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Abstract—As an effective optimization tool for expensive op-
timization problems, surrogate-assisted evolutionary algorithms
(SAEAs) have been widely studied in recent years. However, most
of current SAEAs are designed for continuous/combinatorial ex-
pensive optimization problems, which are not suitable for mixed-
variable expensive optimization problems. This paper focuses
on one kind of mixed-variable expensive optimization problems:
expensive optimization problems with continuous and categorical
variables (EOPCCVs). A multi-surrogate-assisted ant colony op-
timization algorithm (MiSACO) is proposed to solve EOPCCVs.
MiSACO contains two main strategies: multi-surrogate-assisted
selection and surrogate-assisted local search. In the former, radial
basis function (RBF) and least-squares boosting tree (LSBT) are
employed as the surrogate models. Afterward, three selection
operators (i.e., RBF-based selection, LSBT-based selection, and
random selection) are devised to select three solutions from the
offspring solutions generated by ACO, with the aim of coping
with different types of EOPCCVs robustly and preventing the
algorithm from being misled by inaccurate surrogate models. In
the latter, sequence quadratic optimization coupled with RBF is
utilized to refine the continuous variables of the best solution
founded so far. By combining these two strategies, MiSACO can
solve EOPCCVs with limited function evaluations. Three sets of
test problems and two real-world cases are used to verify the
effectiveness of MiSACO. The results demonstrate that MiSACO
performs well on solving EOPCCVs.

Index Terms—Surrogate-assisted evolutionary algorithms,
mixed-variable expensive optimization problems, ant colony op-
timization, continuous variables, categorical variables

I. INTRODUCTION

A. Expensive Optimization Problems (EOPs) with Continuous
and Categorical Variables

EOPs refer to the optimization problems with time-
consuming objective functions and/or constraints. EOPs can
be classified into three categories: continuous EOPs which
contain only continuous variables, combinatorial EOPs which
contain only discrete variables1, and mixed-variable EOPs [8],
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1Discrete variables can be integer variables [1], categorical variables [2],
[3], binary variables [4], [5], and sequential variables [6], [7].

Fig. 1. The lightweight and crashworthiness design of the side body of an
automobile [15].

[9] which contain both continuous and discrete variables [10],
[11].

Further, mixed-variable EOPs can be divided into differ-
ent kinds according to the types of discrete variables, such
as EOPs with continuous and integer variables [12], EOPs
with continuous and binary variables [13], and EOPs with
continuous and categorical variables (EOPCCVs) [14]. This
paper mainly focuses on EOPCCVs.

In general, the mathematical model of an EOPCCV can be
expressed as:

min : f (xcn,xca)

s.t. Lcn
i ≤ xcn

i ≤Ucn
i

xca
j ∈ v j

(1)

where xcn = (xcn
1 ,xcn

2 , . . . ,xcn
n1
) and xca = (xca

1 ,xca
2 , . . . , xca

n2
) are

the continuous and categorical vectors, respectively, n1 is
the number of continuous variables, n2 is the number of
categorical variables, f (xcn,xca) is the objective function, Lcn

i
and Ucn

i are the lower and upper bounds of xcn
i , respectively,

v j = {v1
j ,v

2
j , . . . ,v

l j
j } is the candidate categorical set for xca

j ,
and l j is the size of v j.

Many real-world applications can be modeled as EOPC-
CVs [16], [17]. The lightweight and crashworthiness design
of the side body of an automobile can be taken as an
example [15], [18], as shown in Fig. 1. Usually, the side
body of an automobile consists of many parts, such as B-
Pillar and side door impact beam [19], [20]. Both the structure
and material of each part have a great influence on the mass
and carshworthiness. When designing the structure of each
part, we need to consider its thickness, which is a continuous
variable. In addition, we need to select a kind of material from
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the candidate material set for each part, which is a categor-
ical variable. Moreover, the evaluation of carshworthiness is
based on the finite element analysis (FEA), which is a time-
consuming process. Therefore, it is an EOPCCV.

B. Surrogate-Assisted Evolutionary Algorithms (SAEAs)

As a kind of powerful optimization tool, EAs have been
widely applied to solve science and engineering optimization
problems [21]–[24]. However, since EAs usually need a large
number of function evaluations (FEs) to obtain the optimal
solution of an optimization problem, they are not suitable for
EOPs. To overcome this barrier, SAEAs, which employ cheap
surrogate models to replace a part of time-consuming exact
FEs, have been developed [25]–[28]. In the past fifteen years,
many SAEAs have been proposed to solve EOPs in different
fields, such as mm-wave integrated circuit optimization [29],
structure design of an automobile [30], trauma system de-
sign [13], neutral network architecture design [31], antenna
design [32], and power system design [33].

Most of current SAEAs focus on continuous EOPs [34]–
[37]), which utilize surrogate models for continuous functions,
such as polynomial regression models (PRMs) [38], support
vector regression [14], radial basis functions (RBFs) [39], arti-
ficial neural networks [40], and Gaussian processes (GPs) [41].
For example, Liu et al. [29] proposed a GP-assisted EA to
deal with medium-scale EOPs. Tian et al. [42] adopted GP
as the surrogate model, and proposed a multiobjective infill
criterion to deal with high-dimensional EOPs. Wang et al. [30]
proposed a global and local surrogate-assisted differential
evolution for expensive constrained optimization problems.
Sun et al. [43] proposed a surrogate-assisted cooperative
swarm optimization algorithm to handle high-dimensional
EOPs. Zhang et al. [44] combined MOEA/D [45] with GP
to deal with expensive multiobjective optimization problems.
Chugn et al. [46] proposed a surrogate-assisted reference
vector guided EA to solve expensive many-objective opti-
mization problems. Since different surrogate models for conti-
nuous functions have different strengths for different kinds of
problem landscapes, many SAEAs with multiple or ensemble
surrogate models for continuous functions are proposed [47]–
[51]. For instance, Lim et al. [47] proposed a generalization
of surrogate-assisted evolutionary frameworks. Le et al. [48]
introduced an evolutionary framework with the evolvability
learning of surrogates. Lu et al. [52] presented an evolutionary
optimization framework with hierarchical surrogates. Li et
al. [53] proposed an ensemble of surrogate assisted particle
swarm optimization algorithm to solve medium-scale EOPs.
Guo et al. [54] developed a multiobjective EA framework
assisted by heterogeneous ensemble surrogate models.

Compared with continuous EOPs, few attempts have been
made on combinatorial EOPs [55]. Current studies suggest that
surrogate models with tree structures, such as random forest
(RF) [56] and least-squares boosting tree (LSBT) [57], [58],
are more suitable for dealing with combinatorial EOPs [55].
As a representative, Wang et al. [59] developed a RF-assisted
EA for constrained multiobjective combinatorial optimization
in trauma systems. Sun et al. [31] incorporated RF into

a SAEA to design the architecture of convolutional neural
networks. Moreover, some researchers incorporated domain
knowledge into SAEAs to solve combinatorial EOPs, thus
improving the search ability of the algorithms [60], [61].

Based on our investigation, only several papers work on
EOPCCVs [14], [62], [63]. However, the methods proposed in
these papers mainly extend surrogate models for continuous
functions; thus, their capability of solving EOPCCVs is lim-
ited.

C. Motivation and Contributions

For SAEAs, the core problem is how to reasonably use sur-
rogate models to guide the optimization process. As discussed
in Section I-B, surrogate models for continuous functions are
good at solving continuous EOPs and surrogate models with
tree structures perform well on combinatorial EOPs. One may
argue that EOPCCVs can be addressed by using surrogate
models for continuous functions and surrogate models with
tree structures to handle continuous and categorical variables,
respectively. However, this way is unreasonable since conti-
nuous and categorical variables maybe interact with each other.
Thus, they cannot be optimized separately.

Intuitively, the numbers of continuous and categorical vari-
ables have a significant impact on the performance of surrogate
models. With respect to an EOPCCV, we consider the follow-
ing three cases: most of its variables are continuous variables;
most of its variables are categorical variables; and the number
of continuous variables is similar to that of categorical vari-
ables. Obviously, surrogate models for continuous functions
and surrogate models with tree structures are good choices
for the first and second cases, respectively. However, for the
third case, both of these two kinds of surrogate models are
necessary. Note that even for the first and second cases, we
cannot only use one of these two kinds of surrogate models due
to the fact that EOPCCVs contain continuous and categorical
variables at the same time. Therefore, in this paper, we employ
these two kinds of surrogate models simultaneously.

The next issue which arises naturally is how to choose these
two kinds of surrogate models for EOPCCVs. In this paper,
RBF and LSBT are selected as the surrogate model for conti-
nuous functions and the surrogate model with a tree structure,
respectively. The reasons for our selection are twofold: 1) RBF
is a widely used surrogate model for continuous functions.
It is simple and easy to train. Moreover, as a kernel-based
model, RBF has the potential to deal with categorical vari-
ables through redefining the distance between two categorical
vectors; and 2) As a kind of ensemble surrogate models, LSBT
shows excellent generalization ability. In addition, LSBT has
the potential to deal with continuous variables by discretizing
the decision space. Therefore, they are expected to comple-
ment one another for solving EOPCCVs.

Subsequently, a multi-surrogate-assisted ant colony opti-
mization (ACO) algorithm, called MiSACO, is proposed in
this paper to solve EOPCCVs. To the best of our knowledge,
MiSACO is the first attempt to incorporate both a surrogate
model for continuous functions and a surrogate model with
a tree structure into an EA to solve EOPCCVs. MiSACO
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introduces two important strategies: 1) multi-surrogate-assisted
selection and 2) surrogate-assisted local search.

The main contributions of this paper can be summarized as
follows:
• The aim of the multi-surrogate-assisted selection is to

select promising solutions from the offspring solutions
generated by ACOMV [10]. In this strategy, we select
the best solution from the offspring solutions based on
the predicted values provided by RBF (called RBF-
based selection) and the best solution from the offspring
solutions based on the predicted values provided by LSBT
(called LSBT-based selection). In addition, to avoid the
population being misled by inaccurate surrogate models,
we also randomly select a solution from the offspring
solutions (called random selection). As a result, three
promising solutions are selected.

• The surrogate-assisted local search is designed to accel-
erate the convergence. In this strategy, if the number
of evaluated solutions, which have the same categorical
variables as the current best solution, is bigger than a
threshold, these evaluated solutions are used to construct
a RBF for only continuous variables. Based on the
constructed RBF, the continuous variables of the current
best solution are further optimized by using sequence
quadratic programming (SQP), thus improving the quality
of the current best solution quickly.

• Three sets of test problems are used to study the perfor-
mance of MiSACO. The results suggest that MiSACO has
the capability to cope with different types of EOPCCVs.
We also apply MiSACO to two practical engineering
design problems, i.e., the topographical design of stiff-
ened plates against blast loading, and the lightweight and
crashworthiness design for the side body of an automo-
bile. The results show that MiSACO can effectively solve
them.

The rest of this paper is organized as follows. Section II
introduces the related techniques including the adopted sur-
rogate models and search engine. Section III analyzes the
characteristics of RBF and LSBT. The proposed algorithm,
MiSACO, is elaborated in Section IV. The experimental
studies are executed in Section V. In Section VI, MiSACO is
applied to two engineering design problems in the real world.
Finally, Section VII concludes this paper.

II. RELATED TECHNIQUES

A. RBF

As a commonly used surrogate model, RBF has been
widely applied to approximate continuous functions in various
science and engineering fields. Based on database {(xi,yi)|i =
1, . . . ,N}, RBF approximates a continuous function as follows:

f̂RBF(x) =
N

∑
i=1

wiφ(dis(x,xi)) (2)

where dis(x,xi) = ||x−xi|| represents the Euclidean distance
between x and xi, and wi and φ(·) are the weight coefficient
and the basis function, respectively. In general, the Gaussian
function [64] is employed as the basis function. When the

Algorithm 1 ACOMV

1: Initialize SA;
2: while the termination criterion is not satisfied do
3: for i = 1 : M do
4: Construct the ith offspring solutions based on the

probabilities provided by (9) and (12);
5: Evaluate the ith offspring solutions;
6: end for
7: Update SA according to the generated M offspring

solutions and elitist selection;
8: end while
9: Output the optimal solution

least-squares loss is taken as the loss function, the weight
vector w = (w1, ...,wN) can be calculated as follows:

w = (ΦT
Φ)−1

Φ
T y (3)

where y = (y1, . . . ,yN) is the output vector and Φ is the matrix
computed as follows:

Φ =

φ(dis(x1,x1)) · · · φ(dis(x1,xN))
...

. . .
...

φ(dis(xN ,x1)) · · · φ(dis(xN ,xN))

 (4)

Note that, when approximating functions with both conti-
nuous and categorical variables, the distance between two
solutions needs to be redefined. Inspired by Hamming dis-
tance, in this paper, the distance between the solution to be
predicted (i.e., (xcn,xca)) and the ith solution in the database
(i.e., (xcn

i ,xca
i )) is calculated by

dis((xcn,xca),(xcn
i ,xca

i )) =
√
||xcn−xcn

i ||2 + ||xca⊕xca
i ||2

(5)
where || · || represents the vector norm, (xcn−xcn

i ) represents
the difference of two continuous vectors (i.e., xcn and xcn

i ),
and (xca⊕xca

i ) represents the vector after the xor operation of
two categorical vectors (i.e., xca and xca

i ).

B. LSBT

LSBT is a kind of ensemble learning method based on
binary regression trees [57]. The binary regression tree approx-
imates a function by dividing the decision space into several
subregions and each of them provides the same predicted
value. LSBT can be expressed as the sum of several binary
regression trees:

f̂LSBT (x) =
M

∑
m=1

T (x,Θm) (6)

where M is the total number of the binary regression trees,
T (x,Θm) is the mth binary regression tree, and Θm represents
the parameter vector of T (x,Θm) which can be determined
iteratively.

Based on database {(xi,yi)|i = 1, . . . ,N} and the residual of
xi in the mth iteration (denoted as rm,i), Θm can be obtained
by minimizing the following formulation:

N

∑
i=1

(rm,i−T (xi,Θm))
2 (7)
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where rm,i = yi−∑
m−1
v=1 T (xi,Θv).

Note that, to cope with continuous variables, when training
LSBT, several discrete points are provided for each dimension
to divide the decision space into several discrete subregions.
When predicting the function value of a solution, these discrete
points are used to determine which subspace the solution to
be predicted is in.

C. ACOMV

The process of ACOMV [10] is described in Algorithm 1.
First, we initialize a solution archive (denoted as SA), the
purpose of which is to store the continuous and categorical
variables of the best K evaluated solutions. The sth (s ∈
{1, . . . ,K}) solution in SA is denoted as: SAs = [SAcn

s ,SAca
s ] =

[(SAcn
s,1,SAcn

s,2, . . . ,SAcn
s,n1

),(SAca
s,1,SAca

s,2, . . . ,SAca
s,n2

)]. A weight
(denoted as αs) is then associated with SAs, which is cal-
culated as:

αs =
1

qK
√

2π
e
−(ranks−1)2

2q2K2 , s ∈ {1, . . . ,K} (8)

where ranks represents the rank of SAs, and q is a param-
eter called the influence of the best-quality solutions. Note
that, by utilizing (8), the best solution receives the highest
weight, while the weights of the other solutions decrease
exponentially with their ranks. Next, ACOMV generates M
offspring solutions at each iteration and the elitist selection
is used to update SA. The offspring solutions are generated
according to αs. A solution with a big αs value means a
higher probability of sampling around this solution. Since
solutions with big αs values have good objective function
values, generating offspring solutions in such a way tends to
make the algorithm converge to the promising region. Finally,
when the termination criterion is satisfied, the obtained optimal
solution is output.

The continuous and categorical variables of an offspring
solution are generated in the following ways:
• When generating the continuous variables of an offspring

solution, the continuous vector of the sth solution in SA
is selected based on the following probability:

ps =
αs

∑
K
r=1 αr

, s ∈ {1, . . . ,K} (9)

We denote the selected continuous vector as Scn =
(Scn

1 ,Scn
2 , . . . ,Scn

n1
). Then, the ith continuous variable of an

offspring solution is generated according to the following
Gaussian probability density function:

g(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (10)

where µ = Scn
i . In (10), σ is calculated as:

σ = ξ

K

∑
j=1

|SAcn
j,i−Scn

i |
K−1

(11)

where ξ is a parameter called the width of search.
• For the jth categorical variable of an offspring solution,

it is chosen from v j = {v1
j , ...,v

l j
j } with the following

probability:

p jt =
βt

∑
l j
h=1 βh

, t ∈ {1, . . . , l j} (12)

where βt is the weight associated with the tth value. It
is obvious that there are l j values for the jth categorical
variable. Suppose that η j is the number of values that
do not appear in SA, and u jt is the repeated number of
the tth value that appears in SA. If u jt > 1, suppose that
the indexes of the weights corresponding to the tth value
in SA are: id1, . . . , idu jt . Let α jt = max{αid1 , . . . ,αidu jt

}.
Then, βt is calculated as:

βt =


α jt
u jt

+ q
η j
, i f (η j > 0, u jt > 0)

q
η j
, i f (η j > 0, u jt = 0)

α jt
u jt

, i f (η j = 0, u jt > 0)

(13)

III. CHARACTERISTICS OF RBF AND LSBT

In this section, the characteristics of RBF and LSBT on ap-
proximating EOPCCVs are analyzed. First, three assumptions
are given. Afterward, we analyze the predicted error of RBF
and LSBT based on these three assumptions. Finally, some
considerations behind the analysis are provided.

A. Assumptions

Firstly, we give an assumption to limit the change range
of the objective function value according to the distance
between two solutions. This assumption is inspired by the bi-
Lipschitz continuity, i.e., a kind of smoothness condition that
has been widely used in the theoretical analysis of Bayesian
optimization [65]. The assumption is provided as follows.

Assumption 1: Based on the distance defined in Section
II-A, f (xcn,xca) and f̂RBF(xcn,xca) satisfy the following con-
ditions:

| f (xcn
1 ,xca

1 )− f (xcn
2 ,xca

2 )| ≥ 1
L f
·dis((xcn

1 ,xca
1 ),(xcn

2 ,xca
2 ))

| f (xcn
1 ,xca

1 )− f (xcn
2 ,xca

2 )| ≤ L f ·dis((xcn
1 ,xca

1 ),(xcn
2 ,xca

2 ))

| f̂RBF (xcn
1 ,xca

1 )− f̂RBF (xcn
2 ,xca

2 )| ≥ 1
Lr
·dis((xcn

1 ,xca
1 ),(xcn

2 ,xca
2 ))

| f̂RBF (xcn
1 ,x1

ca)− f̂RBF (xcn
2 ,xca

2 )| ≤ Lr ·dis((xcn
1 ,xca

1 ),(xcn
2 ,xca

2 ))
(14)

where (xcn
1 ,xca

1 ) and (xcn
2 ,xca

2 ) are two different solutions, and
L f and Lr are two parameters [65].

Secondly, we consider that, for at least one solution, RBF
and LSBT can accurately predict its objective function value.
Thus, the following assumption is provided.

Assumption 2: For both RBF and LSBT, there exists at least
one reference solution (xcn

∗ ,xca
∗ ) that can make f (xcn

∗ ,xca
∗ ) =

f̂RBF(xcn
∗ ,xca

∗ ) = f̂LSBT (xcn
∗ ,xca

∗ ).
Finally, to make it easier to analyze the predicted error of

LSBT, the following assumption is given.
Assumption 3: When predicting the objective function

value, we assume that the solution to be predicted (denoted as
(xcn,xca)) is close to (xcn

∗ ,xca
∗ ); thus, (xcn,xca) and (xcn

∗ ,xca
∗ )

are located in the same subregion provided by LSBT.
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Fig. 2. Approximate f1(xcn,xca) by LSBT: (a) The landscapes of the exact
function of f1(xcn,xca) and the function approximated by LSBT when xca =
a. (b) The landscapes of the exact function of f1(xcn,xca) and the function
approximated by LSBT when xca = b.

B. Analysis

For RBF and LSBT, we have the following two propositions.
Proposition 1: The upper and lower bounds of RBF’s

predicted error are described as:

| f (xcn,xca)− f̂RBF (xcn,xca)| ≤ (L f +Lr) ·dis((xcn,xca),(xcn
∗ ,x

ca
∗ ))

(15)
Proposition 2: The upper and lower bounds of LSBT’s

predicted error are described as:

| f (xcn,xca)− f̂LSBT (xcn,xca)| ≤ L f ·dis((xcn,xca),(xcn
∗ ,x

ca
∗ ))

(16)
and

| f (xcn,xca)− f̂LSBT (xcn,xca)| ≥ 1
L f
·dis((xcn,xca),(xcn

∗ ,x
ca
∗ ))

(17)
The proof of Proposition 1 and Proposition 2 is given in

Section S-I of the supplementary file. Next, based on these
two propositions, we discuss the upper and lower bounds of
the predicted error.

1) Discussions about the upper bound: From (15) and (16),
it can be observed that, when dis((xcn,xca),(xcn

∗ ,xca
∗ )) 6= 0, the

upper bound of LSBT’s predicted error is always smaller than
that of RBF’s.

2) Discussions about the lower bound: It should be noted
that the best predicted error provided by RBF can be equal
to zero, which means that RBF has the chance to provide an
accurate predicted value. In contrast, according to (17), the
lower bound of LSBT’s predicted error cannot be zero when
dis((xcn,xca),(xcn

∗ ,xca
∗ )) 6= 0, which means that it is hard for

LSBT to accurately predict the objective function values of all
solutions except the reference solution.

In summary, RBF and LSBT have different advantages and
disadvantages. When copping with EOPCCVs, RBF has the
opportunity to accurately predict the objective function value
of each solution. However, the upper bound of its predicted
error is larger than that of LSBT. Thus, compared with LSBT,
the predicted error of RBF may fluctuate greatly. In contrast,
under the condition that dis((xcn,xca),(xcn

∗ ,xca
∗ )) 6= 0, it is hard

for LSBT to accurately predict the objective function, but
LSBT has a stable prediction capability.

