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Abstract

Psoriasis is a chronic skin disease which affects hundreds
of millions of people around the world. This disease cannot
be fully cured and requires lifelong caring. If the deteriora-
tion of Psoriasis is not detected and properly treated in time,
it could cause serious complications or even lead to a life
threat. Therefore, a quantitative measurement that can track
the Psoriasis severity is necessary. Currently, PASI (Psoriasis
Area and Severity Index) is the most frequently used mea-
surement in clinical practices. However, PASI has the fol-
lowing disadvantages: (1) Time consuming: calculating PASI
usually takes more than 30 minutes which poses a heavy
burden on dermatologists; and (2) Inconsistency: due to the
complexity of PASI calculation, different or even the same
dermatologist could give different scores for the same case.
To overcome these drawbacks, we propose PSENet which
applies deep neural networks to estimate Psoriasis severity
based on skin lesion images. Different from typical deep
learning frameworks for image processing, PSENet has the
following characteristics: (1) PSENet introduces a score re-
fine module which is able to capture the visual features of
skin at both coarse and fine-grained granularities; (2) PSENet
uses siamese structure in training and accepts pairwise inputs,
which reduces the dependency on large amount of training
data; and (3) PSENet can not only estimate the severity, but
also locate the skin lesion regions from the input image. To
train and evaluate PSENet, we work with professional der-
matologists from a top hospital and spend years in building
a golden dataset. The experimental results show that PSENet
can achieve the mean absolute error of 2.21 and the accuracy
of 77.87% in pair comparison, outperforming baseline meth-
ods. Overall, PSENet not only relieves dermatologists from
the dull PASI calculation but also enables patients to track
Psoriasis severity in a much more convenient manner.

Introduction
Psoriasis is a chronic inflammatory skin disease which af-
fects about 2%-3% of the population worldwide1 . It is an
immune system disease and cannot be fully cured. As a re-
sult, many patients have to suffer from Psoriasis throughout
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their entire lives. But if treated properly and timely, patients
can still maintain a relatively high life quality. For Psoria-
sis with different severities, different therapies can be cho-
sen accordingly. For example, balm, radiation, and biologic
are suitable treatments for mild, medium, and serious con-
ditions, respectively. However if the deterioration of Psoria-
sis is not detected and handled in time, it could cause seri-
ous complications, such as diabetes and heart failure (Berth-
Jones et al. 2006; Zhou et al. 2015). Therefore, tracking the
progress of Psoriasis is of great importance which requires a
quantitative indicator.

In current clinical practice, Psoriasis Area and Severity
Index (PASI) (Berth-Jones et al. 2006) is the most frequently
used indicator. PASI mainly evaluates the severity of skin le-
sions from four aspects: the redness of erythema, the thick-
ness of induration, the scaling of desquamation, and the le-
sion area ratio, resulting in a score ranging from 0 to 72.
One drawback of PASI is that it is manually calculated by
dermatologists and usually takes more than 30 minutes per
patient (Berth-Jones et al. 2006). However, there is a serious
shortage of dermatologists in less developed and developing
countries. For example, in Africa, there are few dermatol-
ogists in many countries; and in China, the ratio between
dermatologists and patients is 1:70000 (Zhou et al. 2015).
Even for developed countries, considering the large number
of Psoriasis patients, calculating PASI is still a heavy burden
for dermatologists. Another drawback of PASI is the incon-
sistency. Due to the complexity of PASI calculation, differ-
ent dermatologists could come up with different scores for
the same case. Even the same dermatologist may give dif-
ferent scores for the same case. Such inconsistency could
mislead the judgement of Psoriasis severity.

To overcome the above disadvantages of PASI, we pro-
pose PSENet which applies deep neural network to estimate
the severity. PSENet takes clinical images of Psoriasis as in-
put and generates a numeric score to measure the severity. It
has the following two components: (1) Score refine module:
this module simulates the process how PASI evaluates the
severity. On the one hand, this module locates skin lesions
and estimates their sizes. On the other hand, this module
evaluates the abnormality degree of skin lesions. By combin-
ing these two results, this module can output a numeric score
to estimate the severity with high robustness. This module is
deployed at different depths of the deep neural network. In



this manner, it is able to capture the visual features of skin
from coarse to fine-grained granularities; and (2) siamese
structure: PSENet adopts siamese structure (Chopra et al.
2005) in the training stage to model severity evaluation as
a metric learning task. In addition to estimate the score of
a single image, PSENet can take two different images as an
input sample and predict the difference between their sever-
ities. With such a training strategy, for a dataset with N im-
ages, we can acquireN ∗(N−1)/2 pairs of images as train-
ing samples.

