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Abstract—A considerable number of surrogate-assisted evolu-
tionary algorithms (SAEAs) have been developed to solve ex-
pensive optimization problems (EOPs) with continuous objective
functions. However, in the real-world applications, we may face
EOPs with discontinuous objective functions, which are also
called EOPs with discontinuous responses (EOPDRs). Indeed,
EOPDRs pose a great challenge to current SAEAs. In this
paper, a surrogate-assisted differential evolution (DE) algorithm
with region division is proposed, named ReDSADE. ReDSADE
includes three main strategies: the region division strategy, the
Kriging-based search, and the radial basis function (RBF)-based
local search. In the region division strategy, we define a new
distance measure, called the objective-decision distance. Based on
this distance, the evaluated solutions are partitioned into several
clusters, and several support vector machine (SVM) classifiers
are trained to classify them. These SVM classifiers divide the
decision space into several subregions, with the aim of making
the objective function continuous in them. In the Kriging-based
search, a Kriging model is established in each subregion and
combined with DE to search for the optimal solution. In the RBF-
based local search, DE is coupled with RBF to search around
the best solution found so far, thus accelerating the convergence.
By combining these three strategies, ReDSADE is able to solve
EOPDRs with limited function evaluations. Three set of test
problems and a real-world application are utilized to verify
the effectiveness of ReDSADE. The results demonstrate that
ReDSADE exhibits good convergence accuracy and convergence
speed.

Index Terms—Surrogate-assisted evolutionary algorithms, dif-
ferential evolution, expensive optimization problems, discontinu-
ous response, region division

I. INTRODUCTION

MANY real-world optimization problems have black-
box and time-consuming objective functions and/or

constraints [1], [2], which are known as expensive optimization
problems (EOPs). Although evolutionary algorithms (EAs)
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are good at solving black-box optimization problems, they
usually require tens of thousands of function evaluations
(FEs) to obtain the near-optimal solution [3]–[5]. To overcome
this shortcoming, researchers have developed numerous new
methods to exploit computationally cheap surrogate models
to replace a part of time-consuming exact FEs in the EA
community, which are the so-called surrogate-assisted EAs
(SAEAs). During the past fifteen years, a considerable num-
ber of SAEAs have been proposed to solve different kinds
of EOPs, e.g., single-objective EOPs [6]–[14], multi/many-
objective EOPs [15]–[23], and combinatorial EOPs [24], [25].

Most of current SAEAs consider that the objective functions
of EOPs are continuous. However, in the real world, an EOP
may have a discontinuous objective function, which is also
termed as an EOP with discontinuous response (EOPDR). As
introduced in Section V, the lightweight and crashworthiness
design of the front bumper in an automobile is a typical EOP-
DR. With the change of a design variable, the front bumper
may exhibit different deformation modes, which causes that
the objective function is discontinuous. The mathematical
model of an EOPDR is expressed as follows:

min : f(x)

s.t. Li ≤ xi ≤ Ui, i = 1, . . . , D

f(x) is discontinuous
(1)

where x = (x1, . . . , xD) is a D-dimensional decision vector,
Li and Ui are the lower and upper bounds of the ith decision
variable, respectively, and f(x) is the objective function.
Different from common EOPs, f(x) is discontinuous within
the decision space of an EOPDR. In this paper, we concentrate
mainly on the jump discontinuity since it is the most common
situation in the real world [26].

Current SAEAs may not be suitable for EOPDRs. The
reason is that most of the surrogate models employed by them,
such as polynomial regression [27], support vector machine
(SVM) [28], radial basis function (RBF) [14], artificial neural
network [29], and Kriging [30], assume that the approximated
objective functions are continuous [4], [5], [12]. As a re-
sult, the capability of these surrogate models to approximate
objective functions with discontinuous responses is limited.
Therefore, solving EOPDRs by using these surrogate models
directly may mislead the optimization process. Researchers
have made some attempts to address this issue. However,
they mainly discuss how to establish surrogate models for
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discontinuous objective functions, and rarely consider how to
combine surrogate models with EAs to obtain a high-quality
solution of an EOPDR by using limited FEs [31]–[33].

Based on the above considerations, a surrogate-assisted dif-
ferential evolution (DE) algorithm with region division, called
ReDSADE, is proposed in this paper. ReDSADE includes
three main strategies: 1) the region division strategy, 2) the
Kriging-based search, and 3) the RBF-based local search. The
main contributions of this paper can be summarized as follows:

• In the region division strategy, a new distance measure
is proposed. Based on this distance, the database, which
includes the solutions evaluated by the original objective
function, are partitioned into several clusters through the
density-based spatial clustering of applications with noise
(DBSCAN) [34]. Afterwards, a SVM classifier is con-
structed to distinguish one cluster from the other clusters
in the decision space. As a result, the SVM classifiers
divide the decision space into several subregions, with
the aim of making the objective function continuous in
them.

• The Kriging-based search is proposed to search for the
optimal solution. At each generation, for each subregion,
a Kriging model is established and a subpopulation is
produced based on the corresponding cluster. Then, DE
is used to optimize the expected improvement (EI) func-
tion constructed over each Kriging model. After several
iterations, the solution with the best EI value is selected
from all the subpopulations and evaluated by the original
objective function.

• The RBF-based local search is designed to accelerate
the convergence. At each generation, a RBF model is
established based on the solutions close to the best
solution found so far. Meanwhile, DE is used to optimize
the RBF function. Finally, the solution with the best
RBF function value is evaluated by the original objective
function.

In the experiments, three sets of test problems are designed
to systematically study the performance of ReDSADE. The
performance of ReDSADE is better than that of three state-
of-the-art algorithms. Moreover, ReDSADE is applied to solve
a real-world EOPDR, i.e., the lightweight and crashworthiness
design of the front bumper in an automobile. Compared with
EGO [35], ReDSADE is able to obtain a better design result.

The rest of this paper is organized as follows. Section II
introduces DE, SVM, Kriging, RBF, and DBSCAN. The pro-
posed algorithm, i.e., ReDSADE, is elaborated in Section III.
The experimental studies are carried out in Section IV. In
Section V, ReDSADE is applied to a real-world EOPDR.
Finally, Section VI concludes this paper.

II. RELATED TECHNIQUES

A. DE

DE is a popular population-based optimizer [36]–[38]. It
consists of the following four operators: initialization, muta-
tion, crossover, and selection.

First, in the initialization operator, ps solutions are randomly
produced from the decision space:

xi = (xi,1, . . . , xi,D), i = 1, . . . , ps (2)

where xi is the ith solution.
Then, a mutant vector vi = (vi,1, . . . , vi,D) is created for

xi by a mutation operator. The most commonly used mutation
operator is DE/rand/1, which is formulated as:

vi = xr1 + F · (xr2 − xr3) (3)

where r1, r2, and r3 are three different integers randomly
selected from {1, . . . , ps} \ {i}, and F is the scaling factor.

Afterwards, by using the binomial crossover, a trial vector
ui = (ui,1, . . . , ui,D) is generated based on xi and vi:

ui,j =

{
vi,j , if randj < CR or j = jrand

xi,j , otherwise
(4)

where i = 1, . . . , ps, j = 1, . . . , D, CR ∈ [0, 1] is the
crossover control parameter, randj is a uniformly distributed
random number between 0 and 1, and jrand is an integer
randomly selected from {1, . . . ,D}.

Finally, the selection operator is implemented, in which
the better one between xi and ui is selected into the next
generation:

xi =

{
ui, if f(ui) ≤ f(xi)
xi, otherwise

(5)

B. SVM

SVM aims to find the optimal separating hyperplane to
distinguish solutions in two different classes [39], [40]. In
principle, SVM maximizes the margin around the separating
hyperplane, and the final classification result is determined by
a subset of training solutions called support vectors. When
facing linear inseparable solutions, a SVM classifier employs
a kernel function to convert the input solutions to a linear sepa-
rable form. Based on a database D1 = {(xi, li)|i = 1, . . . , N}
(li ∈ {+1,−1} represents the label of a solution xi), SVM
classifies linear inseparable solutions as follows:

f̂svm(x) = sign

(
N∑
i=1

αiliφ(xi, x) +

N∑
i=1

αili

)
(6)

where f̂svm(x) is the predicted label, φ(·, ·) is the kernel
function1, and αi (i ∈ {1, . . . , N}) is the parameter that can
be obtained by solving the following optimization problem:

max :

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαj liljφ(xi, xj)

s.t. αi ≥ 0, i = 1, . . . , N
N∑
i=1

αili = 0

(7)

(7) can be solved via the sequence minimum optimization [41].

1In this paper, the Gaussian kernel function is adopted.
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C. Kriging

The Kriging model is a surrogate model which can not only
predict the objective function value of a solution, but also
provide the uncertainty of the predicted value. It assumes that
the objective function has the following form:

f(x) = µ+N (0, s2) (8)

where µ is the mean of the Gaussian process, and N (0, s2) is
a Gaussian distribution with mean zero and variance s2.

For two solutions xi and xj , the correlation between them
is defined as:

Corr(xi, xj) = exp

(
−

D∑
k=1

θk|xi,k − xj,k|2
)

(9)

where θk (0 ≤ θk < ∞ and k ∈ {1, ..., D}) is the weight
coefficient. Based on a database D2 = {(xi, yi)|i = 1, . . . , N}
(yi is a real-valued number and represents the objective
function value of a solution xi), values of θk can be obtained
by the maximum likelihood estimation:

max
θ

(
− ln σ̂2 + ln |A|

2

)
(10)

where

µ̂ =
1TA−1y
1TA−11

(11)

σ̂2 =
(y− 1µ̂)TA−1(y− 1µ̂)

N
(12)

Note that A is a N×N matrix with entry Aij = Corr(xi, xj),
y = (y1, . . . , yN )T , and 1 is a N-dimensional vector of
ones. In this paper, DE is used to optimize (10). DE’s two
parameters, i.e., F and CR, are set to 0.5 and 0.9, respectively,
and the maximum number of FEs (denoted as L) is set to 500.

Subsequently, the predicted value and uncertainty provided
by a Kriging model are calculated as follows [35]:

f̂kri(x) = µ̂+ aTA−1(y− 1µ̂) (13)

ŝ2kri(x) = σ̂2

(
1− aTA−1a +

(1− 1TA−1a)2

1TA−11

)
(14)

where a is a N-dimensional vector with entry ai =
Corr(x, xi).

Based on (13) and (14), the EI value of a solution x can be
calculated as [19], [20], [42]:

EI(x) = (fmin − f̂kri(x))Φ

(
fmin − f̂kri(x)

ŝkri(x)

)

+ ŝkri(x)φ

(
fmin − f̂kri(x)

ŝkri(x)

) (15)

where fmin is the objective function value of the best solution
in D2, and Φ(·) and φ(·) are the Gaussian cumulative distri-
bution function and probability density function, respectively.