C. Considerations based on the Above Analysis

According to the above analysis, we have the following
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Fig. 3. Approximate f1(xcn,xca) and f2(xcn,xca) by RBF: (a) The landscapes
of the exact function of f1(xcn,xca) and the function approximated by RBF
when xca = a. (b) The landscapes of the exact function of f1(xcn,xca) and
the function approximated by RBF xca = b. (c) The landscapes of the exact
function of f2(xcn,xca) and the function approximated by RBF when xca =
(a,a,a,a,a,a,a,a,a). (d) The landscapes of the exact function of f2(xcn,xca)
and the function approximated by RBF when xca = (b,c,b,c,b,c,b,c,b).

considerations about how to effectively use surrogate models
when solving EOPCCVs:

• Due to the fact that LSBT has a stable prediction capabil-
ity, when using it to select a solution from the offspring
solutions, the one with good quality is very likely to be
chosen. However, since it is hard for LSBT to accurately
approximate the objective function of an EOPCCV, the
most promising solution may be missed. Therefore, only
using LSBT to guide the algorithm may not be effective.
An example in Fig. 2 is used to illustrate this issue. In
Fig. 2, LSBT is used to approximate f1(xcn,xca) with
n1 = 1, n2 = 1, xcn ∈ [−2,20], and xca ∈ {a,b}. The aim
is to select the best solution from A, B, C, and D. Note
that, A has the best original objective function value, and
A and B are better than C and D. According to the predict
values, the solution with good quality (i.e., A or B) will be
selected. However, since A and B have the same predict
value, the most promising solution (i.e., A) may not be
selected.

• Although RBF has the opportunity to accurately approxi-
mate the objective function of each solution, its prediction
error may fluctuate greatly. Therefore, only using RBF to
guide the search may mislead the algorithm to converge
to a wrong optimal solution. An example in Fig. 3 is
used to illustrate this issue. In Fig. 3, RBF is used to
approximate the following two functions: f1(xcn,xca) with
n1 = 1, n2 = 1, xcn ∈ [−2,20], and xca ∈ {a,b}, and
f2(xcn,xca) with n1 = 1, n2 = 9, xcn ∈ [−100,100], and
xca

j ∈ {a,b,c,d,e}( j = {1, . . . ,n2}). The exact functions
of f1(xcn,xca) and f2(xcn,xca), and the functions approx-
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Algorithm 2 MiSACO
1: [SA, DB, FEs] ← Initialization;
2: while FEs < MaxFEs do
3: OP ← ACOMV (SA);
4: Xsel ← MSA Selection(OP);
5: Xls ← SA LocalSearch(DB);
6: X= Xsel ∪Xls;
7: [Y, FEs] ← Evaluation(X,FEs);
8: DB= DB∪{X,Y};
9: SA ← Update(SA, X, Y);

10: end while
11: Output the best solution xbest .

imated by RBF are exhibited in Fig. 3. For convenience,
when approximating f2(xcn,xca), we only exhibit the
functions when xca = (a,a,a,a,a,a,a,a,a) and xca =
(b,c,b,c,b,c,b,c,b). It can be observed that RBF can
exactly approximate f1(xcn,xca). However, with respect
to f2(xcn,xca), the prediction error of RBF is large, thus
may misleading the optimization process.

Based on the above considerations, we employ both LSBT
and RBF to assist EAs to handle EOPCCVs. By doing this,
on one hand, LSBT ensures that a solution with good quality
can be selected from the offspring solutions generated by
EAs; on the other hand, the use of RBF makes EAs have a
chance to select the most promising solution, thus improving
the efficiency of evolution.

IV. PROPOSED METHOD

A. General Framework

The framework of MiSACO is given in Algorithm 2. The
symbols in Algorithm 2 are explained as follows:
• DB: the database containing the information of all the

evaluated solutions, i.e., the continuous variables, the
categorical variables, and the objective function values
of all the evaluated solutions.

• SA: the solution archive used in ACOMV .
• FEs: the number of FEs.
• OP: the set containing the offspring solutions generated

by ACOMV .
• Xsel : the set containing the solutions selected by the

multi-surrogate-assisted selection.
• Xls: the set containing the solution founded by the

surrogate-assisted local search.
• X: the set containing the solutions in Xsel and Xls.
• Y: the set containing the original expensive objective

function values of the solutions in X.
The process of Algorithm 2 can be divided into the

following five steps:
• Initialization (Line 1): this step produces K initial solu-

tions via Latin hypercube design and puts them into SA.
Subsequently, it evaluates them by the original expensive
objective function and initializes DB and FEs.

• Generating the offspring (Line 3): In this step, M
offspring solutions are generated based on ACOMV and
reserved into OP.

Algorithm 3 MSA Selection(OP)

1: Construct a RBF surrogate model (denoted as f̂RBF ) and a
LSBT surrogate model (denoted as f̂LSBT ) by utilizing all
the solutions in DB to approximate the objective function
of an EOPCCV;

2: Evaluate the solutions in OP with f̂RBF and select the best
one, denoted as x1;

3: OP=OP\x1;
4: Evaluate the solutions in OP with f̂LSBT and select the

best one, denoted as x2;
5: OP=OP\x2;
6: Select a solution from OP randomly, denoted as x3;
7: Xsel = {x1,x2,x3};
8: Output Xsel .

• Multi-Surrogate-Assisted Selection (Line 4): This step
selects three solutions from OP according to the multi-
surrogate-assisted selection, and puts them into Xsel .

• Surrogate-Assisted Local Search (Line 5): In this step,
the surrogate-assisted local search is used to enhance the
quality of the best solution in DB by further optimizing its
continuous variables, and the obtained solution is reserved
into Xls.

• Updating DB and SA (Lines 6-9): In this step, the
solutions in Xsel and Xls are evaluated by the original
expensive objective function. The information of them is
kept in DB. Then, based on these solutions, SA is updated
according to the elitist selection.

The unique characteristic of MiSACO lies in its
multi-surrogate-assisted selection and surrogate-assisted local
search. Next, we explain these two strategies respectively.

B. Multi-Surrogate-Assisted Selection

The process of the multi-surrogate-assisted selection is
described in Algorithm 3, in which three selection operators
(i.e., the RBF-based selection, the LSBT-based selection, and
the random selection) are adopted to select three promising so-
lutions from OP. Firstly, we construct a RBF surrogate model
(denoted as f̂RBF ) and a LSBT surrogate model (denoted as
f̂LSBT ) based on DB, and evaluate all the solutions in OP by
using f̂RBF and f̂LSBT , respectively. Then, the solution with the
best f̂RBF value is selected from OP. We record this solution
as x1, and remove it from OP. Subsequently, the solution with
the best f̂LSBT value, denoted as x2, is selected and removed
from OP. Next, a solution, denoted as x3, is randomly selected
from OP. Finally, these three solutions (i.e., x1, x2, and x3)
are reserved into Xsel .

As mentioned in Section III, when RBF or LSBT is used
to approximate the objective function of an EOPCCV, the
accuracy cannot be guaranteed. If the accuracy is poor, some
solutions with good original objective function values may
have bad predicted values. Under this condition, they may be
missed. To alleviate this issue, we randomly select a solution
from OP without depending on any surrogate model. An
example in Fig. 4 is used to illustrate this issue: f3(xcn,xca)
with n1 = 1, n2 = 1, xcn ∈ [−10,10], and xca ∈ {a,b}. It is
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Fig. 4. Approximate f3(xcn,xca) by RBF and LSBT: (a) The landscapes
of the exact function of f3(xcn,xca) and the function approximated by RBF
when xca = a. (b) The landscapes of the exact function of f3(xcn,xca) and
the function approximated by RBF when xca = a if B is selected. (c) The
landscapes of the exact function of f3(xcn,xca) and the function approximated
by LSBT when xca = a. (d) The landscapes of the exact function of f3(xcn,xca)
and the function approximated by LSBT when xca = a if B is selected.

approximated by RBF and LSBT, respectively. For conve-
nience, we only exhibit the landscapes of the exact function
of f3(xcn,xca) and the function approximated by RBF/LSBT
when xca = a. Our aim is to select a better solution from
solutions A and B. Note that the original objective function
value of B is better than that of A. However, both RBF and
LSBT provide a better predicted value for A, which means
A will be selected. In contrast, if the random selection is
employed, we still have a chance to select B, thus improving
the accuracy of the surrogate models as shown in Fig. 4(b)
and Fig. 4(d) .

C. Surrogate-Assisted Local Search

Consider that the local search strategy can effectively im-
prove the convergence speed [30], [49], in this paper, we also
design surrogate-assisted local search to accelerate the con-
vergence. We incorporate RBF into SQP to further optimize
the continuous variables of the current best solution in DB
(denoted as xbest = [xcn

best ,x
ca
best ]). The implementation of the

surrogate-assisted local search is explained as follows.
Firstly, we count the number of the solutions that have the

same categorical variables with xbest (denoted as Nls). If Nls
is bigger than a threshold (denoted as Nmin), these solutions
are used to construct a RBF surrogate model (denoted as f̂sub)
for only continuous variables. Then, SQP is used to solve the
following optimization problem:

min : f̂sub(xcn)

s.t. Lcn
i ≤ xcn

i ≤Ucn
i

(18)

Based on the continuous vector obtained by SQP (denoted as

xcn
ls ), a new solution is produced: xls = [xcn

ls ,x
ca
best ]. Finally, xls

is reserved into Xls.
Next, we would like to give two comments on the surrogate-

assisted local search:

• Commonly, it is hard to guarantee the accuracy of RBF
if Nls is too small. Therefore, a threshold is adopted to
ensure the size of the data points.

• Since it is almost impossible that many solutions have
the same continuous vector, it is very hard to construct
a LSBT surrogate model for only categorical variables.
Therefore, we do not improve the categorical variables.

V. EXPERIMENTAL STUDIES

A. Test Problems and Parameters Settings

1) Artificial Test Problems: The first set of test problems
contains 30 artificial test problems (i.e., F1-F30). They are
originated from five classical continuous functions: Sphere
function, Rastrigin function, Alckey function, Elliposoid func-
tion, and Griewank function. Their characteristics are listed in
Table S-XV of the supplementary files. According to their
characteristics, we roughly classify them into three types:

• Type 1: most of the variables are continuous variables
• Type 2: most of the variables are categorical variables
• Type 3: the number of continuous variables is similar to

that of categorical variables

Obviously, F1-F10 are type-1 artificial test problems, F11-F20
are type-2 artificial test problems, and F21-F30 are type-3
artificial test problems.

2) Capacitated Facility Location Problems: Six capac-
itated facility location problems (i.e., CFLP1-CFLP6) are
constructed in this paper. The capacitated facility location
problems can be formulated as below:

min : f (x,y) = ∑
i∈I

Fi,yiyi +∑
i∈I

∑
j∈J

Qi, jxi, j

∑
i∈I

xi, j = D j, i ∈ I, j ∈ J

∑
j∈J

xi, j ≤Cyiyi, i ∈ I, j ∈ J

yi ∈ S, i ∈ I

xi, j ≥ 0, i ∈ I, j ∈ J

where I = {1, · · · ,m} represents a set of potential facility sites,
J = {1, · · · ,n} represents a set of customers, S = {0, · · · ,s}
represents a set of facility types, Cr(r ∈ S) represents the
capacity of the rth type of facility, Fi,r represents the cost
of operating the rth type of facility at site i, D j represents the
total demand of the jth customer, Qi, j represents the cost of
serving a unit of demand for the jth customer from the ith
facility, xi, j denotes the jth customer’s demand from the ith
facility, and yi represents which type of facility is operated at
site i (if yi = 0, no facility will be operated at site i).

3) Dubins Traveling Salesperson Problems: We also con-
struct six Dubins traveling salesperson problems (i.e., DTSP1-
DTSP6) in this paper. The Dubins travelling salesperson prob-
lems are related to the motion planning and task assignment
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TABLE I
PARAMETER SETTINGS OF MISACO

Parameter Value
Size of OP: M 100
Influence of the best-quality solutions in ACOMV : q 0.05099
Width of the search in ACOMV : ξ 0.6795
Archive size in ACOMV : K 60
Maximum number of function evolutions: MaxFEs 600
Threshold in the surrogate-assisted local search: Nmin 5∗n1

for uninhabited vehicles. They can be formulated as follows:

min D(r,x) =
n−1

∑
i=1

d(xri ,xri+1)+d(xrn ,xr1)

s.t. ri 6= r j, if i 6= j

ri ∈ {1, · · · ,n}
0≤ xi ≤ 2π

i ∈ {1, . . . ,n}
j ∈ {1, . . . ,n}

where r = (r1, · · · ,rn) represents the sequence of waypoints
needed to pass through, ri ∈ {1, . . . ,n} represents the ith way-
point, n represents the number of waypoints, x = {x1, · · · ,xn}
represents the heading of the uninhabited vehicle at the ith
waypoint, and d(·, ·) represents the shortest Dubins path be-
tween two waypoints. For d(·, ·), the shortest Dubins path
between two waypoints must be one of the following six
patterns: {RSL, LSR, RSR, LSL, RLR, LRL}, in which L, R,
and S represent turning left with the minimal turning radius,
turning right with the minimal turning radius, and moving
along a straight line, respectively.

The details of these three sets of test problems are given
in Section S-VI of the supplementary file. For each test prob-
lem, 20 independent runs were implemented. The parameter
settings of MiSACO are listed in Table I. The settings of q
and M were consistent with the original paper [10]. For each
test problem, 20 independent runs were implemented.

To evaluate the performance of different algorithms, the
following two indicators were calculated:
• AOFV: The average objective function value of the best

solutions provided by an algorithm over 20 independent
runs.

• ASFEs: The average FEs consumed by an algorithm to
successfully obtain the optimal solution of a test problem
over 20 independent runs. Note that, a run is consid-
ered as successful if the following condition is satisfied:
| f (xbest)− f (x∗)| ≤ 1, where x∗ is the best known solution
and xbest is the best solution provided by an algorithm.
For an unsuccessful run, its consumed FEs was set to
MaxFEs.

AOFV and ASFEs measure the convergence accuracy and
efficiency of an algorithm, respectively. Since the optimal
solutions of CFLP1-CFLP6 and DTSP1-DTSP6 are unknown,
for these 12 problems, we did not calculate their ASFEs values.
In the experimental studies, the Wilcoxon’s rank-sum test at
a 0.05 significance level was implemented between MiSACO
and each of its competitors to test the statistical significance. In

the following tables, “+”, “−”, and “≈” denote that MiSACO
performs better than, worse than, and similar to its competitor,
respectively.

B. Comparison with ACOMV

In essence, MiSACO is an algorithm which combines surro-
gate models with ACOMV for solving EOPCCVs. One may be
interested in the performance difference between MiSACO and
ACOMV . To this end, we compared MiSACO with ACOMV . To
clearly exhibit their performance difference, we also calculated
a performance metric called acceleration rate based on their
ASFEs values:

AR =
ASFEsACOMV −ASFEsMiSACO

ASFEsACOMV

×100% (19)

where ASFEsACOMV and ASFEsMiSACO are the ASFEs values
of ACOMV and MiSACO, respectively. Note that, if any
of these two algorithms fails to find any optimal solution
over 20 independent runs, the ASFEs value will be equal to
MaxFEs. Under this condition, it is meaningless to calculate
the acceleration rate. When this happens, the corresponding
AR value is denoted as “NA”. All the results are exhibited in
Table II, Table III, Table S-I of the supplementary file, and
Table S-II of the supplementary file.

The detailed discussions about the results are given as
follows.

1) Results on the Artificial Test Problems:
• In terms of AOFV, it can be observed from Table II

that MiSACO can obtain better values than ACOMV on
all the 30 artificial test problems. Since F2, F7, F12,
F17, F22, and F27 originate from Rastrigin function,
which is a function with a complex and multimodal
landscape, it is very likely to build an inaccurate surrogate
model. Therefore, MiSACO cannot find solutions with
high accuracies when solving these six artificial test
problems. However, MiSACO can still provide smaller
AOFV values than ACOMV on them. From the Wilcoxon’s
rank-sum test, MiSACO surpasses ACOMV on all the 30
artificial test problems in terms of AOFV.

• As far as ASFEs is concerned, we can observe from
Table II that the values provided by MiSACO are better
than those resulting from ACOMV on all the 30 artificial
test problems except F2, F7, F12, F17, F22, and F27.
When solving these six artificial test problems, both
MiSACO and ACOMV cannot successfully obtain the
optimal solutions in any run. Therefore, their ASFEs
values are equal to MaxFEs. According to the Wilcoxon’s
rank-sum test, MiSACO beats ACOMV on 24 artificial test
problems in terms of ASFEs. However, ACOMV cannot
outperform MiSACO on any artificial test problem.

• From Table III, MiSACO converges at least 30% faster
than ACOMV toward the optimal solutions on all the 30
artificial test problems except F2, F7, F12, F16, F17, F18,
F20, F22, F27, and F28. On average, MiSACO reduces
43.98% ASFEs to reach the optimal solutions against
ACOMV . Specifically, MiSACO saves 52.49%, 34.64%,
and 44.82% ASFEs on solving type-1, type-2, and type-3
artificial test problems, respectively.
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TABLE II
RESULTS OF ACOMV AND MISACO OVER 20 INDEPENDENT RUNS ON THE 30 ARTIFICIAL TEST PROBLEMS. THE WILCOXON’S RANK-SUM TEST AT A

0.05 SIGNIFICANCE LEVEL WAS PERFORMED BETWEEN ACOMV AND MISACO.

Problem ACOMV MiSACO ACOMV MiSACO
AOFV ± Std Dev AOFV ± Std Dev ASFEs ± Std Dev ASFEs ± Std Dev

F1 4.12E+00 ± 2.61E+00 + 6.21E−08 ± 2.24E−08 600.00 ± 0.00 + 249.95 ± 36.49
F2 6.04E+01 ± 1.22E+01 + 2.59E+01 ± 1.19E+01 600.00 ± 0.00 ≈ 600.00 ± 0.00
F3 2.04E+00 ± 6.16E−01 + 3.04E−01 ± 7.50E−01 600.00 ± 0.00 + 375.85 ± 101.67
F4 2.63E−01 ± 2.13E−01 + 4.51E−09 ± 2.25E−09 457.90 ± 71.55 + 159.10 ± 25.60

Type 1 F5 1.01E+00 ± 1.26E−01 + 2.39E−01 ± 2.30E−01 587.95 ± 30.73 + 208.90 ± 37.03
F6 6.43E+00 ± 6.28E+00 + 5.74E−08 ± 2.50E−08 593.60 ± 19.08 + 269.40 ± 56.18
F7 5.53E+01 ± 7.09E+00 + 2.40E+01 ± 1.22E+01 600.00 ± 0.00 ≈ 600.00 ± 0.00
F8 1.79E+00 ± 7.11E−01 + 7.27E−02 ± 2.83E−01 597.55 ± 8.89 + 391.60 ± 63.22
F9 3.38E−01 ± 2.98E−01 + 2.59E−03 ± 8.51E−03 469.25 ± 77.56 + 231.15 ± 65.29
F10 1.08E+00 ± 1.10E−01 + 2.75E−01 ± 3.01E−01 595.60 ± 16.49 + 270.20 ± 123.87
F11 2.39E+00 ± 4.59E+00 + 9.43E−08 ± 1.06E−07 533.55 ± 81.34 + 285.75 ± 73.21
F12 5.19E+01 ± 2.00E+01 + 4.71E+01 ± 1.73E+01 600.00 ± 0.00 ≈ 600.00 ± 0.00
F13 1.15E+00 ± 9.63E−01 + 4.19E−01 ± 1.29E+00 546.75 ± 96.96 + 307.25 ± 120.94
F14 9.10E−03 ± 8.17E−03 + 2.04E−09 ± 2.03E−09 354.25 ± 80.54 + 195.45 ± 39.24

Type 2 F15 7.80E−01 ± 3.02E−01 + 2.82E−07 ± 3.27E−07 503.85 ± 86.41 + 244.50 ± 44.50
F16 2.82E+01 ± 4.67E+01 + 1.27E+00 ± 5.66E+00 564.75 ± 62.57 + 409.65 ± 100.36
F17 6.36E+01 ± 1.30E+01 + 4.50E+01 ± 1.61E+01 600.00 ± 0.00 ≈ 600.00 ± 0.00
F18 1.71E+00 ± 1.43E+00 + 1.55E+00 ± 1.96E+00 553.00 ± 70.48 + 538.25 ± 93.69
F19 8.71E−01 ± 6.51E−01 + 2.71E−01 ± 7.16E−01 521.60 ± 85.39 + 356.45 ± 122.27
F20 1.65E+00 ± 1.08E+00 + 1.05E−01 ± 3.23E−01 564.10 ± 64.50 + 401.70 ± 109.14
F21 7.08E+00 ± 4.92E+00 + 7.60E−08 ± 5.64E−08 599.75 ± 1.12 + 279.55 ± 36.60
F22 6.20E+01 ± 1.33E+01 + 4.78E+01 ± 1.32E+01 600.00 ± 0.00 ≈ 600.00 ± 0.00
F23 2.43E+00 ± 8.52E−01 + 1.52E−01 ± 6.77E−01 597.35 ± 11.85 + 363.15 ± 76.32
F24 3.09E−01 ± 3.10E−01 + 9.90E−07 ± 4.42E−06 444.45 ± 88.68 + 185.15 ± 37.79

Type 3 F25 1.07E+00 ± 6.24E−02 + 1.24E−01 ± 2.34E−01 598.50 ± 6.71 + 229.45 ± 32.75
F26 2.76E+01 ± 7.30E+01 + 9.70E−08 ± 8.28E−08 600.00 ± 0.00 + 330.80 ± 62.07
F27 6.46E+01 ± 8.30E+00 + 4.15E+01 ± 1.78E+01 600.00 ± 0.00 ≈ 600.00 ± 0.00
F28 1.77E+00 ± 1.07E+00 + 9.76E−01 ± 1.46E+00 589.85 ± 18.96 + 475.15 ± 117.83
F29 3.74E−01 ± 3.27E−01 + 3.74E−02 ± 1.44E−01 459.60 ± 84.79 + 273.10 ± 83.76
F30 1.16E+00 ± 2.41E−01 + 4.92E−01 ± 6.18E−01 600.00 ± 0.00 + 353.50 ± 118.11

+/−/≈ 30/0/0 24/0/6

TABLE III
ACCELERATION RATE OF MISACO AGAINST ACOMV ON THE 30

ARTIFICIAL TEST PROBLEMS.

