038E-02 7.504E-03 7.754E-04

(± Std Dev) (± 5.159E-02) (± 3.081E-02) (± 3.044E-02) (± 9.819E-04)

MW5
Avg 1.100E-02 1.098E-02 1.464E-02 1.066E-02

(± Std Dev) (± 8.411E-03) (± 8.160E-03) (± 1.241E-02) (± 6.351E-03)

MW6
Avg 1.198E-01 1.115E-01 1.219E-01 8.952E-02

(± Std Dev) (± 1.036E-01) (± 8.181E-02) (± 8.378E-02) (± 6.083E-02)

MW8
Avg 1.157E-01 1.167E-01 1.200E-01 1.035E-01

(± Std Dev) (± 6.270E-02) (± 6.193E-02) (± 6.030E-02) (± 5.593E-02)

III

MW3
Avg 9.162E-02 1.395E-01 1.697E-02 2.323E-03

(± Std Dev) (± 1.257E-01) (± 1.337E-01) (± 6.033E-02) (± 6.968E-04)

MW7
Avg 1.785E-03 2.034E-03 5.600E-03 1.445E-03

(± Std Dev) (± 1.263E-03) (± 3.683E-03) (± 5.205E-03) (± 6.477E-04)

MW11
Avg 8.919E-02 7.377E-02 4.875E-02 3.303E-02

(± Std Dev) (± 8.277E-02) (± 7.884E-02) (± 5.604E-02) (± 5.440E-02)

MW13
Avg 1.098E-01 1.037E-01 1.042E-01 8.501E-02

(± Std Dev) (± 3.999E-02) (± 2.532E-02) (± 2.773E-02) (± 3.070E-02)

IV

MW9
Avg 2.434E-02 1.137E-02 1.612E-01 5.605E-02

(± Std Dev) (± 1.294E-02) (± 8.788E-03) (± 9.352E-02) (± 5.100E-02)

MW10
Avg 3.830E-02 3.501E-02 3.856E-02 4.237E-02

(± Std Dev) (± 1.911E-02) (± 1.757E-02) (± 1.657E-02) (± 2.316E-02)

MW12
Avg 1.639E-03 1.070E-03 5.002E-02 1.102E-02

(± Std Dev) (± 1.503E-03) (± 1.010E-03) (± 5.217E-02) (± 1.848E-02)

TABLE S-R-VII
COMPARISON CROSS TWO FRAMEWORKS (NSGA-II AND MOEA/D). “AVG” AND “STD DEV” ARE THE AVERAGE AND STANDARD DEVIATION OVER 100
INDEPENDENT RUNS, RESPECTIVELY. FOR A CERTAIN CHT, THE WINNER BETWEEN NSGA-II AND MOEA/D ON EACH TEST PROBLEM IS HIGHLIGHTED
IN BOLDFACE. THE SCORE IS THE NUMBER OF CHTS THAT PERFORM BETTER UNDER THE FRAMEWORK OF NSGA-II VERSUS THE NUMBER OF CHTS

THAT PERFORM BETTER UNDER THE FRAMEWORK OF MOEA/D ON EACH TEST PROBLEM.

Prob. Alg.
CDP SP SR ε Score

Avg (±Std Dev) Avg (±Std Dev) Avg (±Std Dev) Avg (±Std Dev) (NSGA-II vs MOEA/D)

MW1
NSGA-II 1.058E-02 (±2.36E-02) 6.874E-03 (±7.98E-03) 9.043E-03 (±1.84E-02) 5.341E-03 (±6.26E-03)

4:0
MOEA/D 9.300E-02 (±1.55E-01) 6.505E-02 (±1.07E-01) 5.760E-02 (±1.04E-01) 2.454E-02 (±3.69E-02)

MW2
NSGA-II 2.402E-02 (±8.81E-03) 2.112E-02 (±8.18E-03) 2.786E-02 (±1.22E-02) 1.723E-02 (±7.52E-03)

4:0
MOEA/D 1.203E-01 (±9.68E-02) 1.206E-01 (±1.04E-01) 1.280E-01 (±1.01E-01) 9.909E-02 (±7.27E-02)