Since PSENet is a supervised model, its performance
highly depends on the quality and quantity of the training
data. To this end, we collaborate with a world famous derma-
tologist team and spend years in building a golden dataset.
Each instance is verified pathologically and its severity score
is given by experienced dermatologists.

To evaluate PSENet, we introduce two metrics: mean ab-
solute error (MAE) and pair accuracy (PA): MAE focuses on
the absolute score difference between PSENet and the der-
matologists, while PA focuses on the relative ranking order
between two images given by PSENet and dermatologists.
As shown in the experimental results, PSENet achieves the
MAE of 2.21 (in the range of 72) and the PA of 77.87%,
outperforming all baseline models.

Compared with manually calculated PASI, PSENet can
produce consistent measurement in a much more time-
effective manner. It can be easily deployed as a web service
or an APP on smart phones. For patients, they only need to
upload a skin lesion picture and can obtain a severity score
in seconds; and for dermatologists, PSENet can relieve them
from the dull PASI scoring. In this way, patients can track the
progress of Psoriasis without going to hospital. This is espe-
cially beneficial for patients in places where dermatologists
are hard to reach.

PASI Description
Due to the importance of Psoriasis severity estimation, two
metrics, i.e., PASI and Psoriasis Global Assessment (PGA),
have been proposed (Langley and Ellis 2004), in which PASI
is the most frequently used one in clinical treatment. For a
patient, the calculation process of PASI is as follows:

(1) Dermatologists collect clinical images from four different
body parts of a patient, including head, torso, upper limbs,
and lower limbs.

(2) For each body part, dermatologists use three indicators to
evaluate the seveirty of Psoriasis: the redness of erythema,
the thickness of induration, and the scaling of desquama-
tion. Each indicator is represented by a score ranging from
0 to 4. The higher the score, the more severe the condition.
Then these three scores are added up to represent the gen-
eral severity of this body part.

(3) Dermatologists manually estimate the proportion of skin
lesion area to normal skin area, resulting in a correspond-
ing score (range from 0 to 6 for 0% to 100%).

(4) After the four scores for each body part in Step 2 and Step
3 are estimated, dermatologists use equations (1) and (2)
to calculate the final score of PASI.

PASIparti = (Seryparti
+ Sindparti

+ Sdesparti
)×Aparti

(1)

PASIpatient =

parts∑
i

Wparti × PASIparti (2)

where parti ∈ {head, torso, upper limbs, lower limbs}
denotes the ith body part; Wparti ∈ {0.1, 0.3, 0.2, 0.4}
denotes the corresponding weight; Seryparti

, Sindparti
, and

Sdesparti
denote the severity scores for the redness of

erythema, the thickness of induration, and the scaling of
desquamation, respectively, and Aparti denotes the pro-
portion score. Clinically, Seryparti

, Sindparti
, and Sdesparti

range from 0 to 4; Aparti ranges from 0 to 6; and
PASIpatient ranges from 0 to 72 (George, Aldeen, and Gar-
navi 2017).

Such a scoring process has two drawbacks. First, der-
matologists have to estimate 4 scores Seryparti

, Sindparti
,

Sdesparti
and Aparti for each body part; therefore, there are

4 ∗ 4 variables in total for a single patient. The estimation
heavily depends on the expertise of dermatologists, and dif-
ferent dermatologists are likely to give different estimations.
Even for the same dermatologist, the estimation for the same
case may be varied. Therefore, the manual PASI estima-
tion may generate inconsistent scores which can mislead the
judgment in Psoriasis severity (Fink et al. 2018).

Second, for dermatologists, the calculation process of
PASI is time-consuming since there are 16 variables to be es-
tiamted. In general, a professional dermatologist needs over
30 minutes to calculate PASI for a single patient (Berth-
Jones et al. 2006). Considering the large number of Psoriasis
patients, calculating PASI is a heavy burden for dermatolo-
gists.