D. RBF

RBF is a simple and widely used surrogate model. In
essence, it is composed of multiple kernel functions. It can
also be treated as a single-layer neural network. On the basis
of a database D3 = {(xi, yi)|i = 1, . . . , N} (yi is a real-
valued number and represents the objective function value of a
solution xi), it approximates a continuous function as follows:

f̂rbf (x) =

N∑
i=1

wiφ(xi, x) (16)

where wi and φ(·, ·) are the weight coefficient and kernel
function, respectively. The weight vector w = (w1, ..., wN )
is calculated as follows:

w = (ΦTΦ)−1ΦT y (17)

where y = (y1, . . . , yN )T and Φ is the matrix computed as
follows:

Φ =

φ(x1, x1) · · · φ(x1, xN )
...

. . .
...

φ(xN , x1) · · · φ(xN , xN )

 (18)

E. DBSCAN

DBSCAN is a density-based clustering method, the idea of
which is to form clusters that are dense enough and parti-
tion different clusters by the sparse regions [34]. DBSCAN
is implemented based on two kinds of parameters: ε and
MinPts. Actually, different clusters can have different ε and
MinPts values, such as in [43]. In DBSCAN, the following
four concepts are introduced:

Definition 1: ε-neighborhood: The ε-neighborhood of a
solution x is defined as: Nε(x) = {y|dist(x, y) ≤ ε}, where
dist(·, ·) is the distance function.

Definition 2: Directly density-reachable: A solution x is
directly density-reachable from another solution y, if 1) x ∈
Nε(y) and 2) |Nε(y)| ≥ MinPts, where MinPts is a
parameter and |Nε(y)| is the size of Nε(y).

Definition 3: Density-reachable: A solution x is density-
reachable from another solution y, if there is a chain of
solutions (denoted as x1, . . . , xz), x = x1, y = xz , and xi
is directly density-reachable from xi+1.

Definition 4: Density-connected: A solution x is density-
connected to another solution y, if there is a solution z such
that both x and y are density-reachable from z.

Based on the above concepts, DBSCAN defines the cluster
and noise as follows:

Definition 5: Cluster: Let D4 = {xi|i = 1, . . . , N} be a
database. A cluster C is defined as: 1) ∀ x, y: if x ∈ C and
y is density-reachable from x, then y ∈ C, and 2) ∀ x, y: if
x ∈ C and y is density-connected to x, then y ∈ C.

Definition 6: Noise: Let C1, C2, . . . be the clusters of D4.
Noise is defined as: noise = {x ∈ D4|∀i : x /∈ Ci}.

According to the above definitions, DBSCAN traverses all
the solutions in D4, and partitions them into different clusters.
In this paper, we utilize the self-adaptive strategy in [43] to
adjust the parameters of DBSCAN. In this strategy, multiple
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(a) (b)

Fig. 1. Approximation of the objective function of an EOPDR by RBF. (a)
Approximation of the objective function of an EOPDR in the whole decision
space. (b) Approximation of the objective function of an EOPDR in the two
subregions, respectively.

parameters, i.e., εj and MinPtsj (j = 1, 2, . . .), are set as
follows:
• The values of εj (j = 1, 2, . . .) are determined through

the following steps. Firstly, for each solution in D4,
the average distance from it to its k nearest neighbors
(denoted as KD) is calculated. Afterwards, the KD
values of all solutions are sorted in the ascending order.
Next, the slopes of the first pair of neighbors and the
second pair of neighbors are calculated, and if there is
a large change between these two neighboring slopes2,
ε1 is equal to the second KD value. Subsequently, the
same process is implemented for the remaining pairs of
neighbors. As a result, {εj |j = 1, 2, . . .} can be obtained.

• MinPtsj is calculated as follows:

MinPtsj =

∑N
n=1 PnIn∑N
n=1 In

(19)

In =

{
1, if εj−1 ≤ KDn ≤ εj
0, otherwise

(20)

where Pn is the number of solutions in the εj-
neighborhood of the nth solution, and KDn is the KD
value of the nth solution.

After obtaining the parameters of DBSCAN, we firstly clus-
ter the solutions in D4 by using ε1 and MinPts1. Afterwards,
the remaining solutions in D4 are clustered by using ε2, ε3, . . .
and MinPts2,MinPts3, . . . sequentially.

III. PROPOSED METHOD

A. Motivation

In general, even though the objective function of an EOP-
DR is discontinuous within the whole decision space, we
could find several subregions and make the objective func-
tion continuous in them. Compared with approximating the
objective function in the whole decision space, approximating
it in these subregions separately may provide more accurate
predicted values. An example in Fig. 1 is used to illustrate
this phenomenon. In Fig. 1, we employ RBF to approximate

2When the change between these two neighboring slopes is greater than
0.2, it is considered that there is a large change.

Algorithm 1 ReDSADE
Input: H and K
Output: the best solution in D
1: Initialize D, which contains N solutions produced from

the decision space by Latin hypercube design and their
original objective function values;

2: t = N; // t is the number of FEs
3: while t < MaxFEs do
4: [C, S] ← ReD(D);
5: D ← Kriging-S(D, C, S, H);
6: t = t + 1;
7: D ← RBF-LS(D, K);
8: t = t + 1;
9: end while

the objective function of an EOPDR. In Fig. 1(a), RBF is
directly used to approximate it in the whole decision space. It
can be observed that, under this condition, RBF cannot reflect
the landscape of the objective function well. In contrast, as
shown in Fig. 1(b), when establishing RBF in two subregions
(i.e., [0, 7.8] and (7.8, 10]) respectively, the landscape of the
objective function can be approximated well. Therefore, if
we could divide the decision space into several subregions
reasonably and establish surrogate models in these subre-
gions respectively, the prediction capability could be greatly
improved. Motivated by this, ReDSADE is proposed in this
paper.

B. General Framework of ReDSADE

The symbols used in ReDSADE are introduced as follows:
• D: the database containing the evaluated solutions and

their original objective function values. Inspired by [20],
to save the time consumed by establishing surrogate
models, D contains at most 300 solutions. Once the size
of D is bigger than 300, the worst solutions in terms of
the original objective function value in D are deleted;

• C: the set containing all the clusters, i.e., C =
{C1, . . . , Cc}, where c is the number of clusters;

• S: the set containing all the SVM classifiers, i.e., S =
{SVM1, . . . , SVMc};

• t: the number of FEs.
The parameters used in ReDSADE are summarized as

follows:
• H: the maximum population size in the Kriging-based

search;
• K: the population size in the RBF-assisted local search.
The framework of ReDSADE is given in Algorithm 1.

At first, N solutions are produced from the decision space
by Latin hypercube design: x1, . . . , xN . These solutions are
evaluated by the original objective function. Subsequently,
these solutions and their original objective function values
are saved in D. During the evolution, three strategies are
implemented iteratively until the maximum number of FEs
(denoted as MaxFEs) is reached: 1) the region division
strategy (line 4), 2) the Kriging-based search (line 5), and
3) the RBF-based local search (line 7).
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Algorithm 2 ReD
Input: D
Output: C and S
1: Normalize all the solutions in D according to (21) and

(22);
2: Partition the solutions in D into c clusters based on ODD

and DBSCAN: C = {C1, . . . , Cc};
3: for i = 1, . . . , c do
4: Set the labels of the solutions in Ci to +1;
5: Set the labels of the solutions in {C1, . . . , Ci−1, Ci+1,

. . . , Cc} to −1;
6: Train a SVM classifier that can distinguish the solutions

with the label of +1 from the solutions with the label
of −1, and record this classifier as SVMi;

7: end for
8: Reserve all the SVM classifiers into S: S =
{SVM1, . . . , SVMc}.

In the region division strategy, the solutions in D are firstly
partitioned into c clusters (i.e., C = {C1, . . . , Cc}), and then c
SVM classifiers (i.e., S = {SVM1, . . . , SVMc}) are trained
according to these c clusters. Each of the SVM classifiers
can determine a subregion. The Kriging-based search aims to
search for the optimal solution in the subregions determined
by the SVM classifiers. In the Kriging-based search, DE is
employed as the search engine, and a parameter (i.e., H)
determines how DE is implemented. The purpose of the RBF-
based local search is to accelerate the convergence. In the
RBF-based local search, we also employ DE as the search
engine, and a parameter (i.e., K) determines the implementa-
tion of DE. Note that both the Kriging model and the RBF
model are established based on the solutions in D. Once D
has been updated, both of them are also reestablished. At
each generation, both the Kriging-based search and the RBF-
based local search consume one FE since only one solution
is evaluated by the original objective function. Next, we will
introduce these three strategies in detail.

C. Region Division Strategy

The process of the region division strategy is described
in Algorithm 2. Firstly, both the decision variables and the
objective function values of the solutions in D are normalized
as follows:

x′i,j =
xi,j − Lj
Uj − Lj

(21)

f ′i =
fi − fmin

fmax − fmin
(22)

where xi,j and x′i,j are the jth decision variable of the ith
solution before and after normalization, respectively, fi and
f ′i are the objective function values of the ith solution before
and after normalization, respectively, and fmin and fmax
are the minimum and maximum objective function values in
D, respectively. Then, a new distance measure, called the
objective-decision distance (denoted as ODD), is proposed.

Fig. 2. An example to illustrate the working principle of the region division
strategy. f(x) is an one-dimensional discontinuous objective function and A-I
are nine solutions.

(a) (b) (c)

Fig. 3. Subregions determined by the three SVM classifiers. (a) The subregion
determined by SVM1. (b) The subregion determined by SVM2. (c) The
subregion determined by SVM3.

ODD between any two normalized solutions (x′r1, f ′r1) and
(x′r2, f ′r2) is calculated as follows:

ODD((x′r1, f
′
r1), (x′r2, f

′
r2))

=
√

(||x′r1 − x′r2||)2 + (f ′r1 − f ′r2)2
(23)

where || · || is the vector norm. It can be observed from (23)
that ODD considers the difference of two solutions in both
the decision space and the objective space. The characteristics
of ODD are summarized as follows:
• If two solutions are close to each other in both the

decision space and the objective space, they tend to have
a small ODD value.

• For a discontinuous objective function, it is possible that
two solutions are close to each other in the decision space,
but their objective function values are quite different.
Under this condition, they may have a big ODD value.
Thus, ODD has the capability to distinguish them.

Based on ODD, DBSCAN is used to partition the solutions
in D into c clusters: C1, . . . , Cc. Afterwards, c SVM classifiers
are trained (line 3 to line 7). Note that each SVM classifier
can determine a subregion.