Type 1 Type 2 Type 3
Problem AR Problem AR Problem AR

F1 58.34% F11 46.44% F21 53.39%
F2 NA F12 NA F22 NA
F3 37.36% F13 43.80% F23 39.21%
F4 65.25% F14 44.83% F24 58.34%
F5 64.47% F15 51.47% F25 61.66%
F6 54.62% F16 27.46% F26 44.87%
F7 NA F17 NA F27 NA
F8 34.47% F18 2.67% F28 19.45%
F9 50.74% F19 31.66% F29 40.58%

F10 54.63% F20 28.79% F30 41.08%
Average AR 43.98%

2) Results on the Capacitated Facility Location Problems:

• From Table S-I, for all the six capacitated facility location
problems, MiSACO obtains better AOFV values than
ACOMV . According to the Wilcoxon’s rank-sum test,
MiSACO beats ACOMV on all these six problems.

3) Results on the Dubins Traveling Salesman Problems:

• From Table S-II, for all the six Dubins traveling sales-
man problems, MiSACO provides better AOFV values.
According to the Wilcoxon’s rank-sum test, MiSACO
performs better than ACOMV on all these six problems.

From the above discussion, it can be concluded that the pro-

posed multi-surrogate-assisted selection and surrogate-assisted
local search can significantly enhance the convergence accu-
racy and efficiency of ACOMV .

C. Comparison with Other State-of-the-Art SAEAs

To further test the performance of MiSACO, we com-
pared it with CAL-SAPSO [49], EGO-Hamming [66], EGO-
Gower [63], and BOA-RF [67]. CAL-SAPSO is a SAEA for
continuous EOPs. To make it have the capability to deal with
categorical variables in EOPCCVs, we encoded each element
in the candidate categorical set of each categorical variable
into an ordered integer. The rounding operator was used in
the optimization process. EGO-Hamming and EGO-Gower
are two extended versions of efficient global optimization
(EGO) [68]. By redefining the distance between two different
categorical vectors, EGO-Hamming and EGO-Gower are able
to solve EOPCCVs directly. In these two algorithms, Hamming
distance and Gower distance were employed to measure the
difference between two different categorical vectors, respec-
tively. BOA-RF is a variant of Bayesian optimization [69].
Inspired by the sequential model-based algorithm configura-
tion [67], we employed RF as the surrogate model and used the
expected improvement as the acquisition function in BOA-RF.

The results provided by CAL-SAPSO, EGO-Hamming,
EGO-Gower, BOA-RF, and MiSACO are recorded in Table S-
III–Table S-VI of the supplementary file. The detailed discus-
sions are given below:
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1) Results on the Artificial Test Problems:

• From Table S-III, MiSACO can provide smaller AOFV
values than CAL-SAPSO on all the 30 artificial test
problems. Moreover, each AOFV value of MiSACO is
at least one order smaller than the corresponding AOFV
value of CAL-SAPSO on all the 30 artificial test problems
except F2, F7, F12, F17, F22, and F27. From Table S-
IV, MiSACO provides smaller ASFEs values than CAL-
SAPSO on 24 artificial test problems (F1, F3-F6, F8-
F11, F13-F16, F18-F21, F23-F26, and F28-F30). Thus,
MiSACO can find the optimal solutions faster on these
24 artificial test problems. According to the Wilcoxon’s
rank-sum test, MiSACO surpasses CAL-SAPSO on 29
artificial test problems in terms of AOFV and 24 artificial
test problems in terms of ASFEs, respectively.

• Compared with EGO-Hamming, MiSACO provides bet-
ter AOFV values and better ASFEs values on 29 artificial
test problems (F1-F11 and F13-F30) and 24 artificial
test problems (F1, F3-F6, F8-F11, F13-F16, F18-F21,
F23-F26, and F28-F30), respectively. According to the
Wilcoxon’s rank-sum test, MiSACO has an edge over
EGO-Hamming on 27 artificial test problems in terms
of AOFV and 24 artificial test problems in terms of
ASFEs, respectively. However, EGO-Hamming cannot
beat MiSACO on any artificial test problem in terms of
any performance indicator.

• Compared with MiSACO, EGO-Gower provides worse
AOFV values on 27 artificial test problems and better
AOFV values on only three artificial test problems (F12,
F17, and F22). With respect to ASFEs, EGO-Gower is
worse than MiSACO on 24 artificial test problems (F1,
F3-F6, F8-F11, F13-F16, F18-F21, F23-F26, and F28-
F30), and cannot provide any better value on any artificial
test problem. According to the Wilcoxon’s rank-sum test,
MiSACO beats EGO-Gower on 26 artificial test problems
in terms of AOFV and 24 artificial test problems in terms
of ASFEs, respectively.

• BOA-RF provides worse AOFV and ASFEs values than
MiSACO on 30 and 24 (i.e., F1, F3-F6, F8-F11, F13-F16,
F18-F21, F23-F26, and F27-F30) artificial test problems,
respectively. Meanwhile, with respect to both AOFV and
ASFEs, MiSACO does not provide any worse value than
BOA-RF on any artificial test problem. According to the
Wilcoxon’s rank-sum test, MiSACO beats BOA-RF on 30
artificial test problems in terms of AOFV and 24 artificial
test problems in terms of ASFEs, respectively. Moreover,
MiSACO does not lose on any artificial test problem.

2) Results on the Capacitated Facility Location Problems:

• From Table S-V, MiSACO obtains better AOFV values
than CAL-SAPSO, EGO-Hamming, and BOA-RF on all
the six capacitated facility location problems. Moreover,
MiSACO is better than EGO-Gower on five problems.
According to the Wilcoxon’s rank-sum test, MiSACO
beats CAL-SAPSO, EGO-Hamming, EGO-Gower, and
BOA-RF on six, six, three, and five problems, respec-
tively.

TABLE IV
RESULTS ABOUT THE STRUCTURES OF THE STIFFENED PLATES
REPORTED IN [70] AND OBTAINED BY EGO-GOWER, GA, AND

MISACO.

Status Reported in [70] EGO-Gower GA MiSACO
D 8.020 mm 6.828 mm 7.880 mm 6.489 mm

MASS 0.124 kg 0.124 kg 0.123 kg 0.124 kg

3) Results on the Dubins Traveling Salesman Problems:

• From Table S-VI, MiSACO is better than CAL-SAPSO,
EGO-Hamming, EGO-Gower, and BOA-RF on all the six
Dubins traveling salesman problems in terms of AOFV.
According to the Wilcoxon’s rank-sum test, MiSACO
beats the four competitors on all the six problems.

The above results demonstrate that, overall, the perfor-
mance of MiSACO is better than that of the four state-of-
the-art competitors in terms of both AOFV and ASFEs. The
superiority of MiSACO against the four competitors can be
attributed to the fact that these four competitors mainly extend
surrogate models for continuous functions, thus having limited
capabilities to cope with EOPCCVs.

VI. REAL-WORLD APPLICATIONS

In this section, MiSACO was applied to solve two EOPC-
CVs in the real world, i.e., the topographical design of
stiffened plates against blast loading, and the lightweight and
crashworthiness design for the side body of an automobile.

A. Topographical Design of Stiffened Plates Against Blast
Loading

At present, the explosion caused by accidents and terrorist
attacks has attracted more and more attention. In order to
protect the personnel and facilities from explosion damage,
research on blast-resistant structures is of great significance.
As a kind of structure that can effectively deal with blast
loading, stiffened plates have been widely studied [71], [72].
Recently, Liu et al. [70] designed the topographical structures
of two new kinds of stiffened plates. Based on their research
work, we tried to assign different materials for different
stiffeners, thus further improving the structural resistance of
the stiffened plates against blast loading.

As shown in Fig. S-1(a) in Section S-V of the supplementary
file, one kind of the stiffened plate in [70] is considered in
this paper. The front plate of the stiffened plate is a square
shape with L× L = 250mm× 250mm, and its thickness is 1
mm. The height of each stiffener is H = 10 mm. Fig. S-
1(b) depicts the variable distribution of this structure. We
can observe that this structure is 1/8 symmetric; hence, the
thicknesses and materials of the 13 stiffeners are considered
as the design variables, i.e., xthick

1 , . . . ,xthick
13 and xmat

1 , . . . ,xmat
13 .

Same with [70], the maximum deflection of the center point of
the plate (denoted as D) is employed to assess the structural
resistance, and the mass of the plate (denoted as MASS) is
constrained within a certain value (denoted as M∗). Thus, this
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Fig. 5. Side crash FEA model considered in this paper. In this model, Honda
Accord was employed as the baseline.

design problem can be described as follows:

min : D(xthick,xmat)

s.t. MASS(xthick,xmat)≤M∗

xthick = (xthick
1 , . . . ,xthick

13 )

xmat = (xmat
1 , . . . ,xmat

13 )

xthick
1 , . . . ,xthick

13 ∈ [0,2]
xmat

1 , . . . ,xmat
13 ∈ {MAT 1, . . . ,MAT 5}

(20)

where MAT 1, . . . ,MAT 5 represent the five categories of steel:
mild steel, IF300/420, DP350/600, IF260/400, and DP500/800.
The value of M∗ was set to 0.09705kg.

MiSACO was used to optimize the structure of the stiffened
plate, and MaxFEs was set to 800. For comparison, we also
employed EGO-Gower and GA to optimize the structure.
Since the value of MASS can be calculated directly according
to the density of materials and the thicknesses of stiffeners,
the constraint in (20) is not an expensive function. Thus, in
these three algorithms, the feasibility rule [73]2 was used to
deal with the constraint. Table IV summarizes the values of D
and MASS of the structures reported in [70] and presented by
the three algorithms. Moreover, the topographical structures of
the four corresponding stiffened plates are shown in Fig. S-2
in Section S-V of the supplementary file.

From Table IV, compared with the structure reported
in [70], the structure provided by MiSACO improves the D
value by 19.09%. Meanwhile, these two structures have similar
structure mass. This indicates that assigning different materials
for different stiffeners can effectively improve the structural
resistance. Compared with the structures provided by EGO-
Gower and GA, the structure resulting from MiSACO has
the best D value. Moreover, Fig. S-3 plots the convergence
curves derived from EGO-Gower, GA, and MiSACO. It can
be observed from Fig. S-3 that MiSACO can provide the best
convergence performance.

B. Lightweight and Crashworthiness Design for the Side Body
of An Automobile

In the field of automotive engineering, it is desirable to
design an automobile body with low mass and high crashwor-

2 The feasibility rule compares two solutions as follows: 1) Between two
infeasible solutions, the one with smaller degree of constraint violation is
preferred, 2) If one solution is infeasible and the other is feasible, the feasible
one is preferred, and 3) Between two feasible solutions, the one with a better
objective function value is preferred.

(x1
thick, x1

mat)

(x2
thick, x2

mat)

(x3
thick, x3

mat)

(x4
thick, x4

mat)

(x5
thick, x5

mat)

Fig. 6. Five thin-walled plate parts which need to be optimized

thiness, thus reducing the fuel consumption and improving the
safety of the automobile. In this paper, we focus on the design
of the side body of an automobile.

The side crash FEA model is shown in Fig. 5. The FEA
model was established according to Honda Accord, and the
details about this model can be found from the technical report
provided by Singh et al. [15]. We selected five thin-walled
plate parts from the side body of the automobile, and tried to
redesign their thicknesses and materials. These five thin-walled
plate parts are shown in Fig. 6. As it is very time-consuming
to perform a side crash simulation by using the FEA model
described in Fig. 5, in this paper we used a simplified FEA
model, as shown in Fig. S-4. It contains B-pillar and a part
of the side door of the original automobile. On our computer,
this simplified FEA model took about 50 minutes to execute
a run.

In this paper, the following three indicators were used to
assess the structure:
• The maximum invasion at the middle of B-pillar: Reduc-

ing the maximum invasion at the middle of B-pillar can
improve the safety of passengers in the automobile. We
denote the maximum invasion at the middle of B-pillar
as FI.

• The maximum invasion velocity at the middle of B-pillar:
Commonly, a small maximum invasion velocity at the
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TABLE V
RESULTS OF THE ORIGINAL DESIGN AND THE DESIGN PROVIDED BY

MISACO.

Status Original Design MiSACO
FI 240.04 mm 177.26 mm
FV 9674.7 mm/s 9659.7 mm/s

MASS 0.0252 t 0.0251 t

middle of B-pillar can reduce the probability of passenger
injury. In this paper, the maximum invasion velocity at the
middle of B-pillar is denoted as FV .

• The mass of the side body: This indicator is to evaluate
the lightweight level of the automobile. We denote this
indicator as MASS.

According to the simplified FEA model, the values of
FI, FV , and MASS of the original design are 240.04mm,
9674.7mm/s, and 0.0252t, respectively3. Our aim is to reduce
the FI value without increasing the FV and MASS values.
Overall, this design can be described as follows:

min : FI(xthick,xmat)

s.t. FV (xthick,xmat)≤ 9674.7

MASS(xthick,xmat)≤ 0.0252

xthick = (xthick
1 , . . . ,xthick

5 )

xmat = (xmat
1 , . . . ,xmat

5 )

xthick
1 , . . . ,xthick

5 ∈ [0.2,2]
xmat

1 , . . . ,xmat
5 ∈ {MAT 1, . . . ,MAT 6}

(21)

where xthick
1 , . . . ,xthick

5 are the thickness variables of the five
thin-walled plate parts, and xmat

1 , . . . ,xmat
5 are the material

variables of the five thin-walled plate parts. There are six kinds
of materials for each thin-walled plate part: MAT 1, . . . ,MAT 6,
which represent six kinds of steel: DP350/600, DP500/800,
HSLA350/450, IF140/270, IF260/410, and IF300/420.

We consumed 500 FEs to optimize the side body by
using MiSACO. The whole optimization process took about
(50∗500)/(60∗24)≈ 17.36 days. The feasibility rule [73] was
used to deal with the constraints in (21). For FI(xthick,xmat)
and FV (xthick,xmat), the surrogate models were constructed
independently. Since MASS(xthick,xmat) can be calculated di-
rectly, we did not establish any surrogate model for it. The
values of FI, FV , and MASS of the original design and MiS-
ACO are listed in Table V. Compared with the original design,
MiSACO improves the FI value by 26.16%. At the same time,
the FV and MASS values of the original design are similar to
those provided by MiSACO. It means that the crashworthiness
of the side body of the automobile can be greatly enhanced
without adding the mass of the structure. Thus, the safety of
the automobile can be significantly improved.

The above experiments reveal that MiSACO could be an
effective tool to solve EOPCCVs in the real world.

3In our experiment, LS-DYNA was employed as the simulation solver, and
its version was “ls971s R4.2”. The whole simulation process was executed in
“Windows 7 64-bit Ultimate”.

VII. CONCLUSION

Many real-world applications can be modeled as EOPCCVs.
However, few attempts have been made on solving EOPCCVs.
In this paper, we proposed a multi-surrogate-assisted ACO,
called MiSACO, to solve EOPCCVs. MiSACO contained two
main strategies: the multi-surrogate-assisted selection and the
surrogate-assisted local search. In the former, three selection
operators (i.e., the RBF-based selection, the LSBT-based se-
lection, and the random selection) were employed. The aim
of them is to help MiSACO to deal with different types of
EOPCCVs robustly and prevent MiSACO from being misled
by inaccurate surrogate models. In the latter, we focused on
improving the quality of the current best solution by further
optimizing its continuous variables. This strategy was imple-
mented by constructing a RBF for only continuous variables
and optimizing this RBF by using SQP. From the comparative
studies on the three sets of test problems, the effectiveness
of MiSACO was verified. We also applied MiSACO to solve
two EOPCCVs in the real world: the topographical design of
stiffened plates against blast loading, and the lightweight and
crashworthiness design for the side body of an automobile.
The results showed that MiSACO can effectively solve them.

In the future, we will apply MiSACO to solve large-scale
EOPCCVs (e.g., increase the number of categorical variables
and/or the size of candidate categorical sets). When the scale
of an EOPCCV becomes larger, it is not easy to construct
an accurate surrogate model. Some techniques such as di-
mension reduction methods will be further incorporated into
MiSACO to deal with large-scale EOPCCVs. In addition, in
the surrogate-assisted local search, if the best solution does not
change for several generations, it will be optimized repeatedly;
thus, the computational resources may be wasted. In the future,
we will try to address this limitation.
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Supplementary File for “Multi-Surrogate-Assisted
Ant Colony Optimization for Expensive

Optimization Problems with Continuous and
Categorical Variables”

S-I. PROOF OF PROPOSITIONS

A. Proof of Proposition 1

The upper bound of RBF’s predicted error can be estimated as:

| f (xcn,xca)− f̂RBF(xcn,xca)|
=| f (xcn,xca)− f (xcn

∗ ,x
ca
∗ )+ f̂RBF(xcn

∗ ,x
ca
∗ )− f̂RBF(xcn,xca)|

≤| f (xcn,xca)− f (xcn
∗ ,x

ca
∗ )|+ | f̂RBF(xcn

∗ ,x
ca
∗ )− f̂RBF(xcn,xca)|

≤(L f +Lr) ·dis((xcn,xca),(xcn
∗ ,x

ca
∗ ))

where the first equality holds by Assumption 2, the second inequality is the triangle inequality, and the third inequality holds
by Assumption 1.

Similarly, the lower bound of RBF’s predicted error can be estimated as:

| f (xcn,xca)− f̂RBF(xcn,xca)|
=| f (xcn,xca)− f (xcn

∗ ,x
ca
∗ )+ f̂RBF(xcn

∗ ,x
ca
∗ )− f̂RBF(xcn,xca)|

≥
∣∣| f (xcn,xca)− f (xcn

∗ ,x
ca
∗ )|− | f̂RBF(xcn

∗ ,x
ca
∗ )− f̂RBF(xcn,xca)|

∣∣
Let F =

∣∣| f (xcn,xca)− f (xcn
∗ ,xca

∗ )|− | f̂RBF(xcn
∗ ,xca

∗ )− f̂RBF(xcn,xca)|
∣∣. According to Assumption 1, for F , we have:

0≤ F ≤max(L f −
1
Lr

,Lr−
1

L f
) ·dis((xcn,xca),(xcn

∗ ,x
ca
∗ ))

thus

| f (xcn,xca)− f̂RBF(xcn,xca)| ≥ 0

B. Proof of Proposition 2

The upper bound of LSBT’s predicted error can be estimated as:

| f (xcn,xca)− f̂LSBT (xcn,xca)|
=| f (xcn,xca)− f (xcn

∗ ,x
ca
∗ )+ f̂LSBT (xcn

∗ ,x
ca
∗ )− f̂LSBT (xcn,xca)|

=| f (xcn,xca)− f (xcn
∗ ,x

ca
∗ )|

≤L f ·dis((xcn,xca),(xcn
∗ ,x

ca
∗ ))

where the first equality holds by Assumption 2, the second equality holds by Assumption 3, and the third inequality holds by
Assumption 1.

Similarly, the lower bound of LSBT’s predicted error can be estimated as:

| f (xcn,xca)− f̂LSBT (xcn,xca)| ≥ 1
L f
·dis((xcn,xca),(xcn

∗ ,x
ca
∗ ))
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S-II. DISCUSSIONS

A. Effectiveness of the Three Selection Operators

To investigate the effectiveness of the three selection operators (i.e., the RBF-based selection, the LSBT-based selection,
and the random selection), we designed three variants of MiSACO, called MiSACO-LSBT-Rand, MiSACO-RBF-Rand, and
MiSACO-LSBT-RBF. In MiSACO-LSBT-Rand, the RBF-based selection was not used; in MiSACO-RBF-Rand, the LSBT-
based selection was removed; and in MiSACO-LSBT-RBF, the random selection was not employed. The AOFV and ASFEs
values are summarized in Table S-VII and Table S-VIII of the supplementary file, respectively. The results are discussed in
the following:
• MiSACO-LSBT-Rand cannot give any better AOFV or ASFEs value on the ten type-1 and ten type-3 artificial test problems.

Thus, we can conclude that MiSACO-LSBT-Rand is not good at dealing with type-1 and type-3 artificial test problems. The
reason may be that without the RBF-based selection, MiSACO-LSBT-Rand cannot solve EOPCCVs with many continuous
variables well.

• MiSACO-RBF-Rand cannot get any better AOFV or ASFEs value on the ten type-2 and ten type-3 artificial test problems.
Therefore, MiSACO-RBF-Rand performs poor on solving type-2 and type-3 artificial test problems. This is because only
using the RBF-based selection and the random selection cannot help MiSACO-RBF-Rand to solve EOPCCVs with many
categorical variables effectively.

• For eight out of the ten type-1 artificial test problems (F2, F3, and F5-F10), nine out of the ten type-2 artificial test
problems (F11-F13 and F15-F20), and all of the ten type-3 artificial test problems, MiSACO can obtain better AOFV
values than MiSACO-LSBT-RBF. Meanwhile, for four type-1 artificial test problems (F3, F5, F6, and F10), seven type-2
artificial test problems (F11, F13-F16, F19, and F20), and six type-3 artificial test problems (F21, F24, F26, and F28-F30),
MiSACO can provide better ASFEs values. Obviously, for all of these three types of artificial test problems, the random
selection is able to enhance the performance of the algorithm. This is because when the constructed surrogate models are
inaccurate, the random selection has the potential to improve their accuracies.

From the above analysis, we can conclude that all of the three selection operators are indispensable.

B. Effectiveness of the Surrogate-Assisted Local Search

We would like to ascertain whether the surrogate-assisted local search can improve the convergence performance of MiSACO.
To this end, additional experiments were conducted. A variant of MiSACO, called MiSACO-WoLocal, was devised. In MiSACO-
WoLocal, the surrogate-assisted local search was removed. The AOFV and ASFEs values provided by MiSACO-WoLocal and
MiSACO are given in Table S-IX of the supplementary file.

For AOFV, MiSACO can obtain better values on all the 30 test problems except F25 and F29. For ASFEs, MiSACO can
provide better values on 23 test problems (F1, F3-F6, F8-F11, F13-F15, F18-F21, F23-F25, and F28-F30). According to the
Wilcoxon’s rank-sum test, MiSACO performs better than MiSACO-WoLocal on 20 test problems in terms of AOFV and nine
test problems in terms of ASFEs, respectively. Based on the above results, it can be concluded that the surrogate-assisted local
search is capable of enhancing the convergence performance of MiSACO.