MW3
NSGA-II 3.763E-02 (±1.22E-01) 8.404E-03 (±1.77E-02) 1.147E-02 (±4.57E-03) 8.603E-03 (±2.50E-03)

4:0
MOEA/D 3.286E-01 (±4.18E-01) 4.820E-01 (±4.46E-01) 9.603E-02 (±1.93E-01) 1.148E-02 (±1.96E-03)

MW4
NSGA-II 5.565E-02 (±3.19E-03) 5.484E-02 (±1.99E-03) 6.012E-02 (±2.68E-03) 5.474E-02 (±2.24E-03)

0:4
MOEA/D 4.918E-02 (±7.89E-04) 4.996E-02 (±1.17E-03) 5.067E-02 (±1.50E-03) 4.952E-02 (±9.05E-04)

MW5
NSGA-II 1.753E-01 (±2.54E-01) 8.316E-02 (±1.50E-01) 3.219E-02 (±5.44E-02) 1.144E-01 (±7.01E-02)

4:0
MOEA/D 5.431E-01 (±3.09E-01) 5.561E-01 (±3.08E-01) 6.539E-01 (±2.13E-01) 2.038E-01 (±2.01E-01)

MW6
NSGA-II 1.022E-01 (±1.47E-01) 5.102E-02 (±8.23E-02) 1.286E-01 (±1.67E-01) 2.883E-02 (±1.93E-02)

4:0
MOEA/D 3.478E-01 (±2.41E-01) 3.165E-01 (±2.20E-01) 3.339E-01 (±2.28E-01) 2.595E-01 (±2.08E-01)

MW7
NSGA-II 2.647E-02 (±7.91E-02) 6.001E-03 (±7.88E-03) 1.499E-02 (±1.94E-02) 6.772E-02 (±2.28E-02)

4:0
MOEA/D 2.939E-01 (±2.05E-01) 2.895E-01 (±1.93E-01) 3.231E-01 (±1.59E-01) 8.892E-02 (±8.32E-02)

MW8
NSGA-II 6.917E-02 (±2.31E-02) 7.754E-02 (±3.19E-02) 8.732E-02 (±3.46E-02) 6.864E-02 (±2.84E-02)

4:0
MOEA/D 1.569E-01 (±1.07E-01) 1.618E-01 (±7.60E-02) 1.579E-01 (±8.39E-02) 1.320E-01 (±5.71E-02)

MW9
NSGA-II 2.105E-02 (±5.16E-03) 1.624E-02 (±1.77E-02) 5.649E-02 (±1.01E-01) 3.943E-01 (±2.28E-01)

2:2
MOEA/D 1.340E-02 (±3.39E-03) 1.958E-02 (±1.38E-02) 2.127E-01 (±1.09E-01) 7.737E-02 (±8.01E-02)

MW10
NSGA-II 1.296E-01 (±1.33E-01) 1.362E-01 (±1.46E-01) 9.592E-02 (±8.49E-02) 4.555E-02 (±3.39E-02)

4:0
MOEA/D 2.367E-01 (±2.00E-01) 2.681E-01 (±2.04E-01) 2.387E-01 (±1.86E-01) 2.320E-01 (±1.96E-01)

MW11
NSGA-II 6.131E-01 (±1.69E-01) 5.865E-01 (±2.00E-01) 6.118E-01 (±1.68E-01) 4.864E-01 (±2.43E-01)

1:3
MOEA/D 4.793E-01 (±2.23E-01) 5.004E-01 (±2.33E-01) 7.497E-01 (±2.30E-01) 2.878E-01 (±3.05E-01)

MW12
NSGA-II 5.337E-02 (±8.65E-02) 2.064E-02 (±4.46E-02) 5.190E-02 (±1.32E-01) 1.940E-02 (±1.62E-02)

2:2
MOEA/D 5.912E-03 (±4.95E-04) 5.760E-03 (±4.49E-04) 1.098E-01 (±5.50E-02) 2.157E-02 (±2.49E-02)