An example is designed to illustrate the working principle of
the region division strategy. As shown in Fig. 2, f(x) is an one-
dimensional discontinuous objective function. Suppose that D
contains nine solutions: A, B, C, D, E, F, G, H, and I. From
Fig. 2, A, B, and C are close to each other in both the decision
space and the objective space. Therefore, they form a high-
density area. Despite D, E, F, G, H, and I are close to each
other in the decision space, the objective function values of {D,
E, F} and {G, H, I} are quite different. Therefore, these six
solutions form two other high-density areas. As a result, based
on ODD, DBSCAN partitions these nine solutions into three
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Fig. 4. Approximation of f(x) by RBF. (a) Approximation of f(x) in the
whole decision space. (b) Approximation of f(x) in the three subregions
determined by the three SVM classifiers respectively.

Algorithm 3 Kriging-S
Input: D, C, S, and H
Output: D
1: for i = 1 : c do
2: Establish a Kriging model based on the solutions in Ci;

3: Select the best m = min(H, |Ci|) solutions from Ci to
form a subpopulation: SP i = {sxi,1, . . . , sxi,m};

4: for iter = 1 : max iter do
5: for j = 1 : m do
6: Generate an offspring solution gxi,j for sxi,j via

the mutation and crossover operators of DE;
7: while gxi,j is not in the subregion determined by

SVMi do
8: Regenerate an offspring solution gxi,j ;
9: end while

10: Evaluate the EI function values of sxi,j and gxi,j
based on (15);

11: If EI(gxi,j) > EI(sxi,j), replace sxi,j with gxi,j ;
12: end for
13: end for
14: end for
15: Select the solution with the best EI value from
{SP1, . . . , SPc} and record it as xs;

16: Evaluate xs by the original objective function, and reserve
xs and its original objective function value into D.

Algorithm 4 RBF-LS
Input: D
Output: D
1: Select K solutions closest to xbest in D based on ODD;
2: Establish a RBF model based on these K solutions;
3: Employ these K solutions as the initial population, and

optimize the RBF function in (16) by using DE;
4: Record the best solution obtained by DE as xls;
5: Evaluate xls by the original objective function, and reserve

xls and its original objective function value into D.

clusters: cluster I (A, B, and C), cluster II (D, E, and F), and
cluster III (G, H, and I). Subsequently, three SVM classifiers
(i.e., SVM1, SVM2, and SVM3) are trained according to

these three clusters, respectively. Among them, SVM1 can
distinguish cluster I from the others, SVM2 can distinguish
cluster II from the others, and SVM3 can distinguish cluster
III from the others. These three classifiers determine three
subregions (i.e., subregion I, subregion II, and subregion III),
as shown in Fig. 3. Note that, f(x) is continuous within
these three subregions. Therefore, approximating f(x) in them
separately is more accurate than approximating f(x) in the
whole decision space, as shown in Fig. 4.

D. Kriging-Based Search
Algorithm 3 describes the process of the Kriging-based

search. In this strategy, for the ith (i ∈ {1, . . . , c}) subregion
determined by the ith SVM classifier, a Kriging model is
established based on the solutions in Ci (line 2). Subsequently,
the best m solutions are selected from Ci: sxi,1, . . . , sxi,m,
where m = min(H, |Ci|) and |Ci| is the size of Ci. These
solutions form a subpopulation: SP i = {sxi,1, . . . , sxi,m}
(line 3). Afterwards, for the ith subregion, based on SP i,
DE is used to optimize the EI function constructed over
the ith Kriging model in (15) (line 4 to line 13). After
several iterations, we select the solution with the best EI value
(denoted as xs) from all the subpopulations (line 15). Then,
xs is evaluated by the original objective function, and xs and
its objective function value are reserved into D (line 16).

E. RBF-Based Local Search
The RBF-based local search aims to find a more promising

solution around the current best solution in D (denoted as
xbest), thus accelerating the convergence. The process of the
RBF-based local search is shown in Algorithm 4. Firstly,
based on ODD, K solutions closest to xbest are selected
from D. Then, by employing these K solutions as the initial
population, a RBF model is established and DE is used to
optimize the RBF function in (16). As a result, the solution
with the best RBF function value is obtained, denoted as xls.
Finally, xls is evaluated by the original objective function, and
xls and its original objective function value are reserved into
D.

F. Computational Complexity of ReDSADE
In ReDSADE, the region division strategy adopts DBSCAN

to cluster the solutions in D and trains c SVM classifiers. Since
the computational complexity of both DBSCAN and SVM
is O(DN2) [44], [45], the computational complexity of the
region division strategy is O((c+ 1) ·DN2). In the Kriging-
based search, c Kriging models are established to approximate
the objective function. Assume that Ni (i ∈ {1, . . . , c}) solu-
tions are used to establish the ith Kriging model, the compu-
tational complexity of establishing all the c Kriging models is
O(
∑c
i=1 LDN

3
i ) ≤ O(LD(

∑c
i=1Ni)

3) = O(LDN3) [46].
Moreover, the computational complexity of DE used in the
Kriging-based search is negligible. Overall, the computational
complex of the Kriging-based search is O(LDN3). Similarly,
since the computational complexity of the RBF model is
O(DK3), the computational complexity of the RBF-based lo-
cal search is also O(DK3) [46]. As a result, the computational
complexity of ReDSADE is O(LDN3 +DK3).
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Evolution of ReDSADE over a typical run on the constructed artificial
test problem. (a) The 1st generation in a 3D view. (b) The 1st generation in
the decision space. (c) The 120th generation in a 3D view. (d) The 120th
generation in the decision space. (e) The 200th generation in a 3D view. (f)
The 200th generation in the decision space.

IV. EXPERIMENTAL STUDIES

A. Proof-of-Principle Results

An artificial test problem3 is constructed to explain the
principle of ReDSADE:

min :f(x) =

{
(x1 − 5)2 + (x2 − 4)2 + 20, x1 < 5

(x1 − 5)2 + (x2 − 6)2 − 30, x1 ≥ 5

x1, x2 ∈ [0, 10]

(24)

The objective function of this artificial test problem is discon-
tinuous at x1 = 5. Its optimal solution and optimal objective
function value are (5, 6) and -30, respectively.

Fig. 5 provides a typical run derived from ReDSADE
on solving this artificial test problem. At first, ReDSADE
generates 150 solutions in the whole decision space. Then,
DBSCAN partitions these solutions into two clusters, as shown
in red ‘∗’ and blue ‘·’ in Fig. 5(a) and Fig. 5(b), respectively.
Based on these two clusters, two SVM classifiers (i.e., the red

3In the community of evolutionary computation, to test the performance of
an algorithm designed for EOPs, a common way is to use some inexpensive
test problems and limit the number of FEs while ignoring the time cost. By
this way, the performance of an algorithm designed for EOPs can be evaluated
to a certain degree.

line and the blue line in Fig. 5(b) are trained, and the whole
decision space is divided into two subregions (i.e., the red
subregion and the blue subregion in Fig. 5(b). Subsequently,
two Kriging models are trained in these two subregions,
respectively. Afterwards, DE is utilized to optimize the EI
functions in these two subregions. Although a solution has
a high variance could also have a high EI value, during the
evolution, the population will be gradually guided toward
the subregion surrounding the optimal solution by optimizing
the EI functions. As a result, the search will be gradually
carried out on the blue subregion, since the optimal solution is
located in it. To better illustrate this phenomenon, in Fig. 5(c),
Fig. 5(d), Fig. 5(e), and Fig. 5(f), we exhibit the best 150
solutions in terms of the original objective function value in D
at the 120th generation and the 200th generation, respectively.
As shown in Fig. 5(c) and Fig. 5(d), ReDSADE focuses on
finding the optimal solution in the blue subregion. Finally,
at the 200th generation, ReDSADE converges to the optimal
solution, as shown in Fig. 5(e) and Fig. 5(f).

B. Test Problems and Parameter Settings
In this paper, three sets of test problems were adopted

to test the performance of ReDSADE. The first set consists
of ten test problems (denoted as S1-F1–S1-F10). They were
constructed based on the simple test problems collected in
IEEE CEC2005 [47]. The second set also consists of ten test
problems (denoted as S2-F1–S2-F10). They were construct-
ed based on the complex test problems collected in IEEE
CEC2005. Compared with the first set of test problems, the
test problems in the second set have smaller gap sizes in the
objective space, and the discontinuity of them depends on
more decision variables. All the test problems in the first and
second sets have discontinuous objective functions. The third
set is the BBOB test problems developed in [48]. It consists
of 24 test problems. The details of these three sets of test
problems are summarized in the supplementary file.

In the experimental study, the size of the initial D (i.e., N )
was set to 150 and MaxFEs was set to 600. For DE, F
was set to 0.5 and CR was set to 0.9. In the Kriging-based
search, H was set to 50 and max iter was set to 20. In the
RBF-based local search, K was set to 50.

To evaluate the performance of different algorithms, the
following three statistical values were calculated:
• Mean Function Error Value (MFEV): The mean of the

function error value |f(xbest) − f(x∗)| provided by an
algorithm over 20 independent runs, where xbest is the
best solution provided by the algorithm and x∗ is the
optimal solution. When the optimal solution of a test
problem is known, this value was calculated. Note that
MFEV is used for the first and third sets of test problems.

• Mean Objective Function Value (MOFV): The mean of
the objective function value provided by an algorithm
over 20 independent runs. When the optimal solution of a
test problem is unknown, this value was calculated. Note
that MOFV is used for the second set of test problems.

• Standard Deviation (Std Dev): The standard deviation of
MFEV/MOFV values provided by an algorithm over 20
independent runs.
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TABLE I
RESULTS OF EGO, CAL-SAPSO, GLOSADE, AND REDSADE ON THE FIRST SET OF TEST PROBLEMS. THE WILCOXON’S RANK-SUM TEST AT A 0.05

SIGNIFICANCE LEVEL WAS PERFORMED BETWEEN REDSADE AND EACH OF EGO, CAL-SAPSO, AND GLOSADE.