C. Effectiveness of RBF in MiSACO

In MiSACO, RBF was used as the surrogate model for continuous functions. However, other popular techniques, such as
Kriging, can also be employed. One may be interested in the influence of RBF and Kriging on the performance of MiSACO.
To this end, a variant of MiSACO, called MiSACO-Kriging, was designed. The AOFV and ASFEs values and runtime provided
by MiSACO-Kriging and MiSACO are recorded in Table S-X and Table S-XI of the supplementary file, respectively.

From Table S-X and Table S-XI, MiSACO-Kriging and MiSACO show similar performance in terms of both AOFV and
ASFEs. However, the runtime consumed by MiSACO-Kriging is significantly longer than that of MiSACO. This is because
the computational time complexity of Kriging is much higher than that of RBF. Therefore, we employed RBF as the surrogate
model for continuous functions in this paper.

D. Effectiveness of LSBT in MiSACO

In MiSACO, LSBT was employed as the surrogate model with a tree structure. As RF is also a famous surrogate model
with a tree structure, one may be interested in whether RF can be incorporated into MiSACO. To answer this question, a
variant of MiSACO, called MiSACO-RF, was developed by replacing LSBT with RF. The AOFV and ASFEs values provided
by MiSACO-RF and MiSACO are recorded in Table S-XII of the supplementary file.

From Table S-XII, in terms of AOFV, MiSACO is better than MiSACO-RF on 27 test problems (i.e., F1-F4, F6-F21, F23-
F26, and F28-F30). As far as ASFEs is concerned, MiSACO obtains better values on 24 test problems (i.e., F1, F3-F6, F10,
F11, F13-16, F19-F21, F23-F26, and F28-F30). According to the Wilcoxon’s rank-sum test, MiSACO performs better than
MiSACO-RF on 23 test problems in terms of AOFV and 20 test problems in terms of ASFEs, respectively. Therefore, in this
paper, we employed LSBT as the surrogate model with a tree structure.
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The superiority of MiSACO against MiSACO-RF may be attributed to the following reasons. When training each binary
regression tree in a RF, only a certain numbers of solutions in DB are used. If the number of solutions in DB is small, fewer
solutions will be used to train each binary regression tree in a RF. At this time, it is difficult to guarantee the accuracy of
each binary regression tree in a RF. As a result, the trained RF is also difficult to provide an accurate prediction. In contrast,
when training each binary regression tree in a LSBT, all of the solutions in DB are used. This makes it possible for LSBT to
provide better predicted values than RF. Since the number of solutions in DB is always a small value, we prefer to employ
LSBT in our algorithm.

E. Influence of Different Distances in RBF

In Section II, we have mentioned that, to handle EOPCCVs, the distance used in RBF should be redefined. However, we
have also mentioned another distance in Section V, i.e., Gower distance. One may be interested in the performance of MiSACO
if Gower distance is used in RBF. To investigate this, we designed a variant of MiSACO, called MiSACO-Gower. In MiSACO-
Gower, Gower distance was employed in RBF. The AOFV and ASFEs values provided by MiSACO and MiSACO-Gower are
provided in Table S-XIII of the supplementary file.

From Table S-XIII, MiSACO obtains better values than MiSACO-Gower on 22 (i.e., F1, F2, F4-F7, F10-F12, F14, F15,
F17, F20, F21-F27, F29, and F30) and 21 (i.e., F1, F3-F6, F10, F11, F13-16, F19-F21, F23-F26, and F28-F30) test problems
in terms of AOFV and in terms of ASFEs, respectively. According to the Wilcoxon’s rank-sum test, MiSACO performs better
than MiSACO-Gower on 12 test problems in terms of AOFV and 15 test problems in terms of ASFEs, respectively. Thus, it
can be concluded that Gower distance may not be a good choice for MiSACO.

F. Influence of Nmin

In MiSACO, Nmin was used to decide whether the surrogate-assisted local search is implemented or not. The influence of Nmin
was investigated by experiments. In the investigation, six test problems (i.e., F1, F6, F13, F18, F24, and F29) were selected,
and Nmin was set to four different values: 1∗n1, 5∗n1, 10∗n1, and 20∗n1. The AOFV and ASFEs values are summarized in
Table S-XIV. From Table S-XIV, when Nmin is equal to 5∗n1, MiSACO achieves the best performance.
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S-III. RESULTS

TABLE S-I
RESULTS OF ACOMV AND MISACO OVER 20 INDEPENDENT RUNS ON THE CAPACITATED FACILITY LOCATION PROBLEMS. THE WILCOXON’S

RANK-SUM TEST AT A 0.05 SIGNIFICANCE LEVEL WAS PERFORMED BETWEEN ACOMV AND MISACO.

ACOMV MiSACO
CFLP1 3192.08±2.30 + 3185.42±2.21
CFLP2 5803.43±16.93 + 5776.52±5.39
CFLP3 1404.17±30.73 + 1381.19±2.93
CFLP4 3442.87±163.90 + 3378.06±127.74
CFLP5 1080.75±33.51 + 1050.35±12.54
CFLP6 3356.49±646.10 + 2550.43±117.73
+/−/≈ 6/0/0

TABLE S-II
RESULTS OF ACOMV AND MISACO OVER 20 INDEPENDENT RUNS ON THE DUBINS TRAVELING SALESMAN PROBLEMS. THE WILCOXON’S RANK-SUM

TEST AT A 0.05 SIGNIFICANCE LEVEL WAS PERFORMED BETWEEN ACOMV AND MISACO.

ACOMV MiSACO
DTSP1 492.97±31.51 + 465.88±28.90
DTSP2 696.08±60.62 + 607.59±38.60
DTSP3 914.11±25.17 + 775.79±44.85
DTSP4 635.81±25.87 + 585.83±34.84
DTSP5 960.07±36.03 + 830.08±24.51
DTSP6 1229.80±62.92 + 1143.03±63.28
+/−/≈ 6/0/0
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TABLE S-III
AOFV VALUES PROVIDED BY CAL-SAPSO, EGO-HAMMING, EGO-GOWER, BOA-RF, AND MISACO ON THE 30 ARTIFICIAL TEST PROBLEMS. THE

WILCOXON’S RANK-SUM TEST AT A 0.05 SIGNIFICANCE LEVEL WAS PERFORMED BETWEEN MISACO AND EACH OF CAL-SAPSO, EGO-HAMMING,
EGO-GOWER, AND BOA-RF.

Problem CAL-SAPSO EGO-Hamming EGO-Gower BOA-RF MiSACO
AOFV ± Std Dev AOFV ± Std Dev AOFV ± Std Dev AOFV ± Std Dev AOFV ± Std Dev

F1 8.68E+01 ± 9.85E+02 + 1.99E+01 ± 1.69E+01 + 4.69E+01 ± 6.07E+01 + 2.03E+03 ± 8.38E+02 + 6.21E−08 ± 2.24E−08
F2 3.19E+01 ± 1.13E+01 + 5.35E+01 ± 1.38E+01 + 5.41E+01 ± 7.58E+00 + 8.24E+01 ± 8.04E+00 + 2.59E+01 ± 1.19E+01
F3 1.62E+01 ± 1.17E−04 + 3.82E+00 ± 1.99E+00 + 3.85E+00 ± 4.63E+00 + 1.12E+01 ± 9.33E−01 + 3.04E−01 ± 7.50E−01
F4 2.95E+00 ± 1.55E+01 + 9.94E−01 ± 6.50E−01 + 3.92E−01 ± 2.08E−01 + 4.13E+01 ± 1.45E+01 + 4.51E−09 ± 2.25E−09

Type 1 F5 1.54E+01 ± 1.10E+01 + 1.43E+00 ± 2.96E−01 + 1.10E+00 ± 1.98E−01 + 1.93E+01 ± 7.23E+00 + 2.39E−01 ± 2.30E−01
F6 4.86E+02 ± 1.16E+03 + 2.80E+01 ± 1.75E+01 + 2.11E+02 ± 3.31E+02 + 2.31E+03 ± 6.37E+02 + 5.74E−08 ± 2.50E−08
F7 3.23E+01 ± 1.34E+01 + 5.29E+01 ± 9.38E+00 + 4.84E+01 ± 7.35E+00 + 7.37E+01 ± 1.16E+01 + 2.40E+01 ± 1.22E+01
F8 1.61E+01 ± 1.40E+00 + 3.64E+00 ± 3.40E+00 + 2.68E+00 ± 2.18E+00 + 1.21E+01 ± 1.18E+00 + 7.27E−02 ± 2.83E−01
F9 6.48E+00 ± 1.92E+01 + 7.01E−01 ± 4.74E−01 + 2.34E+00 ± 3.69E+00 + 4.33E+01 ± 1.26E+01 + 1.41E−06 ± 6.15E−06

F10 1.27E+01 ± 1.26E+01 + 1.35E+00 ± 2.38E−01 + 1.12E+00 ± 2.04E−01 + 2.73E+01 ± 5.34E+00 + 2.75E−01 ± 3.01E−01
F11 3.68E+02 ± 5.08E+02 + 1.04E+01 ± 1.07E+01 + 8.29E−02 ± 1.26E−01 + 1.09E+02 ± 6.25E+01 + 9.43E−08 ± 1.06E−07
F12 5.83E+01 ± 1.12E+01 + 4.60E+01 ± 1.74E+01 ≈ 4.35E+01 ± 1.49E+01 ≈ 6.49E+01 ± 6.79E+00 + 4.71E+01 ± 1.73E+01
F13 8.54E+00 ± 1.21E+00 + 3.93E+00 ± 1.89E+00 + 5.71E−01 ± 2.31E−01 + 4.89E+00 ± 1.49E+00 + 2.26E−04 ± 1.17E−04
F14 8.70E+00 ± 1.15E+01 + 3.34E−01 ± 5.37E−01 + 1.65E+00 ± 4.77E+00 + 8.53E−01 ± 4.34E−01 + 2.04E−09 ± 2.03E−09

Type 2 F15 8.92E+00 ± 8.34E+00 + 1.15E+00 ± 1.89E−01 + 3.49E−01 ± 1.63E−01 + 1.42E+00 ± 4.48E−01 + 2.82E−07 ± 3.27E−07
F16 7.57E+02 ± 1.19E+03 + 1.19E+02 ± 1.72E+02 + 2.34E+01 ± 7.08E+01 + 1.07E+03 ± 2.45E+02 + 1.27E+00 ± 5.66E+00
F17 6.98E+01 ± 1.37E+01 + 4.77E+01 ± 1.85E+01 ≈ 4.11E+01 ± 7.67E+00 ≈ 7.16E+01 ± 7.89E+00 + 4.50E+01 ± 1.61E+01
F18 1.08E+01 ± 8.70E−01 + 3.30E+00 ± 2.52E+00 + 2.89E+00 ± 5.45E−01 ≈ 6.70E+00 ± 1.59E+00 + 1.55E+00 ± 1.96E+00
F19 3.42E+01 ± 2.75E+01 + 7.46E+00 ± 1.03E+01 + 1.76E+00 ± 1.39E+00 + 6.88E+00 ± 3.21E+00 + 2.71E−01 ± 7.16E−01
F20 1.40E+01 ± 1.98E+01 + 3.24E+00 ± 3.20E+00 + 3.01E+00 ± 2.74E+00 + 1.17E+01 ± 3.67E+00 + 1.05E−01 ± 3.23E−01
F21 5.77E+02 ± 9.35E+02 + 7.82E+00 ± 4.26E+00 + 1.11E+01 ± 3.07E+01 + 1.01E+03 ± 5.16E+02 + 7.60E−08 ± 5.64E−08
F22 5.37E+01 ± 1.41E+01 ≈ 4.51E+01 ± 8.61E+00 ≈ 4.42E+01 ± 9.04E+00 ≈ 7.34E+01 ± 1.37E+01 + 4.78E+01 ± 1.32E+01
F23 1.26E+01 ± 1.19E+00 + 3.39E+00 ± 2.74E+00 + 3.97E+00 ± 5.04E+00 + 7.83E+00 ± 1.42E+00 + 2.38E−04 ± 8.58E−05
F24 1.21E+01 ± 1.10E+01 + 1.87E−01 ± 1.53E−01 + 1.33E−01 ± 9.41E−02 + 1.79E+01 ± 5.85E+00 + 1.18E−09 ± 4.54E−10

Type 3 F25 2.26E+01 ± 9.22E+00 + 1.20E+00 ± 1.64E−01 + 9.86E−01 ± 4.11E−02 + 6.22E+00 ± 2.59E+00 + 1.24E−01 ± 2.34E−01
F26 7.44E+02 ± 1.48E+03 + 1.20E+01 ± 7.74E+00 + 1.45E+02 ± 2.13E+02 + 1.73E+03 ± 5.08E+02 + 9.70E−08 ± 8.28E−08
F27 5.64E+01 ± 1.13E+01 + 5.42E+01 ± 1.07E+01 + 5.07E+01 ± 8.96E+00 + 7.95E+01 ± 1.29E+01 + 4.15E+01 ± 1.78E+01
F28 1.43E+01 ± 1.03E+00 + 2.65E+00 ± 7.17E−01 + 2.15E+00 ± 2.30E+00 + 9.70E+00 ± 1.12E+00 + 9.76E−01 ± 1.46E+00
F29 1.52E+01 ± 2.40E+01 + 5.80E−01 ± 3.82E−01 + 1.80E+00 ± 1.59E+00 + 1.97E+01 ± 6.72E+00 + 2.19E−05 ± 9.28E−05
F30 1.58E+01 ± 1.43E+01 + 1.19E+00 ± 1.17E−01 + 1.19E+00 ± 4.85E−01 + 1.64E+01 ± 5.16E+00 + 4.92E−01 ± 6.18E−01

+/−/≈ 29/0/1 27/0/3 26/0/4 30/0/0
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TABLE S-IV
ASFEs VALUES PROVIDED BY CAL-SAPSO, EGO-HAMMING, EGO-GOWER, BOA-RF, AND MISACO ON THE 30 ARTIFICIAL TEST PROBLEMS. THE

WILCOXON’S RANK-SUM TEST AT A 0.05 SIGNIFICANCE LEVEL WAS PERFORMED BETWEEN MISACO AND EACH OF CAL-SAPSO, EGO-HAMMING,
EGO-GOWER, AND BOA-RF.

Problem CAL-SAPSO EGO-Hamming EGO-Gower BOA-RF MiSACO
ASFEs±Std Dev ASFEs±Std Dev ASFEs±Std Dev ASFEs±Std Dev ASFEs±Std Dev

F1 596.10±12.33 + 600.00±0.00 + 600.00±0.00 + 600.00±0.00 + 249.95±36.49
F2 600.00±0.00 ≈ 600.00±0.00 ≈ 600.00±0.00 ≈ 600.00±0.00 + 600.00±0.00
F3 600.00±0.00 + 600.00±0.00 + 600.00±0.00 + 600.00±0.00 + 375.85±101.67
F4 562.20±55.38 + 599.50±0.53 + 585.80±9.38 + 600.00±0.00 + 159.10±25.60

Type 1 F5 600.00±0.00 + 600.00±0.00 + 599.80±0.63 + 600.00±0.00 + 208.90±37.03
F6 600.00±0.00 + 600.00±0.00 + 600.00±0.00 + 600.00±0.00 + 269.40±56.18
F7 600.00±0.00 ≈ 600.00±0.00 ≈ 600.00±0.00 ≈ 600.00±0.00 + 600.00±0.00
F8 600.00±0.00 + 600.00±0.00 + 599.80±0.42 + 600.00±0.00 + 391.60±63.22
F9 599.60±0.84 + 598.70±0.95 + 595.20±4.98 + 600.00±0.00 + 231.15±65.29

F10 600.00±0.00 + 600.00±0.00 + 599.90±0.32 + 600.00±0.00 + 270.20±123.87
F11 600.00±0.00 + 599.90±0.32 + 587.60±3.53 + 600.00±0.00 + 285.75±73.21
F12 600.00±0.00 ≈ 599.90±0.32 ≈ 599.50±1.58 ≈ 600.00±0.00 + 600.00±0.00
F13 600.00±0.00 + 599.90±0.32 + 594.10±4.20 + 559.80±37.78 + 307.25±120.94
F14 600.00±0.00 + 596.30±2.21 + 527.50±49.70 + 584.90±47.75 + 195.45±39.24

Type 2 F15 599.90±0.32 + 599.90±0.32 + 587.60±3.34 + 600.00±0.00 + 244.50±44.50
F16 600.00±0.00 + 600.00±0.00 + 598.80±1.23 + 600.00±0.00 + 409.65±100.36
F17 600.00±0.00 ≈ 600.00±0.00 ≈ 600.00±0.00 ≈ 600.00±0.00 + 600.00±0.00
F18 600.00±0.00 + 599.60±0.70 + 598.60±1.17 + 600.00±0.00 + 538.25±93.69
F19 600.00±0.00 + 599.90±0.32 + 597.70±4.64 + 600.00±0.00 + 356.45±122.27
F20 600.00±0.00 + 600.00±0.00 + 599.60±0.84 + 600.00±0.00 + 401.70±109.00
F21 600.00±0.00 + 600.00±0.00 + 599.50±0.85 + 600.00±0.00 + 279.55±36.60
F22 600.00±0.00 ≈ 600.00±0.00 ≈ 600.00±0.00 ≈ 600.00±0.00 + 600.00±0.00
F23 600.00±0.00 + 600.00±0.00 + 599.40±1.07 + 600.00±0.00 + 363.15±76.32
F24 600.00±0.00 + 595.30±1.34 + 526.50±58.93 + 600.00±0.00 + 185.15±37.79

Type 3 F25 600.00±0.00 + 600.00±0.00 + 599.50±0.53 + 600.00±0.00 + 229.45±32.75
F26 600.00±0.00 + 600.00±0.00 + 599.90±0.32 + 600.00±0.00 + 330.80±62.07
F27 600.00±0.00 ≈ 600.00±0.00 ≈ 600.00±0.00 ≈ 600.00±0.00 + 600.00±0.00
F28 600.00±0.00 + 600.00±0.00 + 599.50±0.53 + 600.00±0.00 + 475.15±117.83
F29 599.70±0.95 + 597.40±1.90 + 596.30±6.04 + 600.00±0.00 + 273.10±83.76
F30 600.00±0.00 + 600.00±0.00 + 599.50±0.53 + 600.00±0.00 + 353.50±118.11

+/−/≈ 24/0/6 24/0/6 24/0/6 24/0/6
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TABLE S-V
AOFV VALUES PROVIDED BY CAL-SAPSO, EGO-HAMMING, EGO-GOWER, BOA-RF, AND MISACO ON THE SIX CAPACITATED FACILITY LOCATION
PROBLEMS. THE WILCOXON’S RANK-SUM TEST AT A 0.05 SIGNIFICANCE LEVEL WAS PERFORMED BETWEEN MISACO AND EACH OF CAL-SAPSO,

EGO-HAMMING, EGO-GOWER, AND BOA-RF.

Problem CAL-SAPSO EGO-Hamming EGO-Gower BOA-RF MiSACO
AOFV±Std Dev AOFV±Std Dev AOFV±Std Dev AOFV±Std Dev AOFV±Std Dev

CFLP1 3203.22±2.20 + 3195.73±2.51 + 3191.68±1.76 + 3192.56±1.64 + 3185.42±2.21
CFLP2 5808.89±11.56 + 5800.91±10.08 + 5797.36±12.44 + 5795.30±11.89 + 5776.52±5.39
CFLP3 1403.34±9.37 + 1393.46±7.28 + 1387.62±2.26 + 1388.76±2.97 + 1381.19±2.93
CFLP4 3620.66±133.98 + 3659.44±115.64 + 3356.00±125.48 ≈ 3500.90±117.52 ≈ 3378.06±127.74
CFLP5 1090.61±98.20 + 1110.07±70.00 + 1053.74±2.75 ≈ 1050.95±3.37 ≈ 1050.35±12.54
CFLP6 3124.20±277.01 + 3098.86±222.44 + 2553.93±37.60 ≈ 3279.56±447.19 + 2550.43±117.73
+/−/≈ 6/0/0 6/0/0 3/0/3 5/0/1

TABLE S-VI
AOFV VALUES PROVIDED BY CAL-SAPSO, EGO-HAMMING, EGO-GOWER, BOA-RF, AND MISACO ON THE SIX DUBINS TRAVELING SALESMAN

PROBLEMS. THE WILCOXON’S RANK-SUM TEST AT A 0.05 SIGNIFICANCE LEVEL WAS PERFORMED BETWEEN MISACO AND EACH OF CAL-SAPSO,
EGO-HAMMING, EGO-GOWER, AND BOA-RF.

Problem CAL-SAPSO EGO-Hamming EGO-Gower BOA-RF MiSACO
AOFV±Std Dev AOFV±Std Dev AOFV±Std Dev AOFV±Std Dev AOFV±Std Dev

DTSP1 490.55±10.23 + 499.08±25.95 + 479.46±17.36 + 495.81±9.81 + 465.88±28.90
DTSP2 720.20±22.30 + 739.70±35.04 + 705.55±24.88 + 718.00±19.80 + 607.59±38.60
DTSP3 923.73±23.21 + 952.06±28.13 + 932.76±31.01 + 975.70±11.24 + 775.79±44.85
DTSP4 667.26±14.77 + 674.05±34.42 + 629.15±16.22 + 644.97±3.45 + 585.83±34.84
DTSP5 1001.56±35.76 + 1011.25±33.53 + 906.68±34.32 + 1011.17±36.56 + 830.08±24.51
DTSP6 1377.33±36.28 + 1322.72±26.60 + 1327.63±52.65 + 1336.04±32.67 + 1143.03±63.28
+/−/≈ 6/0/0 6/0/0 6/0/0 6/0/0
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TABLE S-VII
AOFV VALUES PROVIDED BY MISACO-LSBT-RAND, MISACO-RBF-RAND, MISACO-LSBT-RBF, AND MISACO ON THE 30 ARTIFICIAL TEST

PROBLEMS. THE WILCOXON’S RANK-SUM TEST AT A 0.05 SIGNIFICANCE LEVEL WAS PERFORMED BETWEEN MISACO AND EACH OF
MISACO-LSBT-RAND, MISACO-RBF-RAND, AND MISACO-LSBT-RBF.