Related Work
Automatic Evaluation of Psoriasis Severity
Due to the importance of automatic Psoriasis severity eval-
uation, extensive research efforts have been devoted to this
area. Ahmand and Ihtatho (2009) first mapped skin lesions
into a special-designed color space and then classified skin
lesions into three different types. Lu et al. (2010) used
histogram-based Bayesian classifier and support vector ma-
chine to distinguish normal skin from skin lesions and then
scored erythema with K-nearest neighbor algorithm. Den-
mark (2004) applied Gaussian mixture model to segment
skin lesions into different color channels and then scored
erythema by means of the trichromatic bands.

For deep learning based approaches, Pal et al. (2016) es-
timated the severity levels of three indicators (the redness
of erythema, the thickness of induration, and the scaling of
desquamation) by adding three output heads at one single
deep neural network. Pal et al. (2018) built three different
networks to evaluate these three indicators respectively. In
the above methods, each indicator is classified into five dis-
crete severity categories: from 0 to 4.

Existing works mainly focus on a part of aspects related to
the severity of Psoriasis. In this paper, we propose a unified



Figure 1: Structure overview of PSENet. During the training phase, each score refine module takes a location map as a supervi-
sion signal. During the testing phase, this module can generate the location map by itself.

framework to estimate the overall severity score which can
be used in clinical practice directly.

Siamese Network

Siamese network has been used in various tasks to model
the relationship among different inputs. This structure was
first introduced by Bromley et al. (1994). Currently, many
vairants of this structure have been proposed. Chopra et al.
(2005) used this structure to model face verification as a met-
ric learning problem, with the aim of discriminating differ-
ent human faces. Koch, Zemel, and Salakhutdinov (2015)
used a siamese-based network to project images into a low-
dimensional space and evaluated the similarity among them.
Zhou et al. (2019) designed a siamese network to detect
salient objects by enhancing its edge. Bertinetto et al. (2016)
introduced this structure into video object tracking (VOT)
task. They used siamese network to extract features for each
video frame and calculated the similarity between adjacent
frames to track objects. Li et al. (2018) combined siamese
network with region proposal network to redefine VOT task
as an one-shot detection task. Moreover, siamese structure
can also be applied to regression tasks. Doumanoglou et
al. (2016) used siamese structure in 3D object pose estima-
tion task. They introducd a specific loss function and used
siamese structure to ensure the distribution alignment be-
tween feature space and pose space.

Method
In this section, we introduce the proposed model: PSENet.
First, we introduce the framework of PSENet; secondly, we
describe the specially designed score refine module in detail;
and finally, we discuss the loss functions and settings.

Framework
Figure 1 displays the framework of the proposed PSENet
which consists of two identical sub-networks. Each sub-
network includes a backbone network which works as a fea-
ture extractor and five score refine modules which calculate
the severity at varied granularities.

Inside each sub-network, we build the backbone network
with 45 convolutional layers and 6 downsampling layers.
Residual shortcut connections (He et al. 2016a; 2016b) are
added to increase skip layer connection.

In the Psoriasis severity evaluation task, our backbone
network takes images with a fixed-size: 800 ∗ 1024. During
the propagation along the backbone network, we extract the
feature maps with five resolutions: 100 ∗ 128, 50 ∗ 64, 25 ∗
32, 13 ∗ 16, and 7 ∗ 8. These feature maps are sent to score
refine modules to calculate the severity. As a result, each
sub-network can evaluate severity on features with differ-
ent granularities. Unlike the structure proposed by Lin et al.
(2017a), in which feature maps at different levels are added
up together, PSENet focuses on one specific granularity at
one time; thus, the unexpected interactions among feature
maps and the extra upsampling/deconvolution noises can be
excluded.

For each image, besides the RGB matrix, we also perform
an object detection step and use the marked skin lesion area
as input during the training stage. Here, we pre-trained a skin
lesion detection model which is a separate model indepen-
dent from the proposed PSENet. The marked skin lesions
will be used to guide the training of score refine module.

In the training stage, given two input images and detected
skin lesions, each sub-network generates a severity score for
the corresponding input image, and the difference between
two images is also obtained by using siamese structure.