Problem EGO CAL-SAPSO GLoSADE ReDSADE
MOFV ± Std Dev MOFV ± Std Dev MOFV ± Std Dev MOFV ± Std Dev

S1-F1 8.96E+02±4.47E+02 + 1.63E+03±8.34E+02 + 5.71E+01±1.20E+01 + 1.08E-04±2.05E-04
S1-F2 2.14E+03±8.28E+02 + 7.95E+03±3.06E+03 + 8.99E+02±7.09E+02 + 1.09E+00±7.44E-01
S1-F3 4.60E+01±2.47E+01 + 7.34E+01±5.14E+01 + 3.18E+00±3.28E+00 + 3.01E-09±3.72E-09
S1-F4 1.05E+01±7.96E+00 + 6.23E+01±4.74E+01 + 5.59E-01±4.05E-01 + 3.72E-10±7.44E-10
S1-F5 4.31E+02±3.27E+02 + 9.70E+02±2.24E+02 + 9.32E+01±4.40E+01 + 1.81E-04±3.60E-04
S1-F6 9.58E-03±1.00E-02 + 2.60E-02±1.19E-02 + 2.33E-03±2.57E-03 + 7.87E-09±1.16E-08
S1-F7 1.96E-02±9.41E-03 + 7.44E-02±4.92E-02 + 9.27E-03±9.93E-03 + 1.52E-04±1.11E-04
S1-F8 2.58E-02±7.57E-03 + 6.43E-02±8.79E-03 + 7.48E-03±5.86E-03 + 1.21E-04±1.25E-04
S1-F9 1.66E+02±7.96E+01 + 7.98E+02±2.79E+02 + 9.73E+00±1.36E+01 + 3.16E-07±5.29E-07
S1-F10 5.88E+02±2.83E+02 + 9.49E+02±1.66E+02 + 6.31E+01±3.19E+01 + 2.00E-02±2.96E-02
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150 200 250 300 350 400 450 500 550 600

FEs

10-4

10-2

100

102

104

M
F

E
V

 EGO
 CAL-SAPSO
 GLoSADE
 ReDSADE

(a)

150 200 250 300 350 400 450 500 550 600

FEs

10
0

10
2

10
4

10
6

M
F

E
V

 EGO

 CAL-SAPSO

 GLoSADE

 ReDSADE

(b)

150 200 250 300 350 400 450 500 550 600

FEs

10-5

100

M
F

E
V

 EGO
 CAL-SAPSO
 GLoSADE
 ReDSADE

(c)

150 200 250 300 350 400 450 500 550 600

FEs

10
-10

10
-5

10
0

M
F

E
V

 EGO

 CAL-SAPSO

 GLoSADE

 ReDSADE

(d)

150 200 250 300 350 400 450 500 550 600

FEs

10
-4

10
-2

10
0

10
2

10
4

M
F

E
V

 EGO

 CAL-SAPSO

 GLoSADE

 ReDSADE

(e)

150 200 250 300 350 400 450 500 550 600

FEs

10
-8

10
-6

10
-4

10
-2

10
0

M
F

E
V

 EGO

 CAL-SAPSO

 GLoSADE

 ReDSADE

(f)

150 200 250 300 350 400 450 500 550 600

FEs

10
-4

10
-3

10
-2

10
-1

10
0

M
F

E
V

 EGO

 CAL-SAPSO

 GLoSADE

 ReDSADE

(g)

150 200 250 300 350 400 450 500 550 600

FEs

10
-4

10
-3

10
-2

10
-1

10
0

10
1

M
F

E
V

 EGO

 CAL-SAPSO

 GLoSADE

 ReDSADE

(h)

150 200 250 300 350 400 450 500 550 600

FEs

10
-5

10
0

M
F

E
V

 EGO

 CAL-SAPSO

 GLoSADE

 ReDSADE

(i)

150 200 250 300 350 400 450 500 550 600

FEs

10
-2

10
0

10
2

10
4

M
F

E
V

 EGO

 CAL-SAPSO

 GLoSADE

 ReDSADE

(j)

Fig. 6. Evolution of MFEV provided by the four compared algorithms on the first set of test problems over 20 independent runs. (a) S1-F1. (b) S1-F2. (c)
S1-F3. (d) S1-F4. (e) S1-F5. (f) S1-F6. (g) S1-F7. (h) S1-F8. (i) S1-F9. (j) S1-F10.

In the experimental studies, the Wilcoxon’s rank-sum test at
a 0.05 significance level was implemented between ReDSADE
and each of its competitors to test the statistical significance.
In the following tables, “+”, “−”, and “≈” denote that
ReDSADE performs better than, worse than, and similar to
its competitor, respectively.

C. Comparison with Three State-of-the-Art SAEAs on the First
Set of Test Problems

ReDSADE was compared with three state-of-the-art
SAEAs: EGO [35], CAL-SAPSO [5], and GLoSADE [11].

EGO is a classical algorithm which has been applied to solve
many EOPs in the real world, CAL-SAPSO is a SAEA which
shows excellent performance on solving EOPs with continuous
responses, and GLoSADE is a SAEA which employs both
global and local surrogate models to deal with EOPs.

The results of EGO, CAL-SAPSO, GLoSADE, and ReD-
SADE on the first set of test problems are summarized in
Table I. It can be observed that ReDSADE achieves signif-
icantly better results than its three competitors. Specifically,
the MFEV values provided by ReDSADE are at least two
orders of magnitude smaller than those produced by EGO and
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CAL-SAPSO, and at least one order of magnitude smaller than
those resulting from GLoSADE. According to the Wilcoxon’s
rank-sum test, ReDSADE surpasses EGO, CAL-SAPSO, and
GLoSADE on all the ten test problems. In Fig. 6, we also
depict the evolution of MFEV provided by the four compared
algorithms on the ten test problems. From Fig. 6, ReDSADE
consistently has faster convergence speed than the three com-
petitors. The superiority of ReDSADE against EGO and CAL-
SAPSO can be attributed to the fact that these two competitors
establish surrogate models in the whole decision space and,
as a result, cannot approximate the objective function of an
EOPDR well. Although GLoSADE also combines a global
surrogate model with a local surrogate model to assist the
optimization, similar to EGO and CAL-SAPSO, GLoSADE
establishes the global surrogate model in the whole decision
space. Therefore, ReDSADE also obtains better results than
GLoSADE.

D. Comparison with Three State-of-the-Art SAEAs on the
Second Set of Test Problems with 10 and 30 Dimensions

Subsequently, the second set of test problems was utilized
to test the performance of ReDSADE. Considering that one
may be interested in the performance of ReDSADE on high-
dimensional EOPDRs, we also tested the performance of
ReDSADE on 30-dimensional test problems. The performance
of ReDSADE was compared with that of EGO, CAL-SAPSO,
and GLoSADE. The results of these four compared algorithms
are given in Table S-I and Table S-II of the supplementary file.

From Table S-I and Table S-II, overall, the performance
of ReDSADE is superior to that of the three competitors. To
be specific, for the 10-dimensional test problems, ReDSADE
obtains the best MOFV values on seven test problems. Howev-
er, EGO and CAL-SAPSO produce better MOFV values than
ReDSADE on only one and two test problems, respectively.
Moreover, GLoSADE cannot provide better MOFV value than
ReDSADE on any test problem. For the 30-dimensional test
problems, ReDSADE achieves the best MOFV values on seven
test problems. It provides worse MOFV values than EGO and
CAL-SAPSO on only one and two test problems, respectively.
Similarly, GLoSADE fails to obtain better MOFV value than
ReDSADE on any test problem. According to the Wilcox-
on’s rank-sum test, for the 10-dimensional test problems,
ReDSADE performs better than EGO, CAL-SAPSO, and
GLoSADE on four, eight, and ten test problems, respectively.
In addition, for the 30-dimensional test problems, ReDSADE
beats EGO, CAL-SAPSO, and GLoSADE on six, eight, and
eight test problems, respectively.

E. Comparison with Three State-of-the-Art SAEAs on the 10-
Dimensional and 30-Dimensional BBOB Test Problems

Finally, the experiments were executed on the 10-
dimensional and 30-dimensional BBOB test problems, in
which we did not set any discontinuity, with the aim of
investigating the generality of ReDSADE. The results of EGO,
CAL-SAPSO, GLoSADE, and ReDSADE are presented in
Table S-III and Table S-IV of the supplementary file.

Fig. 7. TRB-based front bumper in an automobile [26].

Fig. 8. Thin zones, thick zones, and transition zones in a TRB.

From Table S-III and Table S-IV, ReDSADE also exhibits
better performance on solving the BBOB test problems. For
the 10-dimensional BBOB test problems, ReDSADE obtains
the best MFEV values on 14 test problems. With respect to
the 30-dimensional BBOB test problems, ReDSADE produces
the best results on 14 test problems. In Fig. S-I and Fig. S-
II of the supplementary file, we also depicted the evolution
of MFEV provided by the four compared algorithms on
the 10-dimensional and 30-dimensional BBOB test problems,
respectively. According to the Wilcoxon’s rank-sum test, for
the 10-dimensional BBOB test problems, ReDSADE performs
better than EGO, CAL-SAPSO, and GLoSADE on 17, 17,
and 21 test problems, respectively. In addition, for the 30-
dimensional BBOB test problems, ReDSADE outperforms
EGO, CAL-SAPSO, and GLoSADE on 13, 13, and 21 test
problems, respectively.

V. REAL-WORLD APPLICATION

To reduce the fuel consumption and improve the safety of an
automobile, it is desirable to design an automobile body with
low weight and high crashworthiness. The front bumper is
an important component to protect passenger from injury and
damage induced by severe collapse [49]. Commonly, a front
bumper is made by the equal constant thickness blanks. In
this paper, we try to use tailor rolled blanks (TRBs) instead of
the equal constant thickness blanks, thus further reducing the
weight and enhancing the crashworthiness of the front bumper
(as shown in Fig. 7). Such a lightweight and crashworthiness
design problem is a typical EOPDR. In Fig. 8, according to
the thicknesses of different zones, a TRB can be divided into
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Fig. 9. Three-point bending test [49].
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Fig. 10. Change of SEA according to t2 and two kinds of deformation modes.
(a) The response of SEA. (b) The first kind of deformation mode. (c) The
second kind of deformation mode.

thin zones, thick zones, and transition zones. By adjusting
the thicknesses of different zones, we can maximize the
specific energy absorption (SEA), i.e., the energy absorption
per unit weight, of a TRB-based front bumper in the three-
point bending test (as shown in Fig. 9). It should be noted that,
with the change of thicknesses, a TRB-based front bumper
may exhibit different deformation modes, which causes that
the response of SEA is discontinuous. For example, in Fig. 10,
we describe the change of SEA according to the thickness
of thick zones (i.e., t2). From Fig. 10(a), it can be observed
that the response of SEA is discontinuous at t2 = 2.2mm.
This is because when t2 ≤ 2.2mm, the deformation mode in
Fig. 10(b) happens, and when t2 > 2.2mm, the deformation
mode in Fig. 10(c) occurs.

(a)

(b)

(c)

Fig. 11. Structure of the considered TRB-based front bumper. (a) The total
structure. (b) The outer sheet (i.e., 1a). (c) The inner sheet (i.e., 1b).

Fig. 12. Finite element analysis model of the three-point bending test.