MW13
NSGA-II 1.956E-01 (±1.23E-01) 1.817E-01 (±2.15E-01) 2.947E-01 (±1.59E-01) 2.727E-01 (±2.33E-01)

4:0
MOEA/D 2.653E-01 (±3.18E-01) 2.216E-01 (±2.44E-01) 4.910E-01 (±2.42E-01) 2.862E-01 (±1.19E-01)

MW14
NSGA-II 1.394E-01 (±1.19E-02) 1.403E-01 (±1.06E-02) 1.951E-01 (±9.14E-02) 1.397E-01 (±1.24E-02)

4:0
MOEA/D 4.013E-01 (±3.40E-01) 4.435E-01 (±4.16E-01) 3.966E-01 (±3.34E-01) 3.400E-01 (±2.64E-01)
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TABLE S-R-VIII
NUMBER OF WEIGHT VECTORS (NW ) AND THE POPULATION SIZE (NP ) USED IN NSGA-III AND AND FOR DIFFERENT NUMBERS OF OBJECTIVES (m).

m NW
NP

NSGA-III AnD
3 91 92 91
5 210 212 210
8 156 156 156

10 275 276 275
15 135 136 135

TABLE S-R-IX
STATISTICS OF THE IGD METRIC OBTAINED BY FIVE CHTS UNDER THE FRAMEWORK OF NSGA-III, WHERE “AVG” AND “STD DEV” ARE THE AVERAGE
AND STANDARD DEVIATION OVER 100 INDEPENDENT RUNS, RESPECTIVELY, AND m IS THE NUMBER OF OBJECTIVES. THE BEST RESULT FOR EACH TEST

PROBLEM AMONG THE FIVE COMPARED ALGORITHMS IS HIGHLIGHTED IN BOLDFACE. ALSO, THE WILCOXON’S RANK-SUM TEST AT A 0.05
SIGNIFICANCE LEVEL IS PRESENTED, WHERE “+” AND “≈” DENOTE THAT THE BEST ALGORITHM OF EACH TEST PROBLEM PERFORMS SIGNIFICANTLY

BETTER THAN AND SIMILAR TO THE LABELED ALGORITHM, RESPECTIVELY.

Prob. m
CDP-NSGA-III SP-NSGA-III SR-NSGA-III ε-NSGA-III ATM-NSGA-III

Avg (± Std Dev) Avg (± Std Dev) Avg (± Std Dev) Avg (± Std Dev) Avg (± Std Dev)

MW4

3 4.212e-02 (± 5.17e-04) 4.231e-02 (± 5.94e-04) ≈ 9.999e-02 (± 1.80e-02) + 4.285e-02 (± 6.86e-04) + 4.520e-02 (± 9.23e-04) +
5 1.046e-01 (± 1.95e-04) 1.048e-01 (± 2.57e-04) + 2.373e-01 (± 1.98e-02) + 1.049e-01 (± 2.51e-04) + 1.048e-01 (± 3.93e-04) +
8 2.464e-01 (± 1.67e-02) ≈ 2.697e-01 (± 4.47e-02) ≈ 3.947e-01 (± 6.71e-02) + 2.425e-01 (± 8.66e-03) 2.461e-01 (± 1.77e-02) ≈
10 2.511e-01 (± 4.25e-03) ≈ 2.736e-01 (± 3.55e-02) ≈ 4.154e-01 (± 5.12e-02) + 2.508e-01 (± 1.46e-02) 2.526e-01 (± 8.18e-03) ≈
15 4.088e-01 (± 2.95e-02) ≈ 4.286e-01 (± 2.38e-02) + 5.187e-01 (± 3.84e-02) + 3.962e-01 (± 1.48e-02) 4.099e-01 (± 1.96e-02) +