In the testing stage, either sub-network can be used to
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Figure 2: Structure of score refine module. The first red
block denotes an input feature map with height H , width
W and channel C.

evaluate the severity of an input image since the two sub-
networks share all parameters and have identical structure.
Besides, in the propagation within score refine module, it
will generate an intermediate feature map which can locate
the position of skin lesions.

Severity score labelling requires professional knowledge
in dermatology and is time-consuming for dermatologists;
thus, it is unlikely to obtain adequate labelled data for the
model training. By using siamese structure as a training
strategy, we model the severity evaluation as a metric learn-
ing task. In each training step, two images are fed into
PSENet. Then, PSENet can not only learn the severity of
each image, but also learn the difference between them. By
introducing such a pairing scheme, we can easily generate
a large number (∼ O(N2)) of paired training samples by
using just a small number (∼ O(N)) of labelled images.

Score Refine Module
Various noises exist in clinical images of Psoriasis, such as
background normal skin, nevus, birthmark, and so on. These
noises often occupy the most regions of the images, and
therefore the skin lesions just take up few parts. To reduce
the impact of noises and improve the robustness of PSENet,
we design the score refine module, as illustrated in Figure 2.

This module consists of two heads, a severity evaluating
head (scoring head) and a skin lesion locating head (locat-
ing head). By using the localization result as an attention
mask to refine the severity evaluating result, the module can
eliminate the influence of noises and focus on the skin lesion
areas.

The scoring head has three sibling branches to generate
pixel-wise score map O. These branches have point-wise
convolution layers (Howard et al. 2017) to reduce the dimen-
sion of channel at the beginning for efficiency consideration.
And then different kernel sizes have been used to add fea-
ture diversity (Szegedy et al. 2016). The first two branches
are used to learn semantic information of severity and result
in a feature map F , and the third branch is used to learn the
weights ~v, with the purpose of combining 256-channel fea-
ture map F into 1-channel score map O. As a result, each

pixel value at the position (i, j) in score map O is calculated
by weighting the 256-D vector ~Fi,j in feature map F at the
corresponding position (i, j), using weight vector ~v from the
third branch:

Oi,j = ~Fi,j · ~v (3)

To make the evaluating results more invulnerable to noise,
the module locates skin lesions pixel-wisely and uses the lo-
cating result (location map D) as an attention mask to refine
the scoring result. However, the prerequisite to enable a deep
neural network to locate skin lesions is sufficient annotated
data. Considering that there could be numerous skin lesions
in a clinical image of Psoriasis, to annotate each of them in
a pixel-wise fashion would be a huge burden for dermatolo-
gists. As a result, in the training process, we design the be-
low method to generate pixel-wise ground truth maps for our
locating task. We first use an external private skin disease
dataset (over 86,000 images with pathologically confirmed
category annotations, and location information for skin le-
sions in the way of bounding box provided by dermatolo-
gists) to build a simple abnormal skin detector. In this paper,
the detector is built by a variant of Ren et al. (2015) with
ROI-Align (He et al. 2017), and it shows the reall of 81.67%
and the precision of 94.23% for Psoriasis skin lesion. Then,
considering that the form of bounding box cannot match the
shape of skin lesions in almost all cases, we divide the skin
inside a detected bounding box into two classes, “normal”
or “abnormal”, based on its distance to the edge and the size
of the box.

Specifically, suppose that I ∈ [0, 1]H×W×C is the input
image with height H , width W and channel C; B is a set of
all detected bounding boxes of skin lesions in I; and Min ∈
[0, 1]

H
S ×

W
S ×CMin is the input feature map for a score refine

module M , where S is the stride (S ∈ {8, 16, 32, 64, 128}).
We produce ground truth map G ∈ [0, 1]

H
S ×

W
S for D in M .