The structure of the considered TRB-based front bumper is
shown in Fig. 11. It consists of a curved front bumper and
two crash boxes. The curved front bumper includes an outer
sheet (i.e., 1a in Fig 11(a)) and an inner sheet (i.e., 1b in
Fig 11(a)). Both of these two sheets are made by TRBs. As
shown in Fig 11(b) and Fig 11(c), each sheet contains two
thin zones and one thick zone. The thicknesses of these zones
are considered as the decision variables, denoted as xo,thin,
xo,thick, xi,thin, and xi,thick. Specifically, xo,thin and xo,thick
are the thicknesses of the thin zone and the thick zones of
the outer sheet, respectively, and xi,thin and xi,thick are the
thicknesses of the thin zone and the thick zones of the inner
sheet, respectively. The finite element analysis model is shown
in Fig. 12. To optimize both the weight and crashworthiness
of the front bumper, SEA is employed as the indicator of
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Fig. 13. Evolution of the average SEA values derived from EGO and
ReDSADE.

TABLE II
THE ORIGINAL DESIGN AND THE BEST DESIGNS PROVIDED BY EGO AND

REDSADE.

Status Original Design EGO ReDSADE
xo,thin 1.50 mm 1.50 mm 1.50 mm
xo,thick 1.50 mm 0.78 mm 0.77 mm
xi,thin 1.50 mm 1.50mm 1.50 mm
xi,thick 1.50 mm 1.14 mm 1.07 mm
SEA 295.73 J/kg 383.79 J/kg 391.17 J/kg

lightweight and crashworthiness design [49]. The function
of SEA is formulated as: SEA(x) = EA(x)/M(x), where
EA(x) and M(x) are the energy absorption and mass of the
TRB-based front bumper, respectively. Both EA(x) and M(x)
are obtained by the finite element analysis. Thus, this design
problem can be described as follows:

max : SEA(x)

x = (xo,thin, xo,thick, xi,thin, xi,thick)

xo,thin, xo,thick, xi,thin, xi,thick ∈ [0.5, 1.5]

(25)

ReDSADE was applied to solve this design problem, and
MaxFEs was set to 200. The optimization was independently
implemented ten times4. The average SEA value over ten
independent runs provided by ReDSADE is 387.10 J/kg,
which is better than the original design, i.e., 295.73 J/kg.
For comparison, we also used EGO to cope with this design
problem. It provides an average SEA value of 373.93 J/kg
over ten independent runs. Obviously, ReDSADE achieves
the best average design performance. Meanwhile, Fig. 13
plots the evolution of the average SEA values derived from
EGO and ReDSADE. From Fig. 13, ReDSADE has better
convergence performance. In addition, in Table II, we listed
the original design and the best designs provided by ReD-
SADE and EGO. The corresponding deformations are shown
in Fig. 14. Compared with the two competitors, ReDSADE
provides the design result with the maximum SEA value and
minimum degree of deformation. The above results verify the
effectiveness of ReDSADE in this application.

4It needs about 30 minutes to complete a simulation. Therefore, it takes
about 30 min ∗ 200 ∗ 10/(60 ∗ 24) ≈ 41.6 days to complete the ten runs.

(a)

(b)

(c)

Fig. 14. Deformations of the original design and the best designs provided by
EGO and ReDSADE. (a) The original design. (b) The best design provided
by EGO. (c) The best design provided by ReDSADE.

VI. CONCLUSION

Real-world optimization problems may have discontinuous
and expensive objective functions, which are the so-called
EOPDRs. Few attempts have been made to solve this kind
of optimization problem in the EA community. In this paper,
a surrogate-assisted DE algorithm with region division, called
ReDSADE, was proposed to solve EOPDRs. ReDSADE in-
cluded three main strategies: the region division strategy, the
Kriging-based search, and the RBF-based local search. The
region division strategy divided the decision space into several
subregions, with the aim of making the objective function
continuous in them. Then, in the Kriging-based search, DE
was combined with Kriging models to guide the evolution.
Finally, in the RBF-based local search, DE was combined with
RBF to search for a more potential solution around the current
best solution. The comparative studies on the three sets of
test problems showed the good performance of ReDSADE.
We also applied ReDSADE to solve the lightweight and
crashworthiness design of the TRB-based front bumper. The
results verified the effectiveness of ReDSADE in this real-
world application.

In the future, we will try to solve large-scale EOPDRs
(e.g., EOPDRs with more than 50 dimensions). For a large-
scale EOP, it is very hard to establish an accurate surrogate
model with limited solutions. When a large-scale EOP is with
discontinuous response, it is more difficult to approximate
the objective function accurately by making use of surrogate
models. Therefore, solving large-scale EOPDRs deserves in-
depth research in the future.
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Supplementary File of “Surrogate-Assisted
Differential Evolution with Region Division for

Expensive Optimization Problems with
Discontinuous Responses”

S-I. DISCUSSIONS

A. Effectiveness of the RBF-Based Local Search

As introduced in Section III-E, ReDSADE employed the RBF-based local search to accelerate the convergence. One may be
interested in the effectiveness of this strategy. To this end, a variant of ReDSADE, called ReDSADE-WoLocal, was devised.
In this variant, the RBF-based local search was removed. The results of ReDSADE and ReDSADE-WoLocal on the first set of
test problems are summarized in Table S-V. As shown in Table S-V, ReDSADE provides better MFEV values than ReDSADE-
WoLocal on all the ten test problems. According to the Wilcoxon’s rank-sum test, ReDSADE outperforms ReDSADE-WoLocal
on all the ten test problems. From the above results, we can conclude that the RBF-based local search is able to enhance the
convergence speed of ReDSADE.

B. Effectiveness of ODD

As mentioned in Section III-C, in the region division strategy, ODD was employed as the distance measure for DBSCAN.
To investigate its effectiveness, we designed a variant of ReDSADE, called ReDSADE-ED. In ReDSADE-ED, the Euclidean
distance of solutions in the decision space was used for DBSCAN. We used the first set of test problems to investigate the
performance of these two algorithms. The results are summarized in Table S-VI. From Table S-VI, ReDSADE provides better
MFEV values than ReDSADE-ED on all the ten test problems. According to the Wilcoxon’s rank-sum test, ReDSADE performs
better than ReDSADE-ED on nine test problems.

In addition, considering that the gap size in the objective space, i.e., the ∆ value of the first and second sets of test problems
in Section S-III of the supplementary file, may influence the effectiveness of ODD, we also investigated the impact of the ∆

value. We selected S1-F2 as the test problem, and the ∆ value changes from 10 to 106. ReDSADE and ReDSADE-ED were
used to solve S1-F2 with different ∆ values, and the results are summarized in Table S-VII. It can be observed that, when
the value of ∆ is relatively large (i.e., ∆ = 106, ∆ = 105 or ∆ = 104), ReDSADE can provide significantly better results than
ReDSADE-ED. It is because ReDSADE has the capability to distinguish the solutions in different subregions based on ODD.
When the value of ∆ is relatively small (i.e., ∆= 103, ∆= 102, or ∆= 10), distinguishing solutions in different subregions based
on ODD is not easy. Note, however, that when the value of ∆ becomes small, the difficulty of approximating the objective
function is also reduced. Therefore, under this condition, both ReDSADE and ReDSADE-ED provide similar results.

The above results demonstrate the effectiveness of ODD.

C. Effectiveness of Optimizing EI Functions in the Kriging-Based Search

In the Kriging-based search, we adopted DE to optimize the EI function based on each subpopulation. After several iterations,
the solution with the best EI function value is chosen from all the subpopulations and evaluated by the original objective
function. Instead of optimizing the EI functions by using DE, we also investigated the following two cases: 1) generate
offspring solutions for each subpopulation by using Monte Carlo sampling, select the solution with the best EI function value
from all offspring solutions, and evaluate this solution by the original objective function, and 2) generate offspring solutions for
each subpopulation by using DE, select the solution with the best EI function value from all offspring solutions, and evaluate
this solution by the original objective function. In principle, these two cases use pre-selection rather than optimization to update
the database. As a result, two variants of ReDSADE, i.e., ReDSADE-MC and ReDSADE-WoO, were designed. The first set
of test problems and the 10-dimensional BBOB test problems were utilized to investigate the performance of ReDSADE-MC,
ReDSADE-WoO, and ReDSADE. The results are given in Table S-VIII and Table S-IX. From Table S-VIII, for seven test
problems, ReDSADE achieves the best results. From Table S-IX, for 19 test problems, ReDSADE obtains the best results.
According to the Wilcoxon’s rank-sum test, ReDSADE is better than ReDSADE-MC and ReDSADE-WoO on ten and seven
test problems in terms of the first set of test problems, respectively, and 15 and 22 test problems in terms of the 10-dimensional
BBOB test problems, respectively. The above results verify the effectiveness of optimizing EI functions in the Kriging-based
search.
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D. Effectiveness of DBSCAN

In this paper, DBSCAN was employed as the clustering method to partition the evaluated solutions into different clusters.
In Section II-E, we have pointed out the reason why we choose DBSCAN as the clustering method: it does not need to
predefine the number of clusters. However, some other clustering methods also have this characteristic. One may be interested
in whether other clustering methods can also be used in ReDSAEA. To this end, we designed a variant of ReDSAEA (named
as ReDSADE-KM). In ReDSADE-KM, an adaptive K-means algorithm [?] was used as the clustering method. The results of
ReDSADE and ReDSADE-KM on the first set of test problems are provided in Table S-X. From Table S-X, ReDSADE and
ReDSADE-KM exhibit the similar overall performance. Therefore, the influence of the clustering method is not obvious and
the adaptive K-means can also be used in ReDSADE.

E. Running Time of ReDSADE

We used the second set of test problems with 10 dimension and 30 dimension to investigate the runtime of EGO, CAL-SAPSO,
GLoSADE, and ReDSADE. All the algorithms were conducted in Windows 7 Professional Operating System environment with
an Intel(R) Core(TM) i5-7500 CPU @ 3.4GHz 3.4GHz and 8GB RAM, and the programs were implemented in Matlab 2017a.
Table S-XI summarizes the average runtime provided by the four compared algorithms over 20 independent runs. From Table S-
XI, GLoSADE has the shortest running time. It is because GLoSADE does not adopt Kriging as the surrogate model. Although
all of CAL-SAPSO, GLoSADE, and ReDSADE make use of Kriging as the surrogate model, the running time of ReDSADE is
still shorter than that of EGO and CAL-SAPSO. The reason is that ReDSADE establishes a surrogate model in each subregion
based on a cluster rather than the database.