MW8

3 1.060e-01 (± 1.41e-01) + 9.314e-02 (± 1.43e-01) ≈ 1.243e-01 (± 2.96e-02) + 4.630e-02 (± 4.23e-03) 9.690e-02 (± 1.30e-01) +
5 1.596e-01 (± 3.50e-02) ≈ 1.579e-01 (± 3.63e-02) ≈ 2.244e-01 (± 3.11e-02) + 1.553e-01 (± 9.76e-03) 1.699e-01 (± 5.09e-02) +
8 4.187e-01 (± 8.62e-02) + 5.227e-01 (± 1.29e-01) + 6.585e-01 (± 3.56e-01) + 3.750e-01 (± 6.05e-02) 4.103e-01 (± 7.91e-02) +
10 4.909e-01 (± 9.13e-02) + 6.033e-01 (± 6.57e-02) + 7.019e-01 (± 7.75e-02) + 4.455e-01 (± 6.84e-02) 4.797e-01 (± 8.55e-02) +
15 7.410e-01 (± 4.45e-02) ≈ 7.829e-01 (± 3.13e-02) + 8.972e-01 (± 3.13e-02) + 7.292e-01 (± 6.49e-02) 7.562e-01 (± 3.84e-02) +

MW14

3 1.139e-01 (± 2.44e-03) + 1.707e-01 (± 2.60e-02) + 2.050e-01 (± 9.74e-02) + 1.128e-01 (± 2.53e-03) 1.174e-01 (± 8.78e-03) +
5 3.360e-01 (± 2.49e-02) ≈ 7.677e-01 (± 8.39e-02) + 7.431e-01 (± 1.09e-01) + 3.342e-01 (± 3.07e-02) 3.659e-01 (± 4.03e-02) +
8 1.109e+00 (± 1.92e-02) + 1.436e+00 (± 1.80e-01) + 1.659e+00 (± 2.63e-01) + 1.104e+00 (± 2.36e-02) ≈ 1.061e+00 (± 5.95e-02)
10 1.288e+00 (± 3.42e-02) ≈ 1.839e+00 (± 2.14e-01) + 2.091e+00 (± 2.55e-01) + 1.283e+00 (± 3.16e-02) 1.303e+00 (± 3.26e-02) +
15 3.256e+00 (± 8.50e-02) ≈ 3.909e+00 (± 1.63e-01) + 4.887e+00 (± 2.11e-01) + 3.239e+00 (± 9.26e-02) 3.247e+00 (± 9.84e-02) ≈

TABLE S-R-X
STATISTICS OF THE IGD METRIC OBTAINED BY NSGA-III AND AND, WHERE “AVG” AND “STD DEV” ARE THE AVERAGE AND STANDARD DEVIATION
OVER 100 INDEPENDENT RUNS, RESPECTIVELY, AND m IS THE NUMBER OF OBJECTIVES. THE BETTER RESULT FOR EACH TEST PROBLEM BETWEEN THE

TWO COMPARED ALGORITHMS IS HIGHLIGHTED IN BOLDFACE. ALSO, THE WILCOXON’S RANK-SUM TEST AT A 0.05 SIGNIFICANCE LEVEL IS
PRESENTED, WHERE “+” AND “≈” DENOTE THAT THE BETTER ALGORITHM OF EACH TEST PROBLEM PERFORMS SIGNIFICANTLY BETTER THAN AND

SIMILAR TO THE LABELED ALGORITHM, RESPECTIVELY.

Problem m
NSGA-III AnD

Avg (± Std Dev) Avg (± Std Dev)

MW4

3 4.213e-02 (± 5.17e-04) 4.623e-02 (± 1.06e-03) +
5 1.046e-01 (± 1.95e-04) 1.094e-01 (± 6.95e-04) +
8 2.464e-01 (± 1.67e-02) + 2.151e-01 (± 1.51e-03)

10 2.511e-01 (± 4.25e-03) + 2.263e-01 (± 1.15e-03)
15 4.088e-01 (± 2.95e-02) + 3.528e-01 (± 5.20e-03)

MW8

3 1.060e-01 (± 1.41e-01) + 5.594e-02 (± 1.50e-02)
5 1.596e-01 (± 3.50e-02) + 1.573e-01 (± 1.76e-03)
8 4.187e-01 (± 8.62e-02) + 3.391e-01 (± 4.63e-03)