All elements in G are generated as follows: first, for each
detected bounding box gt ∈ B, we set the values at positions
outside gt to 0. Second, for the center position ~p of gt on the
input image, we project ~p intoMin as ~p′ = b ~pS c = (p′x, p

′
y),

and set the value at position p′ to 1. Third, we use a Gaus-
sian kernel to compute the values at the remaining positions
which are inside gt using the following equation:

Gi,j = exp

(−(|p′x − i|+ |p′y − j|)
σ2
gt

)
(4)

where σgt is the standard deviation for the Gaussian kernel
computed based on the size of gt. Based on our experiments,
we choose σgt = 1

6 × diggt where diggt is the projected
diagonal distance of gt. Figure 3 shows an example of five
ground truth maps generated by one input image during the
training process.

After score map O and location map D are generated, the
module then computes the element-wise product of these
two maps, and obtain the refined score map. Such refining
process can be seen as a hard-supervised attention mecha-
nism.



Figure 3: An example of five ground truth maps generated by an input image during the training process. The locations of skin
lesions are generated by Ren et al. (2015) with ROI-Align (He et al. 2017). In ground truth maps, the color from purple to
yellow denotes the value of element from 0 to 1, representing the confidence of the skin lesion existence.

From a dermatologist’s point of view, the general severity
and the severity of targeting skin lesion (the most severe one
among all skin lesions) are two key factors for evaluating. As
a result, we extract three different statistics from the refined
score map (max score, mean score, and sum score) and com-
bine them together by three trainable weights to get the final
score. All parameters in five score refine modules are shared
except for these three weights, meaning that all five score re-
fine modules have exactly identical branches (scoring, locat-
ing, and refining) except for the final combination weights.
This is because the three statistics from different features
have different distributions. In fact, these three weights play
a role in regulating the contributions of three statistics in a
single module and balancing the scales among the outputs
of different modules.

Loss Functions
We build an end-to-end framework for the task of Psoria-
sis severity evaluation, which includes two sub-tasks for the
skin lesion locating and distance metric learning, as well as
the main task for severity score regression. Next, we intro-
duce the loss function for each task and illustrate the overall
loss function.

Localization loss Each score refine module locates skin
lesions in a pixel-wise fashion. Since the background always
takes up the most area of an image, it is necessary to bal-
ance the proportion between positive and negative samples
for this task. We design the loss function based on focal loss
(Lin et al. 2017b). It not only balances the proportion be-
tween positive and negative samples, but also makes sure
that the gradient is not dominated by non-hard-samples. The
localization loss is designed as follows:

li,j =

{
− (1− α)(1−Di,j)

γ logDi,j , Gi,j ≥ thr
− αDγ

i,j log(1−Di,j), Gi,j < thr

(5)

Lloc =

5∑
k=1

1

nk

∑
i,j

li,j (6)

where nk denotes the number of points in the point set
{(0, 0), ..., ( HSk

, WSk
)}; α and γ are the parameters defined as

same as in Lin et al. (2017b); Di,j denotes the value of the

position (i, j) in the location map; Gi,j is the value of the
position (i, j) in the ground truth map; and thr is the thresh-
old to divide positive and negative samples for elements on
the ground truth map. We use α = 0.25, γ = 2, p = 5 , and
thr = 0.3 in our experiments.

Distance metric loss To learn the metric of severity and
the discrepancy between a pair of images, we introduce
siamese structure into our framework (two sub-networks are
named as network A and network B, respectively). During
the training process, we use t = {(xA, yA), (xB , yB)} as
the input sample where xA/xB is an image in networkA/B
and yA/yB is its severity score annotation given by derma-
tologists. Network A predicts score sA for xA, and network
B predicts score sB for xB . Next, siamese structure uses
∆p = f(sA, sB) as the output and ∆a = f(yA, yB) as an-
notation to calculate the siamese loss (f is a distance mea-
surement, in which Manhattan distance is used in this pa-
per). We design the final distance metric loss function based
on smooth L1 loss to reduce the impact of outliers and main-
tain the stability of training stage (Ren et al. 2015):

Lsia =

{
0.5× (∆p −∆a)2 (∆p −∆a) < 1

|∆p −∆a| − 0.5 otherwise
(7)

Regression loss In our model, each sub-network in
siamese structure uses a fully connected layer to combine
the scores from the five score refine modules into an overall
score. Similar to metric loss, because of the wild range of
PASI, we use smooth L1 loss for severity score regression
task to prevent the oscillation in the initial training stage.
For t = {(xA, yA), (xB , yB)} and {sA, sB}, the regression
loss is defined as:

Lreg =



A,B∑
i

0.5× (si − yi)2, (si − yi) < 1

A,B∑
i

|si − yi| − 0.5, otherwise

(8)

Overall loss function With these losses defined as above,
the overall loss function for t is defined as:

L = µ× Lloc + ν × Lsia + ξ × Lreg (9)
where µ = 1.0, ν = 0.2, and ξ = 0.2 based on our experi-
ments.