F. Study of the Parameter Settings in ReDSADE

In ReDSADE, two parameters, i,e, K and H, were introduced. We also investigated the influence of these two parameters.
Two test problems, i.e., S1-F5 and S2-F8, were employed to test the influence of different parameters settings. K and H were
selected from the following two sets: {20,50,80} and {20,50,80}, respectively. Fig. S-3 records the MFEV/MOFV values
provided by the nine different combinations of K and H. It can be observed from Fig. S-3 that H ≤ 50 and K ≤ 50 are the
best choice for ReDSADE.
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S-II. RESULTS

TABLE S-I
RESULTS OF EGO, CAL-SAPSO, GLOSADE, AND REDSADE ON THE SECOND SET OF TEST PROBLEMS WITH 10 DIMENSIONS. THE WILCOXON’S

RANK-SUM TEST AT A 0.05 SIGNIFICANCE LEVEL WAS PERFORMED BETWEEN REDSADE AND EACH OF EGO, CAL-SAPSO, AND GLOSADE.

Problem EGO CAL-SAPSO GLoSADE ReDSADE
MOFV ± Std Dev MOFV ± Std Dev MOFV ± Std Dev MOFV ± Std Dev

S2-F1 6.32E+02±1.00E+02 − 9.62E+02±6.02E+01 + 8.51E+02±1.20E+02 + 6.90E+02±2.35E+02
S2-F2 5.86E+02±1.34E+02 + 3.57E+02±5.55E+01 − 6.87E+02±5.95E+01 + 5.47E+02±1.10E+02
S2-F3 6.00E+02±9.56E+01 ≈ 4.78E+02±4.45E+01 − 6.49E+02±1.10E+02 + 5.84E+02±7.09E+01
S2-F4 9.85E+02±6.11E+01 + 1.20E+03±6.28E+01 + 1.21E+03±6.49E+01 + 9.49E+02±1.11E+02
S2-F5 9.52E+02±8.07E+01 ≈ 1.19E+03±9.25E+01 + 1.18E+03±7.76E+01 + 8.58E+02±1.65E+02
S2-F6 1.12E+03±5.73E+01 + 1.18E+03±9.29E+01 + 1.12E+03±1.03E+02 + 9.96E+02±1.33E+02
S2-F7 1.57E+03±8.05E+01 ≈ 1.66E+03±4.75E+01 + 1.74E+03±3.84E+01 + 1.55E+03±1.52E+02
S2-F8 1.46E+03±3.19E+01 ≈ 1.53E+03±1.09E+02 + 2.11E+03±5.84E+02 + 1.42E+03±1.35E+02
S2-F9 1.56E+03±8.88E+01 ≈ 1.64E+03±3.40E+01 + 1.71E+03±2.62E+01 + 1.53E+03±2.03E+02

S2-F10 1.29E+03±1.36E+01 + 1.25E+03±1.41E+01 + 1.41E+03±1.11E+02 + 1.18E+03±2.99E+02
+/−/≈ 4/1/5 8/2/0 10/0/0

TABLE S-II
RESULTS OF EGO, CAL-SAPSO, GLOSADE, AND REDSADE ON THE SECOND SET OF TEST PROBLEMS WITH 30 DIMENSIONS. THE WILCOXON’S

RANK-SUM TEST AT A 0.05 SIGNIFICANCE LEVEL WAS PERFORMED BETWEEN REDSADE AND EACH OF EGO, CAL-SAPSO, AND GLOSADE.

Problem EGO CAL-SAPSO GLoSADE ReDSADE
MOFV ± Std Dev MOFV ± Std Dev MOFV ± Std Dev MOFV ± Std Dev

S2-F1 7.28E+02±8.72E+01 ≈ 1.01E+03±3.45E+01 + 1.10E+03±1.08E+02 + 8.05E+02±1.20E+02
S2-F2 7.95E+02±1.51E+02 ≈ 8.98E+02±9.80E+01 + 9.26E+02±1.65E+02 + 7.47E+02±6.34E+01
S2-F3 1.14E+03±1.68E+02 ≈ 1.00E+03±1.57E+01 ≈ 1.18E+03±2.94E+02 ≈ 1.10E+03±1.64E+02
S2-F4 1.13E+03±1.53E+02 + 1.22E+03±1.36E+02 + 1.13E+03±5.12E+01 + 1.04E+03±6.71E+01
S2-F5 1.38E+03±4.15E+01 + 1.22E+03±1.15E+02 + 1.16E+03±4.11E+01 ≈ 1.14E+03±1.09E+02
S2-F6 1.38E+03±7.09E+01 + 1.41E+03±2.41E+01 + 1.20E+03±1.34E+02 + 9.60E+02±2.73E+01
S2-F7 1.54E+03±1.75E+01 + 1.25E+03±2.04E+02 ≈ 1.60E+03±4.07E+01 + 1.30E+03±1.78E+02
S2-F8 2.10E+03±2.26E+02 + 2.37E+03±9.58E+01 + 3.13E+03±1.14E+03 + 1.70E+03±1.42E+02
S2-F9 1.54E+03±1.75E+01 ≈ 1.65E+03±1.23E+02 + 1.64E+03±1.09E+02 + 1.46E+03±3.58E+01

S2-F10 1.64E+03±6.41E+01 + 1.59E+03±9.07E+01 + 1.68E+03±1.26E+02 + 1.34E+03±6.20E+01
+/−/≈ 6/0/4 8/0/2 8/0/2
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TABLE S-III
RESULTS OF EGO, CAL-SAPSO, GLOSADE, AND REDSADE ON THE 10-DIMENSIONAL BBOB TEST PROBLEMS. THE WILCOXON’S RANK-SUM

TEST AT A 0.05 SIGNIFICANCE LEVEL WAS PERFORMED BETWEEN REDSADE AND EACH OF EGO, CAL-SAPSO, AND GLOSADE.

Problem EGO CAL-SAPSO GLoSADE ReDSADE
MOFV ± Std Dev MOFV ± Std Dev MOFV ± Std Dev MOFV ± Std Dev

BBOB1 2.49E-02±2.24E-02 + 7.74E-09±6.33E-09 − 1.29E+01±3.90E+00 + 3.33E-08±3.36E-08
BBOB2 6.43E+03±2.69E+03 + 6.79E+02±2.96E+02 + 2.47E+05±7.63E+04 + 4.63E+02±4.79E+02
BBOB3 7.37E+01±1.67E+01 + 6.15E+01±9.09E+00 + 1.74E+02±3.88E+01 + 4.29E+01±6.23E+00
BBOB4 1.88E+02±2.15E+01 + 2.33E+02±5.18E+01 + 2.32E+02±5.37E+01 + 8.37E+01±1.34E+01
BBOB5 1.00E-08±0.00E+00 ≈ 3.73E-02±3.42E-02 + 2.54E+00±2.03E+00 + 1.00E-08±0.00E+00
BBOB6 8.15E+01±2.57E+01 + 9.54E+01±1.88E+01 + 1.07E+02±5.80E+01 + 6.15E+01±8.23E+00
BBOB7 6.22E+00±3.58E+00 ≈ 3.47E+01±3.60E+00 ≈ 7.78E+01±3.91E+01 ≈ 7.81E+00±3.09E+00
BBOB8 4.92E+02±2.13E+02 + 1.59E+02±5.50E+01 + 1.27E+03±1.02E+03 + 1.82E+01±1.76E+01
BBOB9 5.01E+02±1.58E+02 + 2.82E+01±1.98E+01 + 8.70E+03±7.79E+03 + 8.85E+00±1.69E+00
BBOB10 2.65E+04±9.92E+03 + 1.69E+04±2.65E+04 − 6.51E+04±2.74E+04 + 2.13E+04±7.84E+03
BBOB11 1.24E+02±3.05E+01 ≈ 1.04E+02±3.47E+01 + 7.79E+01±4.23E+01 ≈ 9.95E+01±2.66E+01
BBOB12 2.14E+07±6.19E+06 + 2.40E+07±0.00E+00 + 1.67E+07±1.14E+07 + 1.67E+01±1.12E+01
BBOB13 6.86E+01±1.63E+01 + 1.77E+02±1.38E+02 + 6.85E+02±2.50E+02 + 7.92E-01±8.13E-01
BBOB14 3.23E+00±7.46E-01 + 5.07E+00±5.41E+00 + 5.44E+00±3.60E+00 + 3.41E-03±1.24E-03
BBOB15 8.41E+01±1.25E+01 + 1.16E+02±3.20E+01 + 1.48E+02±2.99E+01 + 4.83E+01±1.81E+01
BBOB16 7.36E+00±2.38E+00 ≈ 1.74E+01±3.81E+00 + 1.94E+01±7.68E+00 + 1.23E+01±2.23E+00
BBOB17 4.56E+00±1.33E+00 + 6.36E+00±0.00E+00 + 5.68E+00±1.89E+00 + 2.18E+00±2.91E-01
BBOB18 2.29E+01±3.60E+00 + 2.83E+01±6.33E+00 + 2.48E+01±4.33E+00 + 5.50E+00±2.22E+00
BBOB19 5.67E+00±9.52E-01 + 4.61E+00±6.15E-01 ≈ 6.32E+00±7.01E-01 + 4.84E+00±6.95E-01
BBOB20 3.52E+00±4.58E-01 + 3.20E+00±2.14E-01 + 9.34E+02±1.19E+03 + 2.81E+00±4.00E-01
BBOB21 2.28E+00±1.63E+00 ≈ 2.72E+00±1.24E+00 ≈ 5.04E+01±2.72E+00 + 4.99E+00±2.88E+00
BBOB22 3.34E+00±3.96E+00 ≈ 2.71E+00±2.33E+00 ≈ 5.27E+01±1.60E+01 + 4.31E+00±2.68E+00
BBOB23 2.40E+00±7.56E-01 ≈ 2.68E+00±7.67E-01 ≈ 3.68E+00±8.55E-01 + 2.42E+00±5.11E-01
BBOB24 6.35E+01±5.88E+00 + 6.42E+01±6.33E+00 + 1.06E+02±2.59E+01 + 4.49E+01±1.21E+01
+/−/≈ 17/0/7 17/2/5 22/0/2

TABLE S-IV
RESULTS OF EGO, CAL-SAPSO, GLOSADE, AND REDSADE ON THE 30-DIMENSIONAL BBOB TEST PROBLEMS. THE WILCOXON’S RANK-SUM

TEST AT A 0.05 SIGNIFICANCE LEVEL WAS PERFORMED BETWEEN REDSADE AND EACH OF EGO, CAL-SAPSO, AND GLOSADE.