Problem MiSACO-LSBT-Rand MiSACO-RBF-Rand MiSACO-LSBT-RBF MiSACO
AOFV ± Std Dev AOFV ± Std Dev AOFV ± Std Dev AOFV ± Std Dev

F1 6.31E−08 ± 3.55E−08 ≈ 4.59E−08 ± 2.82E−08 ≈ 5.30E−08 ± 1.68E−08 ≈ 6.21E−08 ± 2.24E−08
F2 2.83E+01 ± 9.93E+00 ≈ 2.91E+01 ± 1.71E+01 ≈ 3.29E+01 ± 9.83E+00 ≈ 2.59E+01 ± 1.19E+01
F3 4.53E−01 ± 1.12E+00 + 2.38E−01 ± 7.61E−01 ≈ 7.13E−01 ± 1.19E+00 ≈ 3.04E−01 ± 7.50E−01
F4 7.10E−06 ± 3.17E−05 + 1.36E−08 ± 4.64E−08 ≈ 2.49E−09 ± 1.68E−09 ≈ 4.51E−09 ± 2.25E−09

Type 1 F5 3.63E−01 ± 2.82E−01 ≈ 2.24E−01 ± 2.51E−01 ≈ 2.49E−01 ± 2.52E−01 ≈ 2.39E−01 ± 2.30E−01
F6 9.72E−08 ± 8.21E−08 + 3.95E+00 ± 1.64E+01 + 7.49E−08 ± 2.79E−08 ≈ 5.74E−08 ± 2.50E−08
F7 2.82E+01 ± 1.13E+01 ≈ 2.84E+01± 1.33E+01 ≈ 2.77E+01 ± 1.17E+01 ≈ 2.40E+01 ± 1.22E+01
F8 8.68E−01 ± 1.36E+00 + 1.68E−01 ± 5.09E−01 ≈ 3.21E−01 ± 8.36E−01 + 7.27E−02 ± 2.83E−01
F9 2.85E−02 ± 8.02E−02 + 1.69E−01 ± 6.07E−01 + 1.34E−01 ± 6.00E−01 + 1.41E−06 ± 6.15E−06
F10 2.99E−01 ± 3.33E−01 ≈ 3.00E−01 ± 3.20E−01 ≈ 5.84E−01 ± 1.68E+00 ≈ 2.75E−01 ± 3.01E−01
F11 6.10E−01 ± 1.73E+00 ≈ 2.77E+00 ± 1.24E+01 + 6.95E+01 ± 1.64E+02 + 9.43E−08 ± 1.06E−07
F12 4.82E+01 ± 1.12E+01 ≈ 5.48E+01 ± 2.11E+01 + 4.85E+01 ± 6.29E+00 ≈ 4.71E+01 ± 1.73E+01
F13 1.85E−04 ± 7.55E−05 ≈ 1.14E+00 ± 1.88E+00 ≈ 2.28E−01 ± 1.01E+00 ≈ 2.26E−04 ± 1.17E−04
F14 2.83E−03 ± 7.68E−03 ≈ 2.15E−01 ± 4.17E−01 + 1.36E−09 ± 1.97E−09 ≈ 2.04E−09 ± 2.03E−09

Type 2 F15 7.94E−02 ± 2.43E−01 + 2.81E−01 ± 7.08E−01 ≈ 5.73E−07 ± 6.90E−07 ≈ 2.82E−07 ± 3.27E−07
F16 2.36E+01 ± 8.55E+01 ≈ 1.46E+02 ± 2.24E+02 + 1.84E+02 ± 5.86E+02 + 1.27E+00 ± 5.66E+00
F17 5.35E+01 ± 1.23E+01 ≈ 5.15E+01 ± 1.40E+01 ≈ 5.01E+01 ± 9.29E+00 ≈ 4.50E+01 ± 1.61E+01
F18 8.43E−01 ± 1.42E+00 ≈ 3.38E+00 ± 2.15E+00 + 3.17E+00 ± 3.48E+00 ≈ 1.55E+00 ± 1.96E+00
F19 1.86E−01 ± 3.10E−01 ≈ 1.53E+00 ± 1.58E+00 + 1.36E+00 ± 3.36E+00 + 2.71E−01 ± 7.16E−01
F20 3.27E−01 ± 4.03E−01 + 3.24E+00 ± 3.61E+00 + 3.81E+00 ± 1.22E+01 + 1.05E−01 ± 3.23E−01
F21 2.86E−01 ± 1.26E+00 ≈ 3.95E+00 ± 1.64E+01 + 2.24E+01 ± 1.00E+02 + 7.60E−08 ± 5.64E−08
F22 4.81E+01 ± 1.27E+01 ≈ 5.08E+01 ± 1.67E+01 ≈ 5.11E+01 ± 1.62E+01 ≈ 4.78E+01 ± 1.32E+01
F23 1.65E−01 ± 6.52E−02 + 1.86E−01 ± 8.31E−01 + 5.23E−02 ± 2.33E−01 + 2.38E−04 ± 8.58E−05
F24 5.01E−04 ± 2.24E−03 + 1.04E−01 ± 3.21E−01 + 1.39E−09 ± 7.64E−10 ≈ 1.18E−09 ± 4.54E−10

Type 3 F25 3.19E−01 ± 3.33E−01 + 3.43E−01 ± 3.77E−01 ≈ 1.51E−01 ± 2.75E−01 + 1.24E−01 ± 2.34E−01
F26 9.85E−01 ± 4.40E+00 ≈ 2.72E+01 ± 7.85E+01 + 6.27E+01 ± 1.57E+02 + 9.70E−08 ± 8.28E−08
F27 4.34E+01 ± 1.63E+01 ≈ 4.39E+01 ± 1.15E+01 ≈ 4.30E+01 ± 1.48E+01 ≈ 4.15E+01 ± 1.78E+01
F28 1.96E+00 ± 1.93E+00 ≈ 1.49E+00 ± 1.67E+00 ≈ 1.54E+00 ± 1.56E+00 ≈ 9.76E−01 ± 1.46E+00
F29 1.20E−01 ± 2.36E−01 + 4.98E−01 ± 9.01E−01 + 9.58E−01 ± 2.96E+00 ≈ 2.19E−05± 9.28E−05
F30 6.69E−01 ± 3.49E−01 + 8.20E−01 ± 7.84E−01 ≈ 5.30E−01 ± 3.74E−01 ≈ 4.92E−01 ± 6.18E−01

+/−/≈ 12/0/18 14/0/16 10/0/20
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TABLE S-VIII
ASFEs VALUES PROVIDED BY MISACO-LSBT-RAND, MISACO-RBF-RAND, MISACO-LSBT-RBF, AND MISACO ON THE 30 ARTIFICIAL TEST

PROBLEMS. THE WILCOXON’S RANK-SUM TEST AT A 0.05 SIGNIFICANCE LEVEL WAS PERFORMED BETWEEN MISACO AND EACH OF
MISACO-LSBT-RAND, MISACO-RBF-RAND, AND MISACO-LSBT-RBF.

Problem MiSACO-LSBT-Rand MiSACO-RBF-Rand MiSACO-LSBT-RBF MiSACO
ASFEs ± Std Dev ASFEs ± Std Dev ASFEs ± Std Dev ASFEs ± Std Dev

F1 289.45 ± 51.18 + 217.30 ± 75.74 ≈ 221.60 ± 30.33 ≈ 249.95 ± 36.49
F2 600.00 ± 0.00 ≈ 600.00 ± 0.00 ≈ 600.00 ± 0.00 ≈ 600.00 ± 0.00
F3 362.85 ± 107.46 ≈ 350.25 ± 97.75 ≈ 400.70 ± 136.77 + 355.85 ± 101.67
F4 223.00 ± 65.80 + 168.50 ± 65.50 ≈ 150.25 ± 24.40 ≈ 159.10 ± 25.60

Type 1 F5 291.85 ± 84.61 + 227.45 ± 60.24 ≈ 215.40 ± 47.74 ≈ 208.90 ± 37.03
F6 368.25 ± 75.77 + 303.00 ± 139.55 ≈ 273.65 ± 84.48 ≈ 269.40 ± 56.18
F7 600.00 ± 0.00 ≈ 600.00 ± 0.00 ≈ 600.00 ± 0.00 ≈ 600.00 ± 0.00
F8 419.55 ± 133.02 ≈ 380.65 ± 89.38 ≈ 368.35 ± 117.16 ≈ 391.60 ± 63.22
F9 260.55 ± 54.94 + 236.80 ± 146.13 ≈ 212.25 ± 103.96 ≈ 231.15 ± 65.29

F10 342.05 ± 77.51 + 327.55 ± 128.06 ≈ 282.90 ± 114.52 ≈ 270.20 ± 123.87
F11 467.35 ± 77.98 + 371.20 ± 121.88 + 352.80 ± 159.45 + 285.75 ± 73.21
F12 600.00 ± 0.00 ≈ 600.00 ± 0.00 ≈ 600.00 ± 0.00 ≈ 600.00 ± 0.00
F13 293.45 ± 84.69 ≈ 438.20 ± 128.56 + 307.95 ± 113.14 ≈ 307.25 ± 120.94
F14 304.75 ± 53.62 + 314.30 ± 141.19 + 201.00 ± 71.51 ≈ 195.45 ± 39.24

Type 2 F15 413.40 ± 56.67 + 380.00 ± 146.59 + 246.50 ± 57.68 ≈ 244.50 ± 44.50
F16 510.05 ± 78.44 + 538.90 ± 96.12 + 464.55 ± 147.50 + 409.65 ± 100.36
F17 600.00 ± 0.00 ≈ 600.00 ± 0.00 ≈ 600.00 ± 0.00 ≈ 600.00 ± 0.00
F18 432.75 ± 137.72 ≈ 586.90 ± 29.26 ≈ 522.60 ± 131.29 ≈ 538.25 ± 93.69
F19 399.35 ± 65.53 + 509.40 ± 135.33 + 366.25 ± 156.84 ≈ 356.45 ± 122.27
F20 484.45 ± 69.50 ≈ 556.15 ± 83.22 + 410.15 ± 142.85 ≈ 401.70 ± 109.14
F21 439.95 ± 79.69 + 350.25 ± 127.82 ≈ 290.25 ± 121.50 ≈ 279.55 ± 36.60
F22 600.00 ± 0.00 ≈ 600.00 ± 0.00 ≈ 600.00 ± 0.00 ≈ 600.00 ± 0.00
F23 380.35 ± 42.08 + 373.00 ± 73.12 ≈ 379.65 ± 82.56 ≈ 363.15 ± 76.32
F24 328.05 ± 54.58 + 265.80 ± 132.05 + 194.65 ± 46.44 ≈ 185.15 ± 37.79

Type 3 F25 373.80 ± 54.57 + 309.60 ± 75.25 + 222.90 ± 74.75 ≈ 229.45 ± 32.75
F26 458.85 ± 80.85 + 452.85 ± 113.08 + 351.35 ± 153.04 ≈ 330.80 ± 62.07
F27 600.00 ± 0.00 ≈ 600.00 ± 0.00 ≈ 600.00 ± 0.00 ≈ 600.00 ± 0.00
F28 518.25 ± 106.08 ≈ 520.15 ± 98.98 ≈ 518.60 ± 118.47 + 475.15 ± 117.83
F29 405.20 ± 66.87 + 361.35 ± 148.74 ≈ 304.05 ± 153.11 ≈ 273.10 ± 83.76
F30 479.40 ± 79.15 + 453.95 ± 121.65 + 375.05 ± 148.82 + 353.50 ± 118.11

+/−/≈ 18/0/12 11/0/19 5/0/25
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TABLE S-IX
RESULTS PROVIDED BY MISACO-WOLOCAL AND MISACO ON THE 30 ARTIFICIAL TEST PROBLEMS. THE WILCOXON’S RANK-SUM TEST AT A 0.05

SIGNIFICANCE LEVEL WAS PERFORMED BETWEEN MISACO AND MISACO-WOLOCAL.

Problem MiSACO-WoLocal MiSACO MiSACO-WoLocal MiSACO
AOFV ± Std Dev AOFV ± Std Dev ASFEs ± Std Dev ASFEs ± Std Dev

F1 1.84E−02 ± 1.18E−02 + 6.21E−08 ± 2.24E−08 319.40 ± 21.71 + 249.95 ± 36.49
F2 5.57E+01 ± 8.86E+00 + 2.59E+01 ± 1.19E+01 600.00 ± 0.00 ≈ 600.00 ± 0.00
F3 8.09E−01 ± 4.02E−01 + 3.04E−01 ± 7.50E−01 563.50 ± 41.66 + 355.85 ± 101.67
F4 2.98E−04 ± 3.12E−04 + 4.51E−09 ± 2.25E−09 177.35 ± 23.13 ≈ 159.10 ± 25.60

Type 1 F5 3.57E−01 ± 1.40E−01 ≈ 2.39E−01 ± 2.30E−01 286.15 ± 26.90 + 208.90 ± 37.03
F6 1.38E−02 ± 9.91E−03 + 5.74E−08 ± 2.50E−08 320.45 ± 21.41 + 269.40 ± 56.18
F7 5.47E+01 ± 5.41E+00 + 2.40E+01 ± 1.22E+01 600.00 ± 0.00 ≈ 600.00 ± 0.00
F8 9.64E−01 ± 3.63E−01 + 7.27E−02 ± 2.83E−01 576.15 ± 28.62 + 391.60 ± 63.22
F9 6.81E−04 ± 5.08E−04 + 1.41E−06 ± 6.15E−06 247.20 ± 29.33 ≈ 231.15 ± 65.29

F10 3.00E−01 ± 1.79E−01 ≈ 2.75E−01 ± 3.01E−01 305.30 ± 40.98 ≈ 270.20 ± 123.87
F11 2.93E−04 ± 3.80E−04 + 9.43E−08 ± 1.06E−07 287.50 ± 75.80 ≈ 285.75 ± 73.21
F12 4.82E+01 ± 1.99E+01 ≈ 4.71E+01 ± 1.73E+01 600.00 ± 0.00 ≈ 600.00 ± 0.00
F13 1.23E−02 ± 9.72E−03 + 2.26E−04 ± 1.17E−04 316.55 ± 63.82 ≈ 307.25 ± 120.94
F14 3.72E−02 ± 1.66E−01 + 2.04E−09 ± 2.03E−09 226.15 ± 58.14 ≈ 195.45 ± 39.24

Type 2 F15 2.39E−02 ± 1.95E−02 + 2.82E−07 ± 3.27E−07 261.10 ± 50.52 ≈ 244.50 ± 44.50
F16 5.92E+00 ± 1.88E+01 + 1.27E+00 ± 5.66E+00 396.30 ± 129.11 ≈ 409.65 ± 100.36
F17 5.02E+01 ± 1.73E+01 ≈ 4.50E+01 ± 1.61E+01 600.00 ± 0.00 ≈ 600.00 ± 0.00
F18 2.30E+00 ± 1.91E+00 ≈ 1.55E+00 ± 1.96E+00 554.20 ± 93.19 + 538.25 ± 93.69
F19 2.93E−01 ± 5.50E−01 + 2.71E−01 ± 7.16E−01 366.65 ± 135.86 ≈ 356.45 ± 122.27
F20 1.95E−01 ± 4.06E−01 + 1.05E−01 ± 3.23E−01 405.70 ± 109.40 ≈ 401.70 ± 109.14
F21 2.53E−03 ± 2.49E−03 + 7.60E−08 ± 5.64E−08 294.40 ± 40.80 ≈ 279.55 ± 36.60
F22 4.99E+01 ± 1.20E+01 + 4.78E+01 ± 1.32E+01 600.00 ± 0.00 ≈ 600.00 ± 0.00
F23 2.77E−01 ± 1.63E−01 ≈ 2.38E−04 ± 8.58E−05 459.10 ± 49.46 + 363.15 ± 76.32
F24 1.78E−04 ± 1.46E−04 + 1.18E−09 ± 4.54E−10 199.80 ± 35.88 ≈ 185.15 ± 37.79

Type 3 F25 6.21E−02 ± 5.41E−02 ≈ 1.24E−01 ± 2.34E−01 254.00 ± 22.53 + 229.45 ± 32.75
F26 2.35E−03 ± 2.34E−03 + 9.70E−08 ± 8.28E−08 333.25 ± 64.27 ≈ 330.80 ± 62.07
F27 4.81E+01 ± 1.46E+01 ≈ 4.15E+01 ± 1.78E+01 600.00 ± 0.00 ≈ 600.00 ± 0.00
F28 9.89E−01 ± 9.57E−01 ≈ 9.76E−01 ± 1.46E+00 528.65 ± 63.43 + 475.15 ± 117.83
F29 1.12E−03 ± 1.09E−03 + 2.19E−05 ± 9.28E−05 278.40 ± 56.19 ≈ 273.10 ± 83.76
F30 1.62E−01 ± 1.49E−01 ≈ 4.92E−01 ± 6.18E−01 369.75 ± 80.04 ≈ 353.50 ± 118.11

+/−/≈ 20/0/10 9/0/21
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TABLE S-X
RESULTS PROVIDED BY MISACO-KRIGING AND MISACO ON THE 30 ARTIFICIAL TEST PROBLEMS. THE WILCOXON’S RANK-SUM TEST AT A 0.05

SIGNIFICANCE LEVEL WAS PERFORMED BETWEEN MISACO-KRIGING AND MISACO.

Problem MiSACO-Kriging MiSACO MiSACO-Kriging MiSACO
AOFV ± Std Dev AOFV ± Std Dev ASFEs ± Std Dev ASFEs ± Std Dev

Type 1 F1 6.72E-08±2.21E-08 ≈ 6.21E-08±2.24E-08 288.40 ±58.96 ≈ 249.95 ±36.49
F2 2.44E+01±7.32E+00 ≈ 2.59E+01±1.19E+01 600.00 ±0.00 ≈ 600.00 ±0.00
F3 4.38E-01±3.09E-01 ≈ 3.04E-01±7.50E-01 313.40 ±145.04 − 375.85 ±101.67
F4 1.53E-08±1.56E-08 ≈ 4.51E-09±2.25E-09 197.40 ±32.22 ≈ 159.10 ±25.60
F5 2.62E-01±9.93E-02 ≈ 2.39E-01±2.30E-01 274.60 ±70.70 + 208.90 ±37.03
F6 7.21E-08±1.27E-08 ≈ 5.74E-08±2.50E-08 305.60 ±51.49 ≈ 269.40 ±56.18
F7 2.35E+01±4.97E+00 ≈ 2.40E+01±1.22E+01 600.00 ±0.00 ≈ 600.00 ±0.00
F8 9.54E-01±2.00E+00 ≈ 7.27E-02±2.83E-01 418.40 ±152.48 ≈ 391.60 ±63.22
F9 1.85E-03±2.22E-03 ≈ 2.59E-03±8.51E-03 201.20 ±53.13 ≈ 231.15 ±65.29

F10 1.67E-01±1.24E-01 ≈ 2.75E-01±3.01E-01 262.20 ±53.45 ≈ 270.20 ±123.87
Type 2 F11 8.68E-08±5.66E-08 ≈ 9.43E-08±1.06E-07 315.60 ±46.72 ≈ 285.75 ±73.21

F12 4.86E+01±1.19E+01 ≈ 4.71E+01±1.73E+01 600.00 ±0.00 ≈ 600.00 ±0.00
F13 3.22E-01±2.83E-05 ≈ 3.19E-01±1.29E+00 257.20 ±76.04 − 307.25 ±120.94
F14 1.10E-09±9.15E-10 ≈ 2.04E-09±2.03E-09 229.00 ±75.72 ≈ 195.45 ±39.24
F15 1.26E-01±2.82E-01 ≈ 2.82E-07±3.27E-07 279.00 ±45.29 ≈ 244.50 ±44.50
F16 9.86E-01±8.69E-08 ≈ 1.27E+00±5.66E+00 411.40 ±79.02 ≈ 409.65 ±100.36
F17 6.01E+01±6.82E+00 ≈ 4.50E+01±1.61E+01 600.00 ±0.00 ≈ 600.00 ±0.00
F18 1.41E+00±2.00E+00 ≈ 1.55E+00±1.96E+00 503.20 ±171.32 ≈ 538.25 ±93.69
F19 3.53E-01±6.79E-08 ≈ 2.71E-01±7.16E-01 399.00 ±80.64 ≈ 356.45 ±122.27
F20 1.86E-01±4.05E-01 ≈ 1.05E-01±3.23E-01 361.60 ±96.96 ≈ 401.70 ±109.00

Type 3 F21 8.13E-08±5.73E-08 ≈ 7.60E-08±5.64E-08 346.00 ±39.24 + 279.55 ±36.60
F22 3.42E+01±6.33E+00 ≈ 4.78E+01±1.32E+01 600.00 ±0.00 ≈ 600.00 ±0.00
F23 5.31E-01±1.19E+00 ≈ 1.52E-01±6.77E-01 367.60 ±152.87 ≈ 363.15 ±76.32
F24 1.33E-09±1.07E-09 ≈ 9.90E-07±4.42E-06 276.40 ±28.97 + 185.15 ±37.79
F25 1.90E-01±2.75E-01 ≈ 1.24E-01±2.34E-01 244.40 ±40.46 ≈ 229.45 ±32.75
F26 6.63E-08±3.52E-08 ≈ 9.70E-08±8.28E-08 391.00 ±50.31 ≈ 330.80 ±62.07
F27 4.33E+01±1.05E+01 ≈ 4.15E+01±1.78E+01 600.00 ±0.00 ≈ 600.00 ±0.00
F28 1.75E-02±3.84E-02 ≈ 9.76E-01±1.46E+00 345.00 ±141.24 − 475.15 ±117.83
F29 1.60E-03±3.58E-03 ≈ 3.74E-02±1.44E-01 322.20 ±71.29 ≈ 273.10 ±83.76
F30 5.84E-01±8.77E-02 ≈ 4.92E-01±6.18E-01 354.20 ±62.60 ≈ 353.50 ±118.11

+/−/≈ 0/0/30 3/3/24

TABLE S-XI
RUNTIME OF MISACO-KRIGING AND MISACO ON THE 30 ARTIFICIAL TEST PROBLEMS.