10 4.909e-01 (± 9.13e-02) + 3.724e-01 (± 2.45e-03)
15 7.410e-01 (± 4.45e-02) + 5.574e-01 (± 4.41e-03)

MW14

3 1.139e-01 (± 2.44e-03) 1.152e-01 (± 3.79e-03) ≈
5 3.360e-01 (± 2.49e-02) + 3.122e-01 (± 4.39e-03)
8 1.109e+00 (± 1.92e-02) + 8.583e-01 (± 1.54e-02)

10 1.288e+00 (± 3.42e-02) + 1.093e+00 (± 9.35e-03)
15 3.256e+00 (± 8.50e-02) + 2.454e+00 (± 2.07e-02)
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TABLE S-R-XI
STATISTICS OF THE IGD METRIC OBTAINED BY SR-NSGA-II, SR-MOEA/D, AND SR-IBEA, WHERE “AVG” AND “STD DEV” ARE THE AVERAGE AND
STANDARD DEVIATION OVER 100 INDEPENDENT RUNS, RESPECTIVELY. THE BEST RESULT FOR EACH TEST PROBLEM AMONG THE THREE COMPARED
ALGORITHMS IS HIGHLIGHTED IN BOLDFACE. ALSO, THE WILCOXON’S RANK-SUM TEST AT A 0.05 SIGNIFICANCE LEVEL IS PRESENTED FOR EACH TEST

PROBLEM, WHERE “+” AND “≈” DENOTE THAT THE BEST ALGORITHM OF EACH TEST PROBLEM PERFORMS SIGNIFICANTLY BETTER THAN AND
SIMILAR TO THE LABELED ALGORITHM, RESPECTIVELY.

Type Prob.
SR-NSGA-II SR-MOEA/D SR-IBEA

Avg (± Std Dev) Avg (± Std Dev) Avg (± Std Dev)

I
MW2 2.786E-02 (±1.22E-02) + 1.280E-01 (±1.01E-01) + 2.368E-02 (±1.03E-02)
MW4 6.012E-02 (±2.68E-03) + 5.067E-02 (±1.50E-03) + 4.914E-02 (±1.33E-03)

MW14 1.951E-01 (±9.14E-02) + 3.966E-01 (±3.34E-01) + 1.889E-01 (±5.23E-03)

II

MW1 9.043E-03 (±1.84E-02) 5.760E-02 (±1.04E-01) + 1.273E-02 (±1.35E-02) +
MW5 3.219E-02 (±5.44E-02) 6.539E-01 (±2.13E-01) + 2.337E-01 (±3.22E-01) +
MW6 1.286E-01 (±1.67E-01) + 3.339E-01 (±2.28E-01) + 1.205E-01 (±1.42E-01)
MW8 8.732E-02 (±3.46E-02) 1.579E-01 (±8.39E-02) + 1.256E-01 (±8.97E-02) +

III

MW3 1.147E-02 (±4.57E-03) 9.603E-02 (±1.93E-01) + 5.060E-02 (±3.42E-03) +
MW7 1.499E-02 (±1.94E-02) 3.231E-01 (±1.59E-01) + 1.327E-01 (±8.29E-02) +

MW10 9.592E-02 (±8.49E-02) 2.387E-01 (±1.86E-01) + 1.361E-01 (±1.51E-01) ≈
MW13 2.947E-01 (±1.59E-01) + 4.910E-01 (±2.42E-01) + 2.334E-01 (±3.99E-02)

IV
MW9 5.649E-02 (±1.01E-01) 2.127E-01 (±1.09E-01) + 9.537E-02 (±1.19E-01) +

MW11 6.118E-01 (±1.68E-01) 7.497E-01 (±2.30E-01) − 8.268E-01 (±1.36E-01) +
MW12 5.190E-02 (±1.32E-01) + 1.098E-01 (±5.50E-02) + 2.898E-02 (±5.57E-02)

S-II. ADDITIONAL EXPERIMENTS AND DISCUSSIONS

A. Comparisons of Many-Objective EAs on MWs with Higher Numbers of Objectives

In this subsection, we investigated the performance of two state-of-the-art many-objective EAs, i.e., NSGA-III [1] and AnD
[2], on MW4, MW8, and MW14 with higher numbers of objectives. Note that, both of NSGA-III and AnD adopted a CDP-like
mechanism as a CHT in their constrained versions. For NSGA-III, the number of weight vectors (NW ) and the population size
(NP ) for different numbers of objectives were summarized in Table S-R-VIII. To make the comparison fair, the value of NP
for AnD was equal to NW , although AnD works without any predefined weight vectors. For other parameter settings, they
were consistent with the suggestions in Section V-C.