Problem EGO CAL-SAPSO GLoSADE ReDSADE
MOFV ± Std Dev MOFV ± Std Dev MOFV ± Std Dev MOFV ± Std Dev

BBOB1 7.00E+00±1.95E+00 + 6.06E-01±2.58E-01 − 6.21E+01±1.64E+01 + 3.24E+00±1.24E+00
BBOB2 1.91E+06±4.83E+05 + 3.43E+06±1.22E+06 + 1.55E+06±4.25E+05 + 3.51E+05±1.31E+05
BBOB3 4.84E+02±3.94E+01 ≈ 3.82E+02±3.42E+01 ≈ 6.13E+02±7.10E+01 + 4.37E+02±1.14E+02
BBOB4 9.44E+02±1.56E+02 + 8.55E+02±5.71E+01 + 1.08E+03±1.77E+02 + 7.40E+02±1.23E+02
BBOB5 1.26E+00±1.86E+00 + 7.08E+00±2.26E+00 + 1.26E+01±1.56E+01 + 1.00E-08±0.00E+00
BBOB6 2.43E+03±1.91E+03 + 1.98E+02±7.59E+00 − 2.53E+04±1.42E+04 + 4.54E+02±9.27E+01
BBOB7 2.34E+02±4.50E+01 + 3.61E+02±1.26E+02 + 4.27E+02±1.40E+02 + 1.74E+02±5.14E+01
BBOB8 1.34E+04±7.38E+03 + 4.47E+02±2.08E+02 − 9.63E+04±6.77E+04 + 7.99E+03±2.24E+03
BBOB9 4.67E+03±1.69E+03 − 3.74E+02±9.13E+01 − 7.81E+04±1.54E+04 + 7.28E+03±1.90E+03

BBOB10 1.05E+06±2.05E+05 ≈ 2.12E+06±2.03E+06 + 2.57E+06±1.16E+06 + 1.51E+06±3.04E+05
BBOB11 3.58E+02±5.97E+01 ≈ 6.49E+02±2.86E+01 + 3.64E+02±8.86E+01 ≈ 3.32E+02±9.49E+01
BBOB12 1.30E+08±3.66E+07 ≈ 3.30E+08±5.49E+07 + 1.72E+08±7.27E+07 + 1.12E+08±2.02E+07
BBOB13 4.90E+02±5.72E+01 + 6.63E+02±4.54E+01 + 1.59E+03±3.54E+02 + 4.78E+02±6.30E+01
BBOB14 1.64E+01±1.35E+00 ≈ 5.85E+00±1.32E+00 − 3.54E+01±7.74E+00 + 1.46E+01±2.83E+00
BBOB15 5.25E+02±6.59E+01 + 4.51E+02±5.83E+01 + 7.53E+02±4.58E+01 + 3.87E+02±3.44E+01
BBOB16 3.53E+01±5.81E+00 ≈ 3.57E+01±2.66E+00 + 3.41E+01±4.86E+00 ≈ 3.31E+01±2.63E+00
BBOB17 9.17E+00±1.21E+00 ≈ 7.51E+00±2.41E-01 ≈ 1.15E+01±2.02E+00 + 7.15E+00±5.91E+00
BBOB18 3.60E+01±5.39E+00 ≈ 3.02E+01±6.52E+00 ≈ 4.14E+01±5.61E+00 + 2.75E+01±1.76E+00
BBOB19 8.10E+00±5.23E-01 ≈ 7.06E+00±2.02E-01 − 1.79E+01±3.36E+00 + 9.09E+00±5.95E-01
BBOB20 6.41E+02±7.59E+02 − 6.19E+02±8.70E+02 − 2.56E+04±8.84E+03 + 3.73E+03±2.27E+03
BBOB21 2.50E+01±2.97E+01 + 5.43E+01±9.00E+00 + 6.94E+01±2.12E+01 + 3.43E+00±1.01E+00
BBOB22 1.36E+01±5.21E+00 + 6.76E+01±1.60E+00 + 7.63E+01±6.09E+00 + 3.97E+00±2.23E+00
BBOB23 4.87E+00±6.08E-01 + 5.02E+00±8.83E-01 + 5.25E+00±7.67E-01 ≈ 4.08E+00±3.50E-01
BBOB24 4.02E+02±1.43E+02 + 2.93E+02±7.41E+00 ≈ 6.81E+02±3.75E+01 + 3.34E+02±3.00E+01
+/−/≈ 13/2/9 13/7/4 21/0/3
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TABLE S-V
RESULTS OF REDSADE-WOLOCAL AND REDSADE ON THE FIRST SET OF TEST PROBLEMS. THE WILCOXON’S RANK-SUM TEST AT A 0.05

SIGNIFICANCE LEVEL WAS PERFORMED BETWEEN REDSADE AND REDSADE-WOLOCAL.

Problem ReDSADE-WoLocal ReDSADE
MFEV ± Std Dev MFEV ± Std Dev

S1-F1 2.05E+02 ± 1.54E+02 + 1.08E-04±2.29E-04
S1-F2 1.35E+02 ± 2.62E+02 + 1.09E+00±8.32E-01
S1-F3 4.24E−03 ± 7.61E−03 + 3.01E-09±4.16E-09
S1-F4 9.11E−04 ± 1.43E−03 + 3.72E-10±8.32E-10
S1-F5 3.27E+00 ± 3.62E+00 + 1.81E-04±4.02E-04
S1-F6 3.52E−04 ± 1.03E−03 + 7.87E-09±1.30E-08
S1-F7 1.10E−03 ± 9.17E−04 + 1.52E-04±1.24E-04
S1-F8 4.33E−03 ± 3.53E−03 + 1.21E-04±1.40E-04
S1-F9 1.88E−01 ± 2.33E−01 + 3.16E-07±5.91E-07

S1-F10 9.77E+01 ± 1.07E+02 + 2.00E-02±2.96E-02
+/−/≈ 10/0/0

TABLE S-VI
RESULTS OF REDSADE-ED AND REDSADE ON THE FIRST SET OF TEST PROBLEMS. THE WILCOXON’S RANK-SUM TEST AT A 0.05 SIGNIFICANCE

LEVEL WAS PERFORMED BETWEEN REDSADE AND REDSADE-ED.

Problem ReDSADE-ED ReDSADE
MFEV ± Std Dev MFEV ± Std Dev

S1-F1 1.01E+00±8.50E-01 + 1.08E-04±2.29E-04
S1-F2 1.15E+01±2.32E+00 + 1.09E+00±8.32E-01
S1-F3 6.53E-03±5.11E-03 + 3.01E-09±4.16E-09
S1-F4 3.26E-04±3.43E-04 + 3.72E-10±8.32E-10
S1-F5 7.51E-02±5.32E-02 + 1.81E-04±4.02E-04
S1-F6 6.78E-07±1.45E-07 + 7.87E-09±1.30E-08
S1-F7 7.42E-04±8.06E-04 + 1.52E-04±1.24E-04
S1-F8 1.98E-04±3.35E-04 ≈ 1.21E-04±1.40E-04
S1-F9 2.10E-02±2.11E-02 + 3.16E-07±5.91E-07
S1-F10 6.20E+01±7.80E+01 + 2.00E-02±2.96E-02
+/−/≈ 9/0/1

TABLE S-VII
RESULTS OF REDSADE-ED AND REDSADE ON S1-F2 WITH DIFFERENT ∆ VALUES. THE WILCOXON’S RANK-SUM TEST AT A 0.05 SIGNIFICANCE

LEVEL WAS PERFORMED BETWEEN REDSADE AND REDSADE-ED.

Problem Value of ∆ ReDSADE-ED ReDSADE
MFEV ± Std Dev MFEV ± Std Dev

∆ = 106 2.67E+01 ±5.63E+01 + 6.83E+00±8.42E+00
∆ = 105 1.14E+00 ±2.27E+00 + 6.49E-01±5.56E-01

S1-F2 ∆ = 104 1.03E+00 ±1.92E+00 + 1.59E-01±4.34E-01
∆ = 103 1.21E-01 ±9.97E-02 ≈ 8.02E-02±7.25E-02
∆ = 102 6.14E-03±1.09E-03 ≈ 7.18E-03±1.29E-02
∆ = 10 6.86E-05±1.10E-04 ≈ 4.45E-05±2.99E-02
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TABLE S-VIII
RESULTS OF REDSADE-MC, REDSADE-WOO, AND REDSADE ON THE FIRST SET OF TEST PROBLEMS. THE WILCOXON’S RANK-SUM TEST AT A

0.05 SIGNIFICANCE LEVEL WAS PERFORMED BETWEEN REDSADE AND EACH OF REDSADE-MC AND REDSADE-WOO.

Problem ReDSADE-MC ReDSADE-WoO ReDSADE
MFEV ± Std Dev MFEV ± Std Dev MFEV ± Std Dev

S1-F1 3.37E-02±5.13E-02 + 4.34E-01±5.32E-01 + 1.08E-04±2.29E-04
S1-F2 2.49E+01±2.61E+01 + 4.54E+00±4.72E+00 + 1.09E+00±8.32E-01
S1-F3 2.11E+01±2.96E+01 + 8.18E-05±8.90E-05 + 3.01E-09±4.16E-09
S1-F4 5.79E-07±1.23E-06 + 4.34E-05±1.95E-05 + 3.72E-10±8.32E-10
S1-F5 1.07E-03±9.55E-02 + 1.50E-03±9.51E-03 + 1.81E-04±4.02E-04
S1-F6 5.27E-02±4.28E-02 + 4.82E-08±3.24E-08 + 7.87E-09±1.30E-08
S1-F7 9.98E-03±9.99E-03 + 7.53E-08±7.18E-08 − 1.52E-04±1.24E-04
S1-F8 1.97E-03±1.96E-03 + 3.21E-06±1.34.E-06 − 1.21E-04±1.40E-04
S1-F9 3.98E-02±8.82E-02 + 6.16E-03±3.85E-03 + 3.16E-07±5.91E-07
S1-F10 1.15E+02±1.32E+02 + 7.96E-03±5.75E-03 ≈ 2.00E-02±2.96E-02
+/−/≈ 10/0/0 7/2/1

TABLE S-IX
RESULTS OF REDSADE-MC, REDSADE-WOO, AND REDSADE ON THE 10-DIMENSIONAL BBOB TEST PROBLEMS. THE WILCOXON’S RANK-SUM

TEST AT A 0.05 SIGNIFICANCE LEVEL WAS PERFORMED BETWEEN REDSADE AND EACH OF REDSADE-MC AND REDSADE-WOO.