Type 1 Type 2 Type 3
Runtime (second)

MiSACO-Kriging MiSACO MiSACO-Kriging MiSACO MiSACO-Kriging MiSACO
F1 200.78 102.18 F11 357.74 111.55 F21 211.83 107.96
F2 183.81 99.67 F12 338.41 111.41 F22 193.26 113.60
F3 178.98 105.40 F13 343.88 112.21 F23 216.68 102.01
F4 189.00 101.29 F14 374.83 111.74 F24 329.88 113.24
F5 190.74 99.18 F15 385.36 112.60 F25 335.04 109.60
F6 199.48 99.86 F16 227.33 118.48 F26 204.69 116.34
F7 179.61 97.36 F17 217.48 118.14 F27 189.81 118.49
F8 181.95 101.80 F18 211.56 117.07 F28 208.51 110.04
F9 188.57 101.99 F19 224.43 119.36 F29 201.70 118.56

F10 189.65 102.20 F20 220.73 116.61 F30 200.65 112.46
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TABLE S-XII
RESULTS PROVIDED BY MISACO-RF AND MISACO ON THE 30 ARTIFICIAL TEST PROBLEMS. THE WILCOXON’S RANK-SUM TEST AT A 0.05

SIGNIFICANCE LEVEL WAS PERFORMED BETWEEN MISACO-RF AND MISACO.

Problem MiSACO-RF MiSACO MiSACO-RF MiSACO
AOFV ± Std Dev AOFV ± Std Dev ASFEs ± Std Dev ASFEs ± Std Dev

Type 1 F1 3.26E-06±1.34E-05 + 6.21E-08±2.24E-08 342.35 ±61.50 + 249.95 ±36.49
F2 2.64E+01±9.70E+00 ≈ 2.59E+01±1.19E+01 600.00 ±0.00 ≈ 600.00 ±0.00
F3 4.02E-01±8.71E-01 + 3.04E-01±7.50E-01 403.80 ±105.87 ≈ 375.85 ±101.67
F4 4.37E-05±1.30E-04 + 4.51E-09±2.25E-09 241.45 ±80.73 + 159.10 ±25.60
F5 2.28E-01±2.18E-01 ≈ 2.39E-01±2.30E-01 309.45 ±83.45 + 208.90 ±37.03
F6 7.03E-08±7.51E+01 + 5.74E-08±2.50E-08 310.95 ±53.85 + 269.40 ±56.18
F7 2.55E+01±1.41E+01 ≈ 2.40E+01±1.22E+01 600.00 ±0.00 ≈ 600.00 ±0.00
F8 1.06E+00±1.92E+00 + 7.27E-02±2.83E-01 468.05 ±137.25 + 391.60 ±63.22
F9 6.17E-02±8.55E-01 + 2.59E-03±8.51E-03 251.05 ±107.95 ≈ 231.15 ±65.29
F10 3.18E-01±6.15E-01 + 2.75E-01±3.01E-01 320.55 ±84.50 + 270.20 ±123.87

Type 2 F11 3.74E+01±1.48E+02 + 9.43E-08±1.06E-07 454.20 ±139.78 + 285.75 ±73.21
F12 4.82E+01±1.56E+01 ≈ 4.71E+01±1.73E+01 600.00 ±0.00 ≈ 600.00 ±0.00
F13 9.25E-01±1.47E+00 + 3.19E-01±1.29E+00 445.50 ±145.48 + 307.25 ±120.94
F14 2.24E-01±6.44E-01 + 2.04E-09±2.03E-09 297.25 ±150.56 + 195.45 ±39.24
F15 6.73E-01±1.12E+00 + 2.82E-07±3.27E-07 443.35 ±143.74 + 244.50 ±44.50
F16 9.92E+01±3.05E-08 + 1.27E+00±5.66E+00 548.70 ±71.57 + 409.65 ±100.36
F17 5.48E+01±1.07E+01 ≈ 4.50E+01±1.61E+01 600.00 ±0.00 ≈ 600.00 ±0.00
F18 1.99E+00±1.21E+00 + 1.55E+00±1.96E+00 546.60 ±83.82 ≈ 538.25 ±93.69
F19 7.98E-01±2.63E-01 + 2.71E-01±7.16E-01 476.55 ±135.21 + 356.45 ±122.27
F20 1.69E+00±2.36E-01 + 1.05E-01±3.23E-01 542.80 ±83.76 + 401.70 ±109.00

Type 3 F21 4.08E+00±1.53E+01 + 7.60E-08±5.64E-08 493.20 ±92.32 + 279.55 ±36.60
F22 3.92E+01±1.06E+01 ≈ 4.78E+01±1.32E+01 600.00 ±0.00 ≈ 600.00 ±0.00
F23 1.06E+00±1.49E+00 + 1.52E-01±6.77E-01 451.60 ±118.53 + 363.15 ±76.32
F24 1.97E-01±3.74E-01 + 9.90E-07±4.42E-06 363.00 ±118.42 + 185.15 ±37.79
F25 5.62E-01±3.73E-01 + 1.24E-01±2.34E-01 376.75 ±121.34 + 229.45 ±32.75
F26 2.23E+01±1.56E+02 + 9.70E-08±8.28E-08 432.85 ±136.29 + 330.80 ±62.07
F27 3.40E+01±1.25E+01 ≈ 4.15E+01±1.78E+01 600.00 ±0.00 ≈ 600.00 ±0.00
F28 1.68E+00±2.02E+00 + 9.76E-01±1.46E+00 475.85 ±125.74 ≈ 475.15 ±117.83
F29 5.49E-01±9.06E-01 + 3.74E-02±1.44E-01 428.45 ±134.31 + 273.10 ±83.76
F30 7.94E-01±2.57E+00 + 4.92E-01±6.18E-01 459.15 ±109.33 + 353.50 ±118.11

+/−/≈ 23/0/7 20/0/10
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TABLE S-XIII
RESULTS PROVIDED BY MISACO-GOWER AND MISACO ON THE 30 ARTIFICIAL TEST PROBLEMS. THE WILCOXON’S RANK-SUM TEST AT A 0.05

SIGNIFICANCE LEVEL WAS PERFORMED BETWEEN MISACO-GOWER AND MISACO.

Problem MiSACO-Gower MiSACO MiSACO-Gower MiSACO
AOFV ± Std Dev AOFV ± Std Dev ASFEs ± Std Dev ASFEs ± Std Dev

Type 1 F1 1.16E-04±2.99E-04 + 6.21E-08±2.24E-08 382.90±110.05 + 249.95±36.49
F2 3.16E+01±7.91E+00 ≈ 2.59E+01±1.19E+01 600.00±0.00 ≈ 600.00±0.00
F3 2.35E-01±4.92E-01 ≈ 3.04E-01±7.50E-01 448.40±92.61 ≈ 355.85±101.67
F4 5.97E-07±1.25E-06 + 4.51E-09±2.25E-09 233.70±46.96 + 159.10±25.60
F5 3.40E-01±2.08E-01 ≈ 2.39E-01±2.30E-01 319.10±57.36 + 208.90±37.03
F6 2.98E-07±6.00E-07 + 5.74E-08±2.50E-08 340.20±69.41 ≈ 269.40±56.18
F7 2.42E+01±6.68E+00 ≈ 2.40E+01±1.22E+01 600.00±0.00 ≈ 600.00±0.00
F8 3.55E-03±3.97E-03 − 7.27E-02±2.83E-01 378.70±38.99 ≈ 391.60±63.22
F9 2.00E-06±2.88E-06 − 2.59E-03±8.51E-03 227.20±38.02 ≈ 231.15±65.29
F10 4.22E-01±2.17E-01 ≈ 2.75E-01±3.01E-01 289.50±79.86 ≈ 270.20±123.87

Type 2 F11 1.19E+00±1.54E+00 + 9.43E-08±1.06E-07 504.30±107.42 + 285.75±73.21
F12 5.03E+01±1.04E+01 ≈ 4.71E+01±1.73E+01 600.00±0.00 ≈ 600.00±0.00
F13 4.32E-02±1.36E-01 − 4.19E-01±1.29E+00 316.10±64.65 ≈ 307.25±120.94
F14 4.05E-02±5.60E-02 + 2.04E-09±2.03E-09 256.20±59.73 + 195.45±39.24
F15 5.47E-01±4.35E-01 + 2.82E-07±3.27E-07 451.80±115.21 + 244.50±44.50
F16 1.06E+01±2.15E+01 ≈ 1.27E+00±5.66E+00 575.50±28.21 + 409.65±100.36
F17 5.39E+01±8.76E+00 ≈ 4.50E+01±1.61E+01 600.00±0.00 ≈ 600.00±0.00
F18 7.82E-01±1.81E+00 − 1.55E+00±1.96E+00 455.70±112.13 − 538.25±93.69
F19 2.31E-01±3.31E-01 ≈ 2.71E-01±7.16E-01 415.40±61.19 ≈ 356.45±122.27
F20 1.08E+00±3.42E-01 + 1.05E-01±3.23E-01 570.80±46.20 + 401.70±109.14

Type 3 F21 5.65E-01±1.78E+00 + 7.60E-08±5.64E-08 536.50±41.89 + 279.55±36.60
F22 5.24E+01±1.22E+01 ≈ 4.78E+01±1.32E+01 600.00±0.00 ≈ 600.00±0.00
F23 6.39E-04±5.32E-04 ≈ 2.38E-04±8.58E-05 429.80±36.47 + 363.15±76.32
F24 2.07E-02±3.27E-02 + 1.18E-09±4.54E-10 381.60±91.09 + 185.15±37.79
F25 3.36E-01±2.59E-01 + 1.24E-01±2.34E-01 471.30±79.99 + 229.45±32.75
F26 2.83E+00±7.16E+00 + 9.70E-08±8.28E-08 511.20±80.14 + 330.80±62.07
F27 4.67E+01±9.75E+00 ≈ 4.15E+01±1.78E+01 600.00±0.00 ≈ 600.00±0.00
F28 9.55E-01±1.38E+00 ≈ 9.76E-01±1.46E+00 526.70±76.02 ≈ 475.15±117.83
F29 1.83E-01±1.46E-01 + 3.74E-02±1.44E-01 449.90±67.93 + 273.10±83.76
F30 5.48E-01±3.94E-01 ≈ 4.92E-01±6.18E-01 491.60±77.34 + 353.50±118.11

+/−/≈ 12/4/14 15/1/14
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TABLE S-XIV
RESULTS OF MISACO WITH VARYING Nmin ON THE SIX SELECTED ARTIFICIAL TEST PROBLEMS.

Nmin 1∗n1 5∗n1 10∗n1 20∗n1
AOFV ± Std Dev

F1 1.06E-07±4.49E-08 6.21E-08±2.24E-08 3.26E+00±5.38E+00 3.79E+00±2.89E+00
F6 1.49E-07±1.71E-07 5.74E-08±2.50E-08 3.79E+00±4.60E+00 8.05E+00±4.48E+00

F13 7.77E-01±1.52E-04 3.19E-01±1.29E+00 2.48E-01±7.63E-01 4.09E-02±3.71E-02
F18 2.65E+00±8.64E-01 1.55E+00±1.96E+00 4.06E-01±3.28E-01 7.61E-01±3.81E-01
F24 1.32E-06±1.92E-06 9.90E-07±4.42E-06 1.07E-02±2.44E-02 2.11E-02±3.19E-02
F29 9.30E-02±1.88E-01 3.74E-02±1.44E-01 2.25E-01±3.62E-01 2.94E-01±2.49E-01

ASFEs ± Std Dev
F1 311.40 ±52.30 249.95 ±36.49 567.40 ±33.05 588.10 ±35.91
F6 371.90 ±64.31 269.40 ±56.18 592.20 ±9.82 599.10 ±2.85

F13 305.90 ±50.10 307.25 ±120.94 465.80 ±59.35 510.90 ±39.68
F18 536.25 ±124.58 538.25 ±93.69 483.50 ±61.50 567.00 ±40.36
F24 272.10 ±80.85 185.15 ±37.79 268.20 ±58.16 288.50 ±53.52
F29 347.90 ±83.13 273.10 ±83.76 371.90 ±132.75 434.20 ±59.75
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S-IV. TEST PROBLEMS

A. The Constructed Artificial Test Problems

The characteristics of the constructed artificial test problems are summarized in the Table S-XV.

TABLE S-XV
CHARACTERISTICS OF THE 30 ARTIFICIAL TEST PROBLEMS

Problem n1 n2 l j Lcn
i Ucn

i Basic Function
F1 8 2 5 -100 100 Sphere Function
F2 8 2 5 -100 100 Rastrigin Function
F3 8 2 5 -100 100 Alckey Function
F4 8 2 5 -100 100 Elliposoid Function

Type 1 F5 8 2 5 -100 100 Griewank Function
F6 8 2 10 -100 100 Sphere Function
F7 8 2 10 -100 100 Rastrigin Function
F8 8 2 10 -100 100 Alckey Function
F9 8 2 10 -100 100 Elliposoid Function
F10 8 2 10 -100 100 Griewank Function
F11 2 8 5 -100 100 Sphere Function
F12 2 8 5 -100 100 Rastrigin Function
F13 2 8 5 -100 100 Alckey Function
F14 2 8 5 -100 100 Elliposoid Function

Type 2 F15 2 8 5 -100 100 Griewank Function
F16 2 8 10 -100 100 Sphere Function
F17 2 8 10 -100 100 Rastrigin Function
F18 2 8 10 -100 100 Alckey Function
F19 2 8 10 -100 100 Elliposoid Function
F20 2 8 10 -100 100 Griewank Function
F21 5 5 5 -100 100 Sphere Function
F22 5 5 5 -100 100 Rastrigin Function
F23 5 5 5 -100 100 Alckey Function
F24 5 5 5 -100 100 Elliposoid Function

Type 3 F25 5 5 5 -100 100 Griewank Function
F26 5 5 10 -100 100 Sphere Function
F27 5 5 10 -100 100 Rastrigin Function
F28 5 5 10 -100 100 Alckey Function
F29 5 5 10 -100 100 Elliposoid Function
F30 5 5 10 -100 100 Griewank Function

The constructed 30 artificial test problems are as follows:

F1 : min : f (xcn,xca) =
10

∑
i=1

z2
i

z = (z1, . . . ,z10) = z′A

z′i =

{
xcn

i −oi, i ∈ {1, . . . ,8}
xca

i−8−oi, i ∈ {9,10}
o = (o1, . . . ,o10) = (7.7624,−51.0984,−95.5110,−68.7425,8.7344,0.0577,−36.7734,44.3837,99.8131,−12.1793)

v1 = {v1
1, . . . ,v

5
1}= {99.8131,38.7794,97.4385,66.3214,83.6572}

v2 = {v1
2, . . . ,v

5
2}= {−12.1793,−81.4490,94.5925,−20.7460,−23.4447}

xcn
1 , . . . ,xcn

8 ∈ [−100,100]
xca

j ∈ v j, j ∈ {1,2}

where A is an orthogonal matrix. The optimal solution is: xcn
best =(7.7624,−51.0984,−95.5110,−68.7425,8.7344,0.0577,−36.7734,
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44.3837) and xca
best = (99.8131,−12.1793), and f (xcn

best ,x
ca
best) = 0.

F2 : min : f (xcn,xca) =
10

∑
i=1

(z2
i −10cos(2πzi)+10)

z = (z1, . . . ,z10) = 0.05∗ z′A

z′i =

{
xcn

i −oi, i ∈ {1, . . . ,8}
xca

i−8−oi, i ∈ {9,10}
o = (o1, . . . ,o10) = (0.5876,−84.9703,−97.8543,39.7223,28.3686,61.1286,38.9558,−77.1346,50.6776,14.4813)

v1 = {v1
1, . . . ,v

5
1}= {50.6776,−39.6234,−61.7100,97.7223,63.1775}

v2 = {v1
2, . . . ,v

5
2}= {14.4813,−97.4609,92.2885,−3.8172,83.2134}

xcn
1 , . . . ,xcn

8 ∈ [−100,100]
xca

j ∈ v j, j ∈ {1,2}

where A is an orthogonal matrix. The optimal solution is: xcn
best =(0.5876,−84.9703,−97.8543,39.7223,28.3686,61.1286,38.9558,

−77.1346) and xca
best = (50.6776,14.4813), and f (xcn

best ,x
ca
best) = 0.

F3 : min : f (xcn,xca) = 20+ e−20exp(−0.2

√
1
10

10

∑
i=1

z2
i )− exp(

1
10

10

∑
i=1

cos(2πzi))

z = (z1, . . . ,z10) = 0.32∗ z′A

z′i =

{
xcn

i −oi, i ∈ {1, . . . ,8}
xca

i−8−oi, i ∈ {9,10}
o = (o1, . . . ,o10) = (5.3830,0.1560,47.8659,−17.0994,−32.5756,−29.2208,−32.7262,−43.5349,1.9141,−36.7252)

v1 = {v1
1, . . . ,v

5
1}= {1.9141,−12.6618,−3.5678,−18.1508,−7.8900}

v2 = {v1
2, . . . ,v

5
2}= {−36.7252,27.8390,−53.1350,−21.6579,−27.2089}

xcn
1 , . . . ,xcn

8 ∈ [−100,100]
xca

j ∈ v j, j ∈ {1,2}

where A is an orthogonal matrix. The optimal solution is: xcn
best =(5.3830,0.1560,47.8659,−17.0994,−32.5756,−29.2208,−32.7262,

−43.5349) and xca
best = (1.9141,−36.7252), and f (xcn

best ,x
ca
best) = 0.

F4 : min : f (xcn,xca) =
10

∑
i=1

ix2
i

z = (z1, . . . ,z10) = 0.05∗ z′A

z′i =

{
xcn

i −oi, i ∈ {1, . . . ,8}
xca

i−8−oi, i ∈ {9,10}
o = (o1, . . . ,o10) = (6.5706,−4.7415,99.8101,−69.8675,46.3398,−94.7804,−14.1227,−22.2035,63.0211,−96.1546)

v1 = {v1
1, . . . ,v

5
1}= {63.0211,15.4585,−0.9510,90.1246,18.4635}

v2 = {v1
2, . . . ,v

5
2}= {−96.1546,−3.5673,−59.5396,13.2944,−21.4157}

xcn
1 , . . . ,xcn

8 ∈ [−100,100]
xca

j ∈ v j, j ∈ {1,2}

where A is an orthogonal matrix. The optimal solution is: xcn
best =(6.5706,−4.7415,99.8101,−69.8675,46.3398,−94.7804,−14.1227,
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,−22.2035) and xca
best = (63.0211,−96.1546), and f (xcn

best ,x
ca
best) = 0.

F5 : min : f (xcn,xca) = 1+
10

∑
i=1

z2
i

4000
−

10

∏
i=1

cos(
zi√

i
)

z = (z1, . . . ,z10) = 6∗ z′A

z′i =

{
xcn

i −oi, i ∈ {1, . . . ,8}
xca

i−8−oi, i ∈ {9,10}
o = (o1, . . . ,o10) = (84.9982,65.1519,−12.0721,−10.4880,2.4412,−86.8010,−32.6663,−39.7689,39.6034,52.0954)

v1 = {v1
1, . . . ,v

5
1}= {39.6034,−98.0900,66.9081,5.6974,−52.6892}

v2 = {v1
2, . . . ,v

5
2}= {52.0954,−95.0943,60.2757,−59.7487,−89.1344}

xcn
1 , . . . ,xcn

5 ∈ [−100,100]
xca

j ∈ v j, j ∈ {1,2}

where A is an orthogonal matrix. The optimal solution is: xcn
best = (84.9982,65.1519,−12.0721,−10.4880,2.4412,−86.8010

,−32.6663,−39.7689) and xca
best = (39.6034,52.0954), and f (xcn

best ,x
ca
best) = 0.

F6 : min : f (xcn,xca) =
10

∑
i=1

z2
i

z = (z1, . . . ,z10) = z′A

z′i =

{
xcn

i −oi, i ∈ {1, . . . ,8}
xca

i−8−oi, i ∈ {9,10}
o = (o1, . . . ,o10) = (7.7624,−51.0984,−95.5110,−68.7425,8.7344,0.0577,−36.7734,44.3837,99.8131,−12.1793)

v1 = {v1
1, . . . ,v

10
1 }= {99.8131,38.7794,97.4385,66.3214,83.6572,64.3900,6.2714,4.7893,42.9978,−46.2021}

v2 = {v1
2, . . . ,v

10
2 }= {−12.1793,−81.4490,94.5925,−20.7460,−23.4447,−37.0443,−33.7724,−78.8025,69.8750,

70.8563}
xcn

1 , . . . ,xcn
8 ∈ [−100,100]

xca
j ∈ v j, j ∈ {1,2}

where A is an orthogonal matrix. The optimal solution is: xcn
best =(7.7624,−51.0984,−95.5110,−68.7425,8.7344,0.0577,−36.7734,

44.3837) and xca
best = (99.8131,−12.1793), and f (xcn

best ,x
ca
best) = 0.

F7 : min : f (xcn,xca) =
10

∑
i=1

(z2
i −10cos(2πzi)+10)

z = (z1, . . . ,z10) = 0.05∗ z′A

z′i =

{
xcn

i −oi, i ∈ {1, . . . ,8}
xca

i−8−oi, i ∈ {9,10}
o = (o1, . . . ,o10) = (0.5876,−84.9703,−97.8543,39.7223,28.3686,61.1286,38.9558,−77.1346,50.6776,14.4813)

v1 = {v1
1, . . . ,v

10
1 }= {50.6776,−39.6234,−61.7100,97.7223,63.1775,−12.0348,−21.6271,−12.3744,67.1491,

−19.0775}
v2 = {v1

2, . . . ,v
10
2 }= {14.4813,−97.4609,92.2885,−3.8172,83.2134,−89.4358,10.1637,−86.6364,−64.1289,6.0189}

xcn
1 , . . . ,xcn

8 ∈ [−100,100]
xca

j ∈ v j, j ∈ {1,2}

where A is an orthogonal matrix. The optimal solution is: xcn
best =(0.5876,−84.9703,−97.8543,39.7223,28.3686,61.1286,38.9558,
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−77.1346) and xca
best = (50.6776,14.4813), and f (xcn

best ,x
ca
best) = 0.