Figure 4: Severity score distribution of the dataset we built.
The range of the annotated scores is from 0 to 72. As same as
the situation in real life, in this dataset, the majority of sever-
ity is mild and medium (dermatologists tend to use 5 and 10
as the thresholds for mild-medium and medium-severe em-
pirically).

Experiments
Dataset and Setting
Dataset In this study, we tracked the entire treatment pro-
cesses of 1,787 Psoriasis patients and built a dataset consist-
ing of 5,205 images where the longest recorded period is 15
months with 6 visits. The labels in this dataset include the
severity scores which are annotated by 11 professional der-
matologists (9 professors and 2 attending physicians), and
the locations of skin lesions which are generated by our pre-
trained detection model. The severity score distribution is
shown in Figure 4.

Training pairs construction We split our data into 5 folds
using individual patient as the smallest unit. The model is
trained on 4 folds and evaluated on the held-out fold. All re-
ported results are the average on 5 different validation folds.
Paired images are randomly sampled at the beginning of
each training step. Each image is resized to height with 800
and width with 1024.

Implementation The model structure and hyper-
parameters in loss functions have been shown in the above
sections. The model is initialized with weights pre-trained
on ImageNet (Deng et al. 2009), and Adam optimizer
(Kingma and Ba 2014) has been used where the initial
learning rate is 0.0001 and the weight decay is 0.0002.

Baseline Comparison
We chose two representative structures ResNet-50 and
GoogLeNet-v2 as our baselines, and used the regression loss
in our model to be their cost functions. To be fair, we also
conducted experiments of using siamese structure on these
two networks and added corresponding loss to their cost
functions (Table 1).

Figure 5 and Figure 6 show the statistics of the MAE of
the baselines and our method. These results demonstrate that

Table 1: Performance Comparison with Baselines
Method w/wo Sia MAE PA (%)

ResNet-50 no 3.50 69.36
ResNet-50 yes 3.30 70.08
GoogLeNet-v2 no 3.92 70.36
GoogLeNet-v2 yes 3.25 70.72
PSENet(ours) 2.21 77.87
w/wo denotes with/without.

Figure 5: Comparison of the box-plot chart in terms of aver-
age MAE of five validation sets. We separately calculate the
Median, Quartile, and Extreme Points for samples in differ-
ent score ranges: 0-5, 5-10, 10-15 and 15-20.

our method could generate reasonable scores in most cases,
and it clearly outperforms the other two methods.

However, as reflected by Figure 7, the extreme cases
whose score range is bigger than 20, are obviously difficult
to evaluate. Excluding these extreme samples, the MAE of
our method could decrease from 2.21 to 1.98. A possible
reason for this situation is the low occurrence rate of ex-
tremely severe cases in the real world, and thus the data of
such samples is insufficient.

Ablation Study
The main idea of our method lies in score refine module and
siamese structure. Next, we made ablation studies on each
of them.

Table 2: Ablation Study Results
Model fp/srm w/wo Sia MAE PA (%)

PSENet fp no 3.27 71.32
PSENet srm no 2.76 76.96
PSENet fp yes 3.03 73.76
PSENet srm yes 2.21 77.87
fp denotes feature pyramid;
srm denotes score refine module.



Figure 6: Comparison of the bar chart in terms of average
MAE of five validation sets. We separately calculate the
MAE for samples in different score ranges: 0-5, 5-10, 10-
15 and 15-20.

Figure 7: Comparison of the box plot char and bar chart in
terms of MAE for samples with annotation score larger than
20.