Table S-R-X shows the average and standard deviation of IGD values obtained by the two compared algorithms over 100
independent runs. Note that, the results of NSGA-III was directly taken from Table S-R-IX. Besides, the Wilcoxon’s rank-sum
test at a 0.05 significance level was also considered to test whether there exist significant differences between the results
obtained by the better algorithm and its competitors in each case. When m = 3, both NSGA-III and AnD achieve competitive
results. To be specific, NSGA-III is better than AnD on MW4, and AnD is the better algorithm on MW8. Although NSGA-III
obtains better average IGD value than AnD on MW14, but the Wilcoxon’s rank-sum test shows no significant difference
between the results of them. When m ≥ 5, AnD performs consistently better than NSGA-III on all test problems except MW4
with m = 5, where NSGA-III is better.

In summary, NSGA-III shows competitive performance on MWs with m = 3. However, on test problems with a higher value
of m, AnD performs significantly better than NSGA-III. It is because AnD gradually eliminates the solutions with the smallest
angle in the objective space during the environmental selection. This angle-based selection scheme is relatively less sensitive to
dimensionality, and is helpful to maintain a good distribution of population in the objective space.

B. Effectiveness of An Indicator-Based MOEA on MWs

In [3], Fileccia et al. embedded SR into an indicator-based MOEA (i.e., IBEA [4]). To evaluate the effectiveness of IBEA
as an optimization algorithm for CMOPs, we compared SR-IBEA with SR-NSGA-II and SR-MOEA/D on MWs. For a fair
comparison, SR-IBEA was implemented with the same parameter settings as suggested in Section V-C, and the parameter Pf
was equal to 0.45 as in SR under the framework of NSGA-II.

The average and standard deviation of IGD values achieved by the three compared algorithms are presented in Table S-R-XI.
Note that, the results of SR-NSGA-II and SR-MOEA/D were directly taken from Table S-R-I and Table S-R-IV, respectively.
As shown in Table S-R-XI, both SR-NSGA-II and SR-IBEA achieve competitive results on MWs. Specifically, SR-NSGA-II
performs the best on eight test problems (i.e., MW1, MW3, MW5, and MW7-MW11) which cover Types II, III, and IV. While,
SR-IBEA surpasses others on six test problems (i.e., MW2, MW4, MW6, and MW12-MW14), which indicates that SR-IBEA
mainly has advantages on Type I. To detect the statistical differences, the Wilcoxon’s rank-sum test at a 0.05 significance
level is conducted between the results obtained by the best algorithm and its competitors on each test problem. It can be seen
that SR-IBEA is better than and worse than SR-NSGA-II on six and seven test problems, respectively. Also, SR-IBEA is
consistently more promising than SR-MOEA/D, since SR-IBEA is better than and worse than SR-MOEA/D on 13 and one test
problem, respectively.

In summary, SR-IBEA performs not as well as SR-NSGA-II on Types II, III, and IV. This can be attributed to the fact that
IBEA is implemented based on the H metric [5] (calculated using the concept of hypervolume). However, the H metric favors
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Fig. S-1. Evolution of IGD values achieved by the six compared CHTs under the framework of NSGA-II on (a) MW4, (b) MW6, (c) MW7, and (d) MW12.

the solutions with better convergence, since they can provide great promotion for hypervolume. Therefore, IBEA shows strong
performance of convergence, which would lead to the following consequences: 1) on Type II, the population tends to be trapped
into a local area of the feasible region, due to the over emphasis on convergence; and 2) on Types III and IV, IBEA runs the
risk of losing the Pareto optimal solutions located on the boundary of the feasible region. To be specific, the solutions are easy
to cross the boundary of the feasible region and become infeasible, since these infeasible solutions have better convergence
than feasible solutions towards the unconstrained PF, corresponding to a higher value of the H metric. But SR is not able to
provide enough selection pressure to pull them back to the boundary of the feasible region.