F8 : min : f (xcn,xca) = 20+ e−20exp(−0.2

√
1
10

10

∑
i=1

z2
i )− exp(

1
10

10

∑
i=1

cos(2πzi))

z = (z1, . . . ,z10) = 0.32∗ z′A

z′i =

{
xcn

i −oi, i ∈ {1, . . . ,8}
xca

i−8−oi, i ∈ {9,10}
o = (o1, . . . ,o10) = (5.3830,0.1560,47.8659,−17.0994,−32.5756,−29.2208,−32.7262,−43.5349,1.9141,−36.7252)

v1 = {v1
1, . . . ,v

10
1 }= {1.9141,−12.6618,−3.5678,−18.1508,−7.8900,1.7955,−45.1022,−14.7915,−47.5095,

57.2121}
v2 = {v1

2, . . . ,v
10
2 }= {−36.7252,27.8390,−53.1350,−21.6579,−27.2089,−58.0376,19.1243,2.8412,−17.4512,

−58.3012}
xcn

1 , . . . ,xcn
8 ∈ [−100,100]

xca
j ∈ v j, j ∈ {1,2}

where A is an orthogonal matrix. The optimal solution is: xcn
best =(5.3830,0.1560,47.8659,−17.0994,−32.5756,−29.2208,−32.7262,

−43.5349) and xca
best = (1.9141,−36.7252), and f (xcn

best ,x
ca
best) = 0.

F9 : min : f (xcn,xca) =
10

∑
i=1

ix2
i

z = (z1, . . . ,z10) = 0.05∗ z′A

z′i =

{
xcn

i −oi, i ∈ {1, . . . ,8}
xca

i−8−oi, i ∈ {9,10}
o = (o1, . . . ,o10) = (6.5706,−4.7415,99.8101,−69.8675,46.3398,−94.7804,−14.1227,−22.2035,63.0211,−96.1546)

v1 = {v1
1, . . . ,v

10
1 }= {63.0211,15.4585,−0.9510,90.1246,18.4635,−17.3490,96.5306,−14.2523,−37.9036,58.6272}

v2 = {v1
2, . . . ,v

10
2 }= {−96.1546,−3.5673,−59.5396,13.2944,−21.4157,25.7777,0.5632,73.3501,−29.0539,−79.8143}

xcn
1 , . . . ,xcn

8 ∈ [−100,100]
xca

j ∈ v j, j ∈ {1,2}

where A is an orthogonal matrix. The optimal solution is: xcn
best =(6.5706,−4.7415,99.8101,−69.8675,46.3398,−94.7804,−14.1227,

−22.2035) and xca
best = (63.0211,−96.1546), and f (xcn

best ,x
ca
best) = 0.

F10 : min : f (xcn,xca) = 1+
10

∑
i=1

z2
i

4000
−

10

∏
i=1

cos(
zi√

i
)

z = (z1, . . . ,z10) = 6∗ z′A

z′i =

{
xcn

i −oi, i ∈ {1, . . . ,8}
xca

i−8−oi, i ∈ {9,10}
o = (o1, . . . ,o10) = (84.9982,65.1519,−12.0721,−10.4880,2.4412,−86.8010,−32.6663,−39.7689,39.6034,52.0954)

v1 = {v1
1, . . . ,v

10
1 }= {39.6034,−98.0900,66.9081,5.6974,−52.6892,−22.8678,−21.4237,−70.5337,8.6142,−89.3348}

v2 = {v1
2, . . . ,v

10
2 }= {52.0954,−95.0943,60.2757,−59.7487,−89.1344,70.3986,−55.3637,17.6185,−72.3865,

−10.6520}
xcn

1 , . . . ,xcn
8 ∈ [−100,100]

xca
j ∈ v j, j ∈ {1,2}

where A is an orthogonal matrix. The optimal solution is: xcn
best =(84.9982,65.1519,−12.0721,−10.4880,2.4412,−86.8010,−32.6663,
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−39.7689) and xca
best = (39.6034,52.0954), and f (xcn

best ,x
ca
best) = 0.

F11 : min : f (xcn,xca) =
10

∑
i=1

z2
i

z = (z1, . . . ,z10) = z′A

z′i =

{
xcn

i −oi, i ∈ {1,2}
xca

i−2−oi, i ∈ {3, . . . ,10}
o = (o1, . . . ,o10) = (7.7624,−51.0984,−95.5110,−68.7425,8.7344,0.0577,−36.7734,44.3837,99.8131,−12.1793)

v1 = {v1
1, . . . ,v

5
1}= {−95.5110,10.9166,−86.3500,6.3552,−52.8390}

v2 = {v1
2, . . . ,v

5
2}= {−68.7425,2.4009,−26.8628,52.9171,−94.4758}

v3 = {v1
3, . . . ,v

5
3}= {8.7344,2.0220,1.2974,−37.0691,−79.2651}

v4 = {v1
4, . . . ,v

5
4}= {0.0577,−66.8891,−24.5506,−96.2061,45.4579}

v5 = {v1
5, . . . ,v

5
5}= {−36.7734,11.1348,40.9187,−32.3377,62.3757}

v6 = {v1
6, . . . ,v

5
6}= {44.3837,−84.2635,−31.8857,−99.0299,23.2041}

v7 = {v1
7, . . . ,v

5
7}= {99.8131,38.7794,97.4385,66.3214,83.6572}

v8 = {v1
8, . . . ,v

5
8}= {−12.1793,−81.4490,94.5925,−20.7460,−23.4447}

xcn
1 ,xcn

2 ∈ [−100,100]
xca

j ∈ v j, j ∈ {1,2,3,4,5,6,7,8}

where A is an orthogonal matrix. The optimal solution is: xcn
best = (7.7624,−51.0984) and xca

best = (−95.5110,−68.7425,8.7344,
0.0577,−36.7734,44.3837,99.8131,−12.1793), and f (xcn

best ,x
ca
best) = 0.

F12 : min : f (xcn,xca) =
10

∑
i=1

(z2
i −10cos(2πzi)+10)

z = (z1, . . . ,z10) = 0.05∗ z′A

z′i =

{
xcn

i −oi, i ∈ {1,2}
xca

i−2−oi, i ∈ {3, . . . ,10}
o = (o1, . . . ,o10) = (0.5876,−84.9703,−97.8543,39.7223,28.3686,61.1286,38.9558,−77.1346,50.6776,14.4813)

v1 = {v1
1, . . . ,v

5
1}= {−97.8543,−98.8581,−93.8085,−78.8370,81.9188}

v2 = {v1
2, . . . ,v

5
2}= {39.7223,−99.8416,−4.6454,74.7200,−80.8983}

v3 = {v1
3, . . . ,v

5
3}= {28.3686,−19.5009,−96.7178,9.0181,58.1322}

v4 = {v1
4, . . . ,v

5
4}= {61.1286,4.1286,−3.9445,−15.1705,−7.9428}

v5 = {v1
5, . . . ,v

5
5}= {38.9558,37.3101,83.0975,−98.6905,−75.3426}

v6 = {v1
6, . . . ,v

5
6}= {−77.1346,−2.0340,70.8802,51.3176,−24.3460}

v7 = {v1
7, . . . ,v

5
7}= {50.6776,−39.6234,−61.7100,97.7223,63.1775}

v8 = {v1
8, . . . ,v

5
8}= {14.4813,−97.4609,92.2885,−3.8172,83.2134}

xcn
1 ,xcn

2 ∈ [−100,100]
xca

j ∈ v j, j ∈ {1,2,3,4,5,6,7,8}

where A is an orthogonal matrix. The optimal solution is: xcn
best = (0.5876,−84.9703) and xca

best = (−97.8543,39.7223,28.3686,
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61.1286,38.9558,−77.1346,50.6776,14.4813), and f (xcn
best ,x

ca
best) = 0.

F13 : min : f (xcn,xca) = 20+ e−20exp(−0.2

√
1

10

10

∑
i=1

z2
i )− exp(

1
10

10

∑
i=1

cos(2πzi))

z = (z1, . . . ,z10) = 0.32∗ z′A

z′i =

{
xcn

i −oi, i ∈ {1,2}
xca

i−2−oi, i ∈ {3, . . . ,10}
o = (o1, . . . ,o10) = (5.3830,0.1560,47.8659,−17.0994,−32.5756,−29.2208,−32.7262,−43.5349,1.9141,−36.7252)

v1 = {v1
1, . . . ,v

5
1}= {47.8659,−50.2789,−51.4218,−5.7807,59.7290}

v2 = {v1
2, . . . ,v

5
2}= {−17.0994,17.6311,−52.2380,−37.5205,−50.8626}

v3 = {v1
3, . . . ,v

5
3}= {−32.5756,27.7492,−33.1525,55.2097,−38.2367}

v4 = {v1
4, . . . ,v

5
4}= {−29.2208,−14.6371,31.1216,−14.0404,23.6011}

v5 = {v1
5, . . . ,v

5
5}= {−32.7262,53.3853,−56.2406,51.0570,21.1575}

v6 = {v1
6, . . . ,v

5
6}= {−43.5349,−59.4140,−49.4245,−9.3890,−56.9489}

v7 = {v1
7, . . . ,v

5
7}= {1.9141,−12.6618,−3.5678,−18.1508,−7.8900}

v8 = {v1
8, . . . ,v

5
8}= {−36.7252,27.8390,−53.1350,−21.6579,−27.2089}

xcn
1 ,xcn

2 ∈ [−100,100]
xca

j ∈ v j, j ∈ {1,2,3,4,5,6,7,8}

where A is an orthogonal matrix. The optimal solution is: xcn
best = (5.3830,0.1560) and xca

best = (47.8659,−17.0994,−32.5756,
−29.2208,−32.7262,−43.5349,1.9141,−36.7252), and f (xcn

best ,x
ca
best) = 0.

F14 : min : f (xcn,xca) =
10

∑
i=1

ix2
i

z = (z1, . . . ,z10) = 0.05∗ z′A

z′i =

{
xcn

i −oi, i ∈ {1,2}
xca

i−2−oi, i ∈ {3, . . . ,10}
o = (o1, . . . ,o10) = (6.5706,−4.7415,99.8101,−69.8675,46.3398,−94.7804,−14.1227,−22.2035,63.0211,−96.1546)

v1 = {v1
1, . . . ,v

5
1}= {99.8101,−31.6099,89.6818,56.8515,−88.4346}

v2 = {v1
2, . . . ,v

5
2}= {−69.8675,40.6365,−76.1113,65.0137,−93.6473}

v3 = {v1
3, . . . ,v

5
3}= {46.3398,57.3869,−59.6658,54.2175,−66.4293}

v4 = {v1
4, . . . ,v

5
4}= {−94.7804,90.0091,−12.3052,27.1707,89.5608}

v5 = {v1
5, . . . ,v

5
5}= {−14.1227,70.3685,−3.5821,−57.3306,−21.0553}

v6 = {v1
6, . . . ,v

5
6}= {−22.2035,−94.6947,−28.3114,79.0958,−32.9711}

v7 = {v1
7, . . . ,v

5
7}= {63.0211,15.4585,−0.9510,90.1246,18.4635}

v8 = {v1
8, . . . ,v

5
8}= {−96.1546,−3.5673,−59.5396,13.2944,−21.4157}

xcn
1 ,xcn

2 ∈ [−100,100]
xca

j ∈ v j, j ∈ {1,2,3,4,5,6,7,8}

where A is an orthogonal matrix. The optimal solution is: xcn
best =(6.5706,−4.7415) and xca

best =(99.8101,−69.8675,46.3398,−94.7804,
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−14.1227,−22.2035,63.0211,−96.1546), and f (xcn
best ,x

ca
best) = 0.

F15 : min : f (xcn,xca) = 1+
10

∑
i=1

z2
i

4000
−

10

∏
i=1

cos(
zi√

i
)

z = (z1, . . . ,z10) = 6∗ z′A

z′i =

{
xcn

i −oi, i ∈ {1,2}
xca

i−2−oi, i ∈ {3, . . . ,10}
o = (o1, . . . ,o10) = (84.9982,65.1519,−12.0721,−10.4880,2.4412,−86.8010,−32.6664,−39.7689,39.6034,52.0954)

v1 = {v1
1, . . . ,v

5
1}= {−12.0721,2.9979,−19.0989,−67.9707,−5.3256}

v2 = {v1
2, . . . ,v

5
2}= {−10.4880,49.2424,64.1867,5.7290,−95.5992}

v3 = {v1
3, . . . ,v

5
3}= {2.4412,63.1647,−11.6669,−31.9233,−87.5237}

v4 = {v1
4, . . . ,v

5
4}= {−86.8010,58.9903,−71.2887,55.7150,59.1220}

v5 = {v1
5, . . . ,v

5
5}= {−32.6664,14.3942,19.6051,23.8658,92.7302}

v6 = {v1
6, . . . ,v

5
6}= {−39.7689,51.2260,95.1572,−52.9366,81.0941}

v7 = {v1
7, . . . ,v

5
7}= {39.6034,−98.0900,66.9081,5.6974,−52.6892}

v8 = {v1
8, . . . ,v

5
8}= {52.0954,−95.0943,60.2757,−59.7487,−89.1344}

xcn
1 ,xcn

2 ∈ [−100,100]
xca

j ∈ v j, j ∈ {1,2,3,4,5,6,7,8}

where A is an orthogonal matrix. The optimal solution is: xcn
best = (84.9982,65.1519) and xca

best = (−12.0721,−10.4880,2.4412,
−86.8010,−32.6664,−39.7689,39.6034,52.0954), and f (xcn

best ,x
ca
best) = 0.

F16 : min : f (xcn,xca) =
10

∑
i=1

z2
i

z = (z1, . . . ,z10) = z′A

z′i =

{
xcn

i −oi, i ∈ {1,2}
xca

i−2−oi, i ∈ {3, . . . ,10}
o = (o1, . . . ,o10) = (7.7624,−51.0984,−95.5110,−68.7425,8.7344,0.0577,−36.7734,44.3837,99.8131,−12.1793)

v1 = {v1
1, . . . ,v

10
1 }= {−95.5110,10.9166,−86.3500,6.3552,−52.8390,30.5276,77.9978,−14.5499,−53.7453,93.4961}

v2 = {v1
2, . . . ,v

10
2 }= {−68.7425,2.4009,−26.8628,52.9171,−94.4758,−19.8521,18.5924,16.7370,−83.7091,−33.1471}

v3 = {v1
3, . . . ,v

10
3 }= {8.7344,2.0220,1.2974,−37.0691,−79.2651,−13.4857,91.8744,41.5887,54.6449,−53.6206}

v4 = {v1
4, . . . ,v

10
4 }= {0.0577,−66.8891,−24.5506,−96.2061,45.4579,18.1319,58.3241,71.9285,−75.8105,−22.9862}

v5 = {v1
5, . . . ,v

10
5 }= {−36.7734,11.1348,40.9187,−32.3377,62.3757,24.4644,86.2232,90.6468,−99.4558,89.3221}

v6 = {v1
6, . . . ,v

10
6 }= {44.3837,−84.2635,−31.8857,−99.0299,23.2041,13.1996,−43.5760,26.1334,−6.6750,−22.8134}

v7 = {v1
7, . . . ,v

10
7 }= {99.8131,38.7794,97.4385,66.3214,83.6572,64.3900,6.2714,4.7893,42.9978,−46.2021}

v8 = {v1
8, . . . ,v

10
8 }= {−12.1793,−81.4490,94.5925,−20.7460,−23.4447,−37.0443,−33.7724,−78.8025,69.8750,

70.8563}
xcn

1 , . . . ,xcn
2 ∈ [−100,100]

xca
j ∈ v j, j ∈ {1,2,3,4,5,6,7,8}

where A is an orthogonal matrix. The optimal solution is: xcn
best = (7.7624,−51.0984) and xca

best = (−95.5110,−68.7425,8.7344,
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0.0577,−36.7734,44.3837,99.8131,−12.1793), and f (xcn
best ,x

ca
best) = 0.

F17 : min : f (xcn,xca) =
10

∑
i=1

(z2
i −10cos(2πzi)+10)

z = (z1, . . . ,z10) = 0.05∗ z′A

z′i =

{
xcn

i −oi, i ∈ {1, . . . ,2}
xca

i−2−oi, i ∈ {3, . . . ,10}
o = (o1, . . . ,o10) = (0.5876,−84.9703,−97.8543,39.7223,28.3686,61.1286,38.9558,−77.1346,50.6776,14.4813)

v1 = {v1
1, . . . ,v

10
1 }= {−97.8543,−98.8581,−93.8085,−78.8370,81.9188,−2.9181,−50.9363,31.9732,69.0271,85.5965}

v2 = {v1
2, . . . ,v

10
2 }= {39.7223,−99.8416,−4.6454,74.7200,−80.8983,−54.2256,73.2056,−29.1147,−11.7113,16.2659}

v3 = {v1
3, . . . ,v

10
3 }= {28.3686,−19.5009,−96.7178,9.0181,58.1322,−8.9950,99.3704,28.2749,60.8476,−53.6360}

v4 = {v1
4, . . . ,v

10
4 }= {61.1286,4.1286,−3.9445,−15.1705,−7.9428,−51.8438,76.1710,−37.0110,−34.0411,−61.8862}

v5 = {v1
5, . . . ,v

10
5 }= {38.9558,37.3101,83.0975,−98.6905,−75.3426,93.3490,52.6871,−77.6949,3.4488,−14.2671}

v6 = {v1
6, . . . ,v

10
6 }= {−77.1346,−2.0340,70.8802,51.3176,−24.3460,63.8007,93.8858,11.8351,57.5630,−0.9117}

v7 = {v1
7, . . . ,v

10
7 }= {50.6776,−39.6234,−61.7100,97.7223,63.1775,−12.0348,−21.6271,−12.3744,67.1491,

−19.0775}
v8 = {v1

8, . . . ,v
10
8 }= (14.4813,−97.4609,92.2885,−3.8172,83.2134,−89.4358,10.1637,−86.6364,−64.1289,6.0189}

xcn
1 , . . . ,xcn

2 ∈ [−100,100]
xca

j ∈ v j, j ∈ {1,2,3,4,5,6,7,8}

where A is an orthogonal matrix. The optimal solution is: xcn
best =(0.5876,−84.9703) and xca

best =(−97.8543,39.7223,28.3686,61.1286,
38.9558,−77.1346,50.6776,14.4813), and f (xcn

best ,x
ca
best) = 0.

F18 : min : f (xcn,xca) = 20+ e−20exp(−0.2

√
1

10

10

∑
i=1

z2
i )− exp(

1
10

10

∑
i=1

cos(2πzi))

z = (z1, . . . ,z10) = 0.32∗ z′A

z′i =

{
xcn

i −oi, i ∈ {1, . . . ,2}
xca

i−2−oi, i ∈ {3, . . . ,10}
o = (o1, . . . ,o10) = (5.3830,0.1560,47.8659,−17.0994,−32.5756,−29.2208,−32.7262,−43.5349,1.9141,−36.7252)

v1 = {v1
1, . . . ,v

10
1 }= {47.8659,−50.2789,−51.4218,−5.7807,59.7290,−16.4921,4.6304,−51.4052,−56.5858,−1.4768}

v2 = {v1
2, . . . ,v

10
2 }= {−17.0994,17.6311,−52.2380,−37.5205,−50.8626,−18.6013,−3.3562,−46.1564,23.0041,

−24.2366}
v3 = {v1

3, . . . ,v
10
3 }= {−32.5756,27.7492,−33.1525,55.2097,−38.2367,−34.8929,54.6377,−45.0192,26.5879,

−53.1159}
v4 = {v1

4, . . . ,v
10
4 }= {−29.2208,−14.6371,31.1216,−14.0404,23.6011,−27.5998,50.6179,26.2418,43.5885,15.1259}

v5 = {v1
5, . . . ,v

10
5 }= {−32.7262,53.3853,−56.2406,51.0570,21.1575,20.4656,−28.2398,−13.7042,−18.0062,10.0906}

v6 = {v1
6, . . . ,v

10
6 }= {−43.5349,−59.4140,−49.4245,−9.3890,−56.9489,−50.0486,−53.9074,−58.2566,17.3949,

−27.1704}
v7 = {v1

7, . . . ,v
10
7 }= {1.9141,−12.6618,−3.5678,−18.1508,−7.8900,1.7955,−45.1022,−14.7915,−47.5095,−57.2121}

v8 = {v1
8, . . . ,v

10
8 }= {−36.7252,27.8390,−53.1350,−21.6579,−27.2089,−58.0376,19.1243,2.8412,−17.4512,

−58.3012}
xcn

1 , . . . ,xcn
5 ∈ [−100,100]

xca
j ∈ v j, j ∈ {1,2,3,4,5,6,7,8}

where A is an orthogonal matrix. The optimal solution is: xcn
best =(5.3830,0.1560) and xca

best =(47.8659,−17.0994,−32.5756,−29.2208,
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−32.7262,−43.5349,1.9141,−36.7252), and f (xcn
best ,x

ca
best) = 0.

F19 : min : f (xcn,xca) =
10

∑
i=1

ix2
i

z = (z1, . . . ,z10) = 0.05∗ z′A

z′i =

{
xcn

i −oi, i ∈ {1, . . . ,2}
xca

i−2−oi, i ∈ {3, . . . ,10}
o = (o1, . . . ,o10) = (6.5706,−4.7415,99.8101,−69.8675,46.3398,−94.7804,−14.1227,−22.2035,63.0211,−96.1546)

v1 = {v1
1, . . . ,v

10
1 }= {99.8101,−31.6099,89.6818,56.8515,−88.4346,−57.0659,−31.5381,−49.4641,25.9274,9.5564}

v2 = {v1
2, . . . ,v

10
2 }= {−69.8675,40.6365,−76.1113,65.0137,−93.6473,92.6166,80.1439,76.2718,26.7529,37.0511}

v3 = {v1
3, . . . ,v

10
3 }= {46.3398,57.3869,−59.6658,54.2175,−66.4293,23.2850,8.9172,5.8984,−81.7778,−29.9939}

v4 = {v1
4, . . . ,v

10
4 }= {−94.7804,90.0091,−12.3052,27.1707,89.5608,23.1004,−82.2399,22.3617,87.6216,−60.2491}

v5 = {v1
5, . . . ,v

10
5 }= {−14.1227,70.3685,−3.5821,−57.3306,−21.0553,22.6570,−8.0322,66.9846,22.4542,−21.2894}

v6 = {v1
6, . . . ,v

10
6 }= {−22.2035,−94.6947,−28.3114,79.0958,−32.9711,−68.5177,−37.1964,49.1284,−50.3006,

31.9762}
v7 = {v1

7, . . . ,v
10
7 }= {63.0211,15.4585,−0.9510,90.1246,18.4635,−17.3490,96.5306,−14.2523,−37.9036,58.6272}

v8 = {v1
8, . . . ,v

10
8 }= {−96.1546,−3.5673,−59.5396,13.2944,−21.4157,25.7777,0.5632,73.3501,−29.0539,−79.8143}

xcn
1 , . . . ,xcn

2 ∈ [−100,100]
xca

j ∈ v j, j ∈ {1,2,3,4,5,6,7,8}

where A is an orthogonal matrix. The optimal solution is: xcn
best =(6.5706,−4.7415) and xca

best =(99.8101,−69.8675,46.3398,−94.7804,
−14.1227,−22.2035,63.0211,−96.1546), and f (xcn

best ,x
ca
best) = 0.