Score refine module To evaluate its validity, we compared
the results of our model with and without score refine mod-
ules. In experiments without score refine modules, we di-
rectly used a global average pooling on five feature maps in
the feature pyramid to generate severity scores. Finally, we
used the same strategy to combine the resulting five scores to
generate the overall severity score. From the results shown in
Table 2, we can see that the method with score refine modu-
less perform better than its competitor. For example, without
siamese structure, the MAE of the model with score refine
modules improves by 0.51 against its competitor, and the PA
of the model with score refine modules increases by 5.64%
against its competitor. With siamese structure, the MAE and
the PA of the model with score refine modules improve by
0.82 and 4.11% against its competitor, respectively.

The performance gain comes from that the module uses a
skin lesion locating result as attention mask to alleviate the
impact from various noises, which makes the model focus
on skin lesions truely useful for severity evaluation task. We
visualized the attention mask in five score refine modules
in Figure 8. From the visualization results, we observe that
the module indeed pays more attention to the area with skin
lesions, meanwhile ignores most of background and normal
skin areas.

Figure 8: Localization results generated by five score refine
modules. The original sizes of these results are 100∗128, 50∗
64, 25 ∗ 32, 13 ∗ 16, and 7 ∗ 8, respectively. We resized them
to the resolution as same as the input images by Bicubic
Interpolation for better presentation. The darkness denotes
the element value from 0 to 1.

Siamese structure We used siamese network to handle
the problem of data insufficiency. Table 1 and Table 2 com-
pared the performance of different models with and with-
out siamese structure. In Table 2, without score refine mod-
ule, the model using siamese structure outperforms its com-
petitor: the MAE improves by 0.24 and the PA increases by
2.44%. With score refine module, the model using this struc-
ture improves the performance by 0.55 in terms of the MAE
and 0.91% in terms of the PA. These results clearly justify
the effectiveness of siamese structure in our model.

Conclusions
Quantitatively measuring the severity of Psoriasis is a cru-
cial task. The increase or decrease of severity can indicate
the progress of Psoriasis. If the score increases, which means
that the condition of a patient is getting worse, the dermatol-
ogist needs to take timely action, such as adjusting current
therapy; otherwise, it could cause serious complications.
Currently, PASI is the most frequently used metric to evalu-
ate Psoriasis severity. PASI is manually calculated by derma-
tologists which is time-consuming. Furthermore, the calcu-
lation of PASI includes 16 variables to be estimated which is
error-prone and can easily bring in variations. For the same
patient, different dermatologists may come up with different
results. Such inconsistency makes it hard to track Psoria-
sis progress. To overcome these drawbacks, we propose an
automatic method, PSENet. PSENet is an end-to-end frame-
work which generates a numeric severity score for an in-
put clinical image. PSENet introduces a specially designed
module, score refine module, to localize and evaluate sever-
ity of skin lesion. Furthermore, it uses siamese structure as
a training strategy to learn the difference between a pair of
images; thus reducing the dependency on larger amount of
labeled images. PSENet achieves the MAE of 2.21 and the
PA of 77.87%, outperforming baseline models. Using this
method, dermatologists could be relieved from the repetitive
and dull calculation process of PASI, and Psoriasis patients
could track their severity in a much more convenient way.

Acknowledgements
This work is supported in part by the National Key Re-
search and Development Program of China under Grant
No.2018YFC0117000, in part by the National Natural Sci-
ence Foundation of China under Grant No.81573049, and in
part by the Natural Science Foundation of Hunan Province
of China under Grant No.2018JJ3689.



References
Ahmand, M., and Ihtatho, D. 2009. Objective assessment of
psoriasis erythema for pasi scoring. J. Med. Eng. Technol.
Berth-Jones, J.; Grotzinger, K.; Rainville, C.; Pham, B.;
Huang, J.; Daly, S.; Herdman, M.; Firth, P.; and Hotchkiss,
K. 2006. A study examining inter-and intrarater reliability
of three scales for measuring severity of psoriasis: Psoriasis
area and severity index, physician’s global assessment and
lattice system physician’s global assessment. British Jour-
nal of Dermatology 155(4):707–713.
Bertinetto, L.; Valmadre, J.; Henriques, J. F.; Vedaldi, A.;
and Torr, P. H. 2016. Fully-convolutional siamese networks
for object tracking. In European conference on computer
vision, 850–865. Springer.
Bromley, J.; Guyon, I.; LeCun, Y.; Säckinger, E.; and Shah,
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