C. Graphical Views of Implementations

To analyze the on-line behaviors of the compared CHTs, in Fig. S-1, we provided the evolution of IGD values achieved
by the six CHTs under the framework of NSGA-II on MW4, MW6, MW7, and MW12. Note that MW4, MW6, MW7, and
MW12 belong to Types I, II, III, and IV, respectively. Since the feasibility ratios of MWs are very small, no feasible solution is
found at the beginning of evolution; thus, the curves in the figures start after a certain number of generations. As more feasible
solutions are found, all the six CHTs are able to reduce the IGD values on the four types.

Fig. S-2 shows the evolution of IGD values obtained by the four CHTs under the framework of MOEA/D on MW4, MW6,
MW7, and MW12. While, a different phenomenon can be observed on the curves of ε-MOEA/D. On MW12, its curve is
disconnected. This is because the ε-constrained method first pushes the population towards the unconstrained PF; but the
unconstrained PF of MW12 is located outside the feasible region, causing that the population becomes entirely infeasible. When
ε reduces to zero, the feasible solutions will be preserved in the population and the curve of IGD restarts.

To compare two frameworks (i.e., NSGA-II and MOEA/D) graphically, Figs. S-3–S-7 provide some solution sets obtained by
ε-NSGA-II and ε-MOEA/D on MW1, MW3, MW8, MW9 and MW11, respectively. Note that, each figure only shows the
solution set with the median IGD value among 100 independent runs. On all of these test problems, ε-MOEA/D approximates
the constrained PFs more uniformly than ε-NSGA-II. However, on disconnected test problems (i.e., MW1, MW8, and MW11),
the population of ε-MOEA/D has fewer Pareto optimal solutions than that of ε-NSGA-II.
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Fig. S-2. Evolution of IGD values achieved by the four compared CHTs under the framework of MOEA/D on (a) MW4, (b) MW6, (c) MW7, and (d) MW12.
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Fig. S-3. Images of the feasible solutions obtained by (a) ε-NSGA-II and (b) ε-MOEA/D with the median IGD value among 100 independent runs on MW1.

Moreover, in Fig. S-4, it can be seen that both ε-NSGA-II and ε-MOEA/D lose some Pareto optimal solutions located on the
boundary of the feasible region, which is mainly because the boundary is concave, caused by nonlinear constraints. In Fig. S-7,
we can also find that these two algorithms are not able to approximate the constrained PF very well, which means that the
difficulty of a CMOP indeed raises with the increase of the number of constraints. Besides, in order to investigate the influence
of the number of decision variables on a CMOP’s difficulty, we implemented ε-NSGA-II and ε-MOEA/D on MW3 with five
decision variables. As shown in Fig. S-8, these two algorithms approximate the constrained PF better than Fig. S-4 (i.e., 15
decision variables). This is because a smaller number of decision variables reduces the difficulty of distance functions; thus, it
is easier to converge toward the constrained PF.
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Fig. S-4. Images of the feasible solutions obtained by (a) ε-NSGA-II and (b) ε-MOEA/D with the median IGD value among 100 independent runs on MW3.
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Fig. S-5. Images of the feasible solutions obtained by (a) ε-NSGA-II and (b) ε-MOEA/D with the median IGD value among 100 independent runs on MW8.
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Fig. S-6. Images of the feasible solutions obtained by (a) ε-NSGA-II and (b) ε-MOEA/D with the median IGD value among 100 independent runs on MW9.
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Fig. S-7. Images of the feasible solutions obtained by (a) ε-NSGA-II and (b) ε-MOEA/D with the median IGD value among 100 independent runs on MW11.
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