F20 : min : f (xcn,xca) = 1+
10

∑
i=1

z2
i

4000
−

10

∏
i=1

cos(
zi√

i
)

z = (z1, . . . ,z10) = 6∗ z′A

z′i =

{
xcn

i −oi, i ∈ {1, . . . ,2}
xca

i−2−oi, i ∈ {3, . . . ,10}
o = (o1, . . . ,o10) = (84.9982,65.1519,−12.0721,−10.4880,2.4412,−86.8010,−32.6664,−39.7689,39.6034,52.0954)

v1 = {v1
1, . . . ,v

10
1 }= {−12.0721,2.9979,−19.0989,−67.9707,−5.3256,41.2393,88.4943,−89.4662,12.4275,53.2186}

v2 = {v1
2, . . . ,v

10
2 }= {−10.4880,49.2424,64.1867,5.7290,−95.5992,66.8645,56.9595,−27.3189,77.8113,−53.0569}

v3 = {v1
3, . . . ,v

10
3 }= {2.4412,63.1647,−11.6669,−31.9233,−87.5237,48.4239,−75.0023,49.5995,−83.9520,

−81.1888}
v4 = {v1

4, . . . ,v
10
4 }= {−86.8010,58.9903,−71.2887,55.7150,59.1220,37.2548,75.7530,−10.7222,−1.7561,97.9166}

v5 = {v1
5, . . . ,v

10
5 }= {−32.6664,14.3942,19.6051,23.8658,92.7302,0.4261,19.6791,60.4852,−39.3893,−35.6968}

v6 = {v1
6, . . . ,v

10
6 }= {−39.7689,51.2260,95.1572,−52.9366,81.0941,−67.8047,−13.8984,74.2628,41.1879,53.5652}

v7 = {v1
7, . . . ,v

10
7 }= {39.6034,−98.0900,66.9081,5.6974,−52.6892,−22.8678,−21.4237,−70.5337,8.6142,−89.3348}

v8 = {v1
8, . . . ,v

10
8 }= {52.0954,−95.0943,60.2757,−59.7487,−89.1344,70.3986,−55.3637,17.6185,−72.3865,

−10.6520}
xcn

1 , . . . ,xcn
2 ∈ [−100,100]

xca
j ∈ v j, j ∈ {1,2,3,4,5,6,7,8}

where A is an orthogonal matrix. The optimal solution is: xcn
best = (84.9982,65.1519) and xca

best = (−12.0721,−10.4880,2.4412,
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−86.8010,−32.6664,−39.7689,39.6034,52.0954), and f (xcn
best ,x

ca
best) = 0.

F21 : min : f (xcn,xca) =
10

∑
i=1

z2
i

z = (z1, . . . ,z10) = z′A

z′i =

{
xcn

i −oi, i ∈ {1, . . . ,5}
xca

i−5−oi, i ∈ {6, . . . ,10}
o = (o1, . . . ,o10) = (7.7624,−51.0984,−95.5110,−68.7425,8.7344,0.0577,−36.7734,44.3837,99.8131,−12.1793)

v1 = {v1
1, . . . ,v

5
1}= {0.0577,−66.8891,−24.5506,−96.2061,45.4579}

v2 = {v1
2, . . . ,v

5
2}= {−36.7734,11.1348,40.9187,−32.3377,62.3757}

v3 = {v1
3, . . . ,v

5
3}= {44.3837,−84.2635,−31.8857,−99.0299,23.2041}

v4 = {v1
4, . . . ,v

5
4}= {99.8131,38.7794,97.4385,66.3214,83.6572}

v5 = {v1
5, . . . ,v

5
5}= {−12.1793,−81.4490,94.5925,−20.7460,−23.4447}

xcn
1 , . . . ,xcn

5 ∈ [−100,100]
xca

j ∈ v j, j ∈ {1,2,3,4,5}

where A is an orthogonal matrix. The optimal solution is: xcn
best = (7.7624,−51.0984,−95.5110,−68.7425,8.7344) and xca

best =
(0.0577,−36.7734,44.3837,99.8131,−12.1793), and f (xcn

best ,x
ca
best) = 0.

F22 : min : f (xcn,xca) =
10

∑
i=1

(z2
i −10cos(2πzi)+10)

z = (z1, . . . ,z10) = 0.05∗ z′A

z′i =

{
xcn

i −oi, i ∈ {1, . . . ,5}
xca

i−5−oi, i ∈ {6, . . . ,10}
o = (o1, . . . ,o10) = (0.5876,−84.9703,−97.8543,39.7223,28.3686,61.1286,38.9558,−77.1346,50.6776,14.4813)

v1 = {v1
1, . . . ,v

5
1}= {61.1286,4.1286,−3.9445,−15.1705,−7.9428}

v2 = {v1
2, . . . ,v

5
2}= {38.9558,37.3101,83.0975,−98.6905,−75.3426}

v3 = {v1
3, . . . ,v

5
3}= {−77.1346,−2.0340,70.8802,51.3176,−24.3460}

v4 = {v1
4, . . . ,v

5
4}= {50.6776,−39.6234,−61.7100,97.7223,63.1775}

v5 = {v1
5, . . . ,v

5
5}= (14.4813,−97.4609,92.2885,−3.8172,83.2134}

xcn
1 , . . . ,xcn

5 ∈ [−100,100]
xca

j ∈ v j, j ∈ {1,2,3,4,5}

where A is an orthogonal matrix. The optimal solution is: xcn
best = (0.5876,−84.9703,−97.8543,39.7223,28.3686) and xca

best =
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(61.1286,38.9558,−77.1346,50.6776,14.4813), and f (xcn
best ,x

ca
best) = 0.

F23 : min : f (xcn,xca) = 20+ e−20exp(−0.2

√
1

10

10

∑
i=1

z2
i )− exp(

1
10

10

∑
i=1

cos(2πzi))

z = (z1, . . . ,z10) = 0.32∗ z′A

z′i =

{
xcn

i −oi, i ∈ {1, . . . ,5}
xca

i−5−oi, i ∈ {6, . . . ,10}
o = (o1, . . . ,o10) = (5.3830,0.1560,47.8659,−17.0994,−32.5756,−29.2208,−32.7262,−43.5349,1.9141,−36.7252)

v1 = {v1
1, . . . ,v

5
1}= {−29.2208,−14.6371,31.1216,−14.0404,23.6011}

v2 = {v1
2, . . . ,v

5
2}= {−32.7262,53.3853,−56.2406,51.0570,21.1575}

v3 = {v1
3, . . . ,v

5
3}= {−43.5349,−59.4140,−49.4245,−9.3890,−56.9489}

v4 = {v1
4, . . . ,v

5
4}= {1.9141,−12.6618,−3.5678,−18.1508,−7.8900}

v5 = {v1
5, . . . ,v

5
5}= {−36.7252,27.8390,−53.1350,−21.6579,−27.2089}

xcn
1 , . . . ,xcn

5 ∈ [−100,100]
xca

j ∈ v j, j ∈ {1,2,3,4,5}

where A is an orthogonal matrix. The optimal solution is xcn
best = (5.3830,0.1560,47.8659,−17.0994,−32.5756) and xca

best =
(−29.2208,−32.7262,−43.5349,1.9141,−36.7252), and f (xcn

best ,x
ca
best) = 0.

F24 : min : f (xcn,xca) =
10

∑
i=1

ix2
i

z = (z1, . . . ,z10) = 0.05∗ z′A

z′i =

{
xcn

i −oi, i ∈ {1, . . . ,5}
xca

i−5−oi, i ∈ {6, . . . ,10}
o = (o1, . . . ,o10) = (6.5706,−4.7415,99.8101,−69.8675,46.3398,−94.7804,−14.1227,−22.2035,63.0211,−96.1546)

v1 = {v1
1, . . . ,v

5
1}= {−94.7804,90.0091,−12.3052,27.1707,89.5608}

v2 = {v1
2, . . . ,v

5
2}= {−14.1227,70.3685,−3.5821,−57.3306,−21.0553}

v3 = {v1
3, . . . ,v

5
3}= {−22.2035,−94.6947,−28.3114,79.0958,−32.9711}

v4 = {v1
4, . . . ,v

5
4}= {63.0211,15.4585,−0.9510,90.1246,18.4635}

v5 = {v1
5, . . . ,v

5
5}= {−96.1546,−3.5673,−59.5396,13.2944,−21.4157}

xcn
1 , . . . ,xcn

5 ∈ [−100,100]
xca

j ∈ v j, j ∈ {1,2,3,4,5}

where A is an orthogonal matrix. The optimal solution is: xcn
best = (6.5706,−4.7415,99.8101,−69.8675,46.3398) and xca

best =
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(−94.7804,−14.1227,−22.2035,63.0211,−96.1546), and f (xcn
best ,x

ca
best) = 0.

F25 : min : f (xcn,xca) = 1+
10

∑
i=1

z2
i

4000
−

10

∏
i=1

cos(
zi√

i
)

z = (z1, . . . ,z10) = 6∗ z′A

z′i =

{
xcn

i −oi, i ∈ {1, . . . ,5}
xca

i−5−oi, i ∈ {6, . . . ,10}
o = (o1, . . . ,o10) = (84.9982,65.1519,−12.0721,−10.4880,2.4412,−86.8010,−32.6664,−39.7689,39.6034,52.0954)

v1 = {v1
1, . . . ,v

5
1}= {−86.8010,58.9903,−71.2887,55.7150,59.1220}

v2 = {v1
2, . . . ,v

5
2}= {−32.6664,14.3942,19.6051,23.8658,92.7302}

v3 = {v1
3, . . . ,v

5
3}= {−39.7689,51.2260,95.1572,−52.9366,81.0941}

v4 = {v1
4, . . . ,v

5
4}= {39.6034,−98.0900,66.9081,5.6974,−52.6892}

v5 = {v1
5, . . . ,v

5
5}= {52.0954,−95.0943,60.2757,−59.7487,−89.1344}

xcn
1 , . . . ,xcn

5 ∈ [−100,100]
xca

j ∈ v j, j ∈ {1,2,3,4,5}

where A is an orthogonal matrix. The optimal solution is: xcn
best = (84.9982,65.1519,−12.0721,−10.4880,2.4412) and xca

best =
(−86.8010,−32.6664,−39.7689,39.6034,52.0954), and f (xcn

best ,x
ca
best) = 0.

F26 : min : f (xcn,xca) =
10

∑
i=1

z2
i

z = (z1, . . . ,z10) = z′A

z′i =

{
xcn

i −oi, i ∈ {1, . . . ,5}
xca

i−5−oi, i ∈ {6, . . . ,10}
o = (o1, . . . ,o10) = (7.7624,−51.0984,−95.5110,−68.7425,8.7344,0.0577,−36.7734,44.3837,99.8131,−12.1793)

v1 = {v1
1, . . . ,v

10
1 }= {0.0577,−66.8891,−24.5506,−96.2061,45.4579,18.1319,58.3241,71.9285,−75.8105,−22.9862}

v2 = {v1
2, . . . ,v

10
2 }= {−36.7734,11.1348,40.9187,−32.3377,62.3757,24.4644,86.2232,90.6468,−99.4558,89.3221}

v3 = {v1
3, . . . ,v

10
3 }= {44.3837,−84.2635,−31.8857,−99.0299,23.2041,13.1996,−43.5760,26.1334,−6.6750,−22.8134}

v4 = {v1
4, . . . ,v

10
4 }= {99.8131,38.7794,97.4385,66.3214,83.6572,64.3900,6.2714,4.7893,42.9978,−46.2021}

v5 = {v1
5, . . . ,v

10
5 }= {−12.1793,−81.4490,94.5925,−20.7460,−23.4447,−37.0443,−33.7724,−78.8025,69.8750,

70.8563}
xcn

1 , . . . ,xcn
5 ∈ [−100,100]

xca
j ∈ v j, j ∈ {1,2,3,4,5}

where A is an orthogonal matrix. The optimal solution is: xcn
best = (7.7624,−51.0984,−95.5110,−68.7425,8.7344) and xca

best =
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(0.0577,−36.7734,44.3837,99.8131,−12.1793), and f (xcn
best ,x

ca
best) = 0.

F27 : min : f (xcn,xca) =
10

∑
i=1

(z2
i −10cos(2πzi)+10)

z = (z1, . . . ,z10) = 0.05∗ z′A

z′i =

{
xcn

i −oi, i ∈ {1, . . . ,5}
xca

i−5−oi, i ∈ {6, . . . ,10}
o = (o1, . . . ,o10) = (0.5876,−84.9703,−97.8543,39.7223,28.3686,61.1286,38.9558,−77.1346,50.6776,14.4813)

v1 = {v1
1, . . . ,v

10
1 }= {61.1286,4.1286,−3.9445,−15.1705,−7.9428,−51.8438,76.1710,−37.0110,−34.0411,

−61.8862}
v2 = {v1

2, . . . ,v
10
2 }= {38.9558,37.3101,83.0975,−98.6905,−75.3426,93.3490,52.6871,−77.6949,3.4488,−14.2671}

v3 = {v1
3, . . . ,v

10
3 }= {−77.1346,−2.0340,70.8802,51.3176,−24.3460,63.8007,93.8858,11.8351,57.5630,−0.9117}

v4 = {v1
4, . . . ,v

10
4 }= {50.6776,−39.6234,−61.7100,97.7223,63.1775,−12.0348,−21.6271,−12.3744,67.1491,

−19.0775}
v5 = {v1

5, . . . ,v
10
5 }= {14.4813,−97.4609,92.2885,−3.8172,83.2134,−89.4358,10.1637,−86.6364,−64.1289,6.0189}

xcn
1 , . . . ,xcn

5 ∈ [−100,100]
xca

j ∈ v j, j ∈ {1,2,3,4,5}

where A is an orthogonal matrix. The optimal solution is: xcn
best = (0.5876,−84.9703,−97.8543,39.7223,28.3686) and xca

best =
(61.1286,38.9558,−77.1346,50.6776,14.4813), and f (xcn

best ,x
ca
best) = 0.

F28 : min : f (xcn,xca) = 20+ e−20exp(−0.2

√
1

10

10

∑
i=1

z2
i )− exp(

1
10

10

∑
i=1

cos(2πzi))

z = (z1, . . . ,z10) = 0.32∗ z′A

z′i =

{
xcn

i −oi, i ∈ {1, . . . ,5}
xca

i−5−oi, i ∈ {6, . . . ,10}
o = (o1, . . . ,o10) = (5.3830,0.1560,47.8659,−17.0994,−32.5756,−29.2208,−32.7262,−43.5349,1.9141,−36.7252)

v1 = {v1
1, . . . ,v

10
1 }= {−29.2208,−14.6371,31.1216,−14.0404,23.6011,−27.5998,50.6179,26.2418,43.5885,15.1259}

v2 = {v1
2, . . . ,v

10
2 }= {−32.7262,53.3853,−56.2406,51.0570,21.1575,20.4656,−28.2398,−13.7042,−18.0062,

10.0906}
v3 = {v1

3, . . . ,v
10
3 }= {−43.5349,−59.4140,−49.4245,−9.3890,−56.9489,−50.0486,−53.9074,−58.2566,17.3949,

−27.1704}
v4 = {v1

4, . . . ,v
10
4 }= {1.9141,−12.6618,−3.5678,−18.1508,−7.8900,1.7955,−45.1022,−14.7915,−47.5095,

−57.2121}
v5 = {v1

5, . . . ,v
10
5 }= {−36.7252,27.8390,−53.1350,−21.6579,−27.2089,−58.0376,19.1243,2.8412,−17.4512,

58.3012}
xcn

1 , . . . ,xcn
5 ∈ [−100,100]

xca
j ∈ v j, j ∈ {1,2,3,4,5}

where A is an orthogonal matrix. The optimal solution is: xcn
best = (5.3830,0.1560,47.8659,−17.0994,−32.5756) and xca

best =
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(−29.2208,−32.7262,−43.5349,1.9141,−36.7252), and f (xcn
best ,x

ca
best) = 0.

F29 : min : f (xcn,xca) =
10

∑
i=1

ix2
i

z = (z1, . . . ,z10) = 0.05∗ z′A

z′i =

{
xcn

i −oi, i ∈ {1, . . . ,5}
xca

i−5−oi, i ∈ {6, . . . ,10}
o = (o1, . . . ,o10) = (6.5706,−4.7415,99.8101,−69.8675,46.3398,−94.7804,−14.1227,−22.2035,63.0211,−96.1546)

v1 = {v1
1, . . . ,v

10
1 }= {−94.7804,90.0091,−12.3052,27.1707,89.5608,23.1004,−82.2399,22.3617,87.6216,−60.2491}

v2 = {v1
2, . . . ,v

10
2 }= {−14.1227,70.3685,−3.5821,−57.3306,−21.0553,22.6570,−8.0322,66.9846,22.4542,−21.2894}

v3 = {v1
3, . . . ,v

10
3 }= {−22.2035,−94.6947,−28.3114,79.0958,−32.9711,−68.5177,−37.1964,49.1284,−50.3006,

31.9762}
v4 = {v1

4, . . . ,v
10
4 }= {63.0211,15.4585,−0.9510,90.1246,18.4635,−17.3490,96.5306,−14.2523,−37.9036,58.6272}

v5 = {v1
5, . . . ,v

10
5 }= {−96.1546,−3.5673,−59.5396,13.2944,−21.4157,25.7777,0.5632,73.3501,−29.0539,−79.8143}

xcn
1 , . . . ,xcn

5 ∈ [−100,100]
xca

j ∈ v j, j ∈ {1,2,3,4,5}

where A is an orthogonal matrix. The optimal solution is: xcn
best = (6.5706,−4.7415,99.8101,−69.8675,46.3398) and xca

best =
(−94.7804,−14.1227,−22.2035,63.0211,−96.1546), and f (xcn

best ,x
ca
best) = 0.

F30 : min : f (xcn,xca) = 1+
10

∑
i=1

z2
i

4000
−

10

∏
i=1

cos(
zi√

i
)

z = (z1, . . . ,z10) = 6∗ z′A

z′i =

{
xcn

i −oi, i ∈ {1, . . . ,5}
xca

i−5−oi, i ∈ {6, . . . ,10}
o = (o1, . . . ,o10) = (84.9982,65.1519,−12.0721,−10.4880,2.4412,−86.8010,−32.6664,−39.7689,39.6034,52.0954)

v1 = {v1
1, . . . ,v

10
1 }= {−86.8010,58.9903,−71.2887,55.7150,59.1220,37.2548,75.7530,−10.7222,−1.7561,97.9166}

v2 = {v1
2, . . . ,v

10
2 }= {−32.6664,14.3942,19.6051,23.8658,92.7302,0.4261,19.6791,60.4852,−39.3893,−35.6968}

v3 = {v1
3, . . . ,v

10
3 }= {−39.7689,51.2260,95.1572,−52.9366,81.0941,−67.8047,−13.8984,74.2628,41.1879,53.5652}

v4 = {v1
4, . . . ,v

10
4 }= {39.6034,−98.0900,66.9081,5.6974,−52.6892,−22.8678,−21.4237,−70.5337,8.6142,

−89.3348}
v5 = {v1

5, . . . ,v
10
5 }= {52.0954,−95.0943,60.2757,−59.7487,−89.1344,70.3986,−55.3637,17.6185,−72.3865,

−10.6520}
xcn

1 , . . . ,xcn
5 ∈ [−100,100]

xca
j ∈ v j, j ∈ {1,2,3,4,5}

where A is an orthogonal matrix. The optimal solution is: xcn
best = (84.9982,65.1519,−12.0721,−10.4880,2.4412) and xca

best =
(−86.8010,−32.6664,−39.7689,39.6034,52.0954), and f (xcn

best ,x
ca
best) = 0.

B. Capacitated Facility Location Problems

The parameters of the capacitated facility location problems used in this paper were generated as follows: D j was generated
from U [5,35] (U represents the uniform distribution), Cr was generated from U [1000,3000], Fi,r is generated from U [300,1300],
and Qi, j was generated from U [0,1]. By setting m, n, and s, six capacitated facility location problems, i.e., CFLP1-CFLP6,
were generated. The parameter settings of CFLP1-CFLP6 are listed in Table S-XVI.
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TABLE S-XVI
PARAMETERS SETTINGS OF THE SIX CAPACITATED FACILITY LOCATION PROBLEMS

m n s
CFLP1 5 5 1
CFLP2 10 5 1
CFLP3 5 5 4
CFLP4 10 5 4
CFLP5 5 5 8
CFLP6 10 5 8

C. Dubins Traveling Salesperson Problems

The parameters of the constructed Dubins traveling salesperson problems are set as follows. For DTSP1-DTSP3, the waypoints
were randomly generated in the range of [−50,50], and the numbers of waypoints were set to 5, 10, and 15, respectively. For
DTSP4-DTSP6, the waypoints were randomly generated in the range of [−100,100], and the numbers of waypoints were also
set to 5, 10, and 15, respectively. For all these six problems, the minimal turning radius was set to 1.
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S-V. FIGURES

(a) (b)

Fig. S-1. Structure of the stiffened plate. (a) the considered FEA model (b) the variable distribution of the structure of the stiffened plate.

(a) (b) (c) (d)

Fig. S-2. Topological structures of the stiffened plates reported in [1] and obtained by EGO-Gower, GA, and MiSACO. (a) the original design (b) EGO-Gower
(c) GA (d) MiSACO
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Fig. S-3. Convergence curves derived from EGO-Gower, GA, and MiSACO.
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Fig. S-4. Simplified FEA model used in this paper.
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