Problem ReDSADE-MC ReDSADE-WoO ReDSADE
MFEV ± Std Dev MFEV ± Std Dev MFEV ± Std Dev

BBOB1 9.97E-08±1.51E-08 + 1.26E-02±1.40E-02 + 3.33E-08±3.36E-08
BBOB2 3.96E+02±1.41E+01 ≈ 1.89E+04±3.52E+04 + 4.63E+02±4.79E+02
BBOB3 8.61E+02±1.58E+01 + 8.29E+02±2.61E+01 + 4.29E+01±6.23E+00
BBOB4 8.15E+02±2.49E+01 + 7.90E+02±3.31E+01 + 8.37E+01±1.34E+01
BBOB5 1.00E-08±0.00E+00 ≈ 1.83E+01±2.78E-01 + 1.00E-08±0.00E+00
BBOB6 8.83E+01±1.72E+01 ≈ 1.85E+02±6.62E+01 + 6.15E+01±8.23E+00
BBOB7 1.39E+01±1.12E+01 + 2.95E+01±1.57E+01 + 7.81E+00±3.09E+00
BBOB8 1.57E+01±1.41E+01 ≈ 1.83E+02±2.68E+02 + 1.82E+01±1.76E+01
BBOB9 4.21E+01±6.63E+01 + 2.77E+02±2.22E+02 + 8.85E+00±1.69E+00
BBOB10 4.82E+04±2.22E+04 + 9.10E+04±1.30E+05 + 2.13E+04±7.84E+03
BBOB11 2.06E+02±1.05E+02 + 1.59E+02±9.37E+01 + 9.95E+01±2.66E+01
BBOB12 2.37E+03±2.61E+03 + 2.68E+04±3.40E+04 + 1.67E+01±1.12E+01
BBOB13 6.14E+00±6.11E+00 + 4.80E+01±5.64E+01 + 7.92E-01±8.13E-01
BBOB14 1.05E+02±1.52E-02 + 1.05E+02±8.36E-02 + 3.41E-03±1.24E-03
BBOB15 9.23E+01±8.87E+00 + 1.20E+02±8.75E+00 + 4.83E+01±1.81E+01
BBOB16 5.43E+00±3.37E+00 − 1.41E+01±2.52E+00 ≈ 1.23E+01±2.23E+00
BBOB17 3.03E+01±1.61E+00 ≈ 3.03E+01±1.63E+00 + 2.18E+00±2.91E-01
BBOB18 1.95E+01±2.35E+00 ≈ 2.36E+01±4.75E+00 ≈ 2.10E+01±2.22E+00
BBOB19 2.00E+02±9.87E-01 + 1.96E+02±1.67E+00 + 4.84E+00±6.95E-01
BBOB20 1.09E+03±2.20E-01 + 1.09E+03±4.83E-01 + 2.81E+00±4.00E-01
BBOB21 4.81E+00±5.31E+00 ≈ 1.10E+01±1.48E+01 + 4.99E+00±2.88E+00
BBOB22 1.99E+03±8.72E+00 + 1.98E+03±1.46E+01 + 4.31E+00±2.68E+00
BBOB23 2.75E+00±6.71E-01 ≈ 2.90E+00±7.07E-01 + 2.42E+00±5.11E-01
BBOB24 6.45E+01±4.89E+00 + 1.15E+02±2.54E+01 + 4.49E+01±1.21E+01
+/−/≈ 15/1/8 22/0/2
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TABLE S-X
RESULTS OF REDSADE-KM AND REDSADE ON THE FIRST SET OF TEST PROBLEMS. THE WILCOXON’S RANK-SUM TEST AT A 0.05 SIGNIFICANCE

LEVEL WAS PERFORMED BETWEEN REDSADE AND REDSADE-KM.

Problem ReDSADE-KM ReDSADE
MFEV ± Std Dev MFEV ± Std Dev

S1-F1 9.24E+01±7.77E+01 + 1.08E-04±2.29E-04
S1-F2 1.39E+01±2.09E+00 + 1.09E+00±8.32E-01
S1-F3 2.59E-09±5.19E-09 ≈ 3.01E-09±4.16E-09
S1-F4 1.41E-09±7.73E-09 ≈ 3.72E-10±8.32E-10
S1-F5 1.70E-04±3.30E-04 ≈ 1.81E-04±4.02E-04
S1-F6 1.02E-09±3.11E-09 ≈ 7.87E-09±1.30E-08
S1-F7 2.21E-04±1.43E-04 ≈ 1.52E-04±1.24E-04
S1-F8 1.63E-05±2.29E-05 ≈ 1.21E-04±1.40E-04
S1-F9 2.83E-06±4.70E-06 ≈ 3.16E-07±5.91E-07
S1-F10 5.02E-06±2.10E-06 − 2.00E-02±2.96E-02
+/−/≈ 2/1/7

TABLE S-XI
RUNTIME (IN SECOND) CONSUMED BY EGO, CAL-SAPSO, GLOSADE, AND REDSADE ON THE SECOND SET OF TEST PROBLEMS.

Problem EGO CAL-SAPSO GLoSADE ReDSADE Problem EGO CAL-SAPSO GLoSADE ReDSADE
10 Dimension 30 Dimension

S2-F1 1096.83 886.40 78.27 539.45 S2-F1 3212.19 2717.56 107.45 1754.02
S2-F2 979.42 809.77 77.66 516.50 S2-F2 3098.74 2528.80 107.63 1997.82
S2-F3 1108.88 938.34 78.06 569.53 S2-F3 3121.22 2684.04 107.37 2425.80
S2-F4 804.32 660.92 77.27 715.98 S2-F4 2787.87 2087.49 105.78 2378.99
S2-F5 995.39 810.89 78.68 710.68 S2-F5 2765.12 2057.90 103.87 2097.76
S2-F6 812.41 664.38 78.75 586.05 S2-F6 2798.47 2098.96 103.89 1807.56
S2-F7 1398.39 1153.25 78.33 716.46 S2-F7 3121.04 2628.49 105.97 1919.84
S2-F8 1386.08 1117.58 78.79 684.75 S2-F8 2686.35 1981.13 105.63 1649.37
S2-F9 1388.55 1116.59 79.25 708.52 S2-F9 2989.02 2465.47 105.51 1797.10
S2-F10 1242.70 1075.88 79.53 900.48 S2-F10 3102.90 2604.76 105.62 1939.58
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Fig. S-1. Evolution of MFEV provided by the four compared algorithms on 10-dimensional BBOB test problems over 20 independent runs. (a) BBOB1. (b)
BBOB2. (c) BBOB3. (d) BBOB4. (e) BBOB5. (f) BBOB6. (g) BBOB7. (h) BBOB8. (i) BBOB9. (j) BBOB10. (k) BBOB11. (l) BBOB12. (m) BBOB13. (n)
BBOB14. (o) BBOB15. (p) BBOB16. (q) BBOB17. (r) BBOB18. (s) BBOB19. (t) BBOB20. (u) BBOB21. (v) BBOB22. (w) BBOB23. (x) BBOB24.
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S-III. TEST PROBLEMS

A. The First Set of Test Problems

S1-F1 : min : f (x) =

{
CEC200501 +∆, x1 >−35 & x2 > 59
CEC200501, otherwise

x1, . . . ,x8 ∈ [−100,100]

(S-1)

where CEC200501 is the first benchmark problem of IEEE CEC2005 [?], ∆ = 104, the optimal solution is (−39.3119,58.8999,
−46.3224,−74.6515,−16.7997,−80.5441,−10.5935,24.9694), and the optimal objective function value is −450.

S1-F2 : min : f (x) =

{
CEC200503 +∆, x1 >−33 & x2 > 66.5
CEC200503, otherwise

x1,x2 ∈ [−100,100]

(S-2)

where CEC200503 is the third benchmark problem of IEEE CEC2005, ∆ = 107, the optimal solution is (−32.2013,64.9776),
and the optimal objective function value is −450.

S1-F3 : min : f (x) =

{
CEC200501, x1 >−40 & x2 > 59
CEC200502 +∆, otherwise

x1,x2 ∈ [−100,100]

(S-3)

where CEC200501 and CEC200502 are the first and second benchmark problems of IEEE CEC2005, respectively, ∆ = 104, the
optimal solution is (−39.3119,58.8999), and the optimal objective function value is −450.

S1-F4 : min : f (x) =

{
CEC200502, x1 < 36
CEC200501 +∆, otherwise

x1, . . . ,x4 ∈ [−100,100]

(S-4)

where CEC200501 and CEC200502 are the first and second benchmark problems of IEEE CEC2005, respectively, ∆ = 104, the
optimal solution is (35.6267,−82.9123,−10.6423,−83.5815), and the optimal objective function value is −450.

S1-F5 : min : f (x) =

{
CEC200502 +∆, x1 > 36 & x2 <−11
CEC200502, otherwise

x1, . . . ,x4 ∈ [−100,100]

(S-5)

where CEC200502 is the second benchmark problem of IEEE CEC2005, ∆ = 104, the optimal solution is (35.6267,−82.9123,
−10.6423,−83.5815), and the optimal objective function value is −450.

S1-F6 : min : f (x) =

{
∑

4
i=1(|xi|i+1), (x1−1)2 +(x4−1)≤ 2

∑
4
i=1(|xi|i+1)+∆, otherwise

x1, . . . ,x4 ∈ [−1,1]

(S-6)

where ∆ = 15, the optimal solution is (0,0,0,0), and the optimal objective function value is 0.

S1-F7 : min : f (x) =

{
∑

6
i=1(|xi|i+1), (x1−1)2 +(x2−1)≤ 2 & (x3−1)2 +(x4−1)≤ 2

∑
6
i=1(|xi|i+1)+∆, otherwise

x1, . . . ,x6 ∈ [−1,1]

(S-7)

where ∆ = 15, the optimal solution is (0,0,0,0,0,0), and the optimal objective function value is 0.

S1-F8 : min : f (x) =

{
∑

8
i=1(|xi|i+1), x1 ≤ 0

∑
8
i=1(|xi|i+1)+∆, otherwise

x1, . . . ,x8 ∈ [−1,1]

(S-8)
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where ∆ = 20, the optimal solution is (0,0,0,0,0,0,0,0), and the optimal objective function value is 0.

S1-F9 : min : f (x) =


CEC200501, x1 > 15 & x2 > 30
CEC200501, x1 <−35 & x2 < 60
CEC200501 +∆, otherwise

x1, . . . ,x4 ∈ [−100,100]

(S-9)

where CEC200502 is the second benchmark problem of IEEE CEC2005, ∆ = 105, the optimal solution is (−39.3119,58.8999,
−46.3224,−74.6515), and the optimal objective function value is −450.

S1-F10 : min : f (x) =


CEC200502 +∆1, x1 <−50 & x2 > 50
CEC200502, x1 > 34 & x2 <−80
CEC200502 +∆2, otherwise

x1, . . . ,x6 ∈ [−100,100]

(S-10)

where CEC200501 is the first benchmark problem of IEEE CEC2005, ∆1 = 105, ∆2 = 2× 105, the optimal solution is
(35.6267,−82.9123, −10.6423,−83.5815,83.1552,47.048), and the optimal objective function value is −450.

B. The Second Set of Test Problems

S2-F1 : min : f (x) =

{
CEC200515, g(x)> 0
CEC200515 +∆, otherwise

g(x) =
D

∑
i=1

xi

xi ∈ [−5,5], i = 1, . . . ,D

(S-11)

where CEC200515 is the 15th benchmark problem of IEEE CEC2005 [?] and ∆ = 300.

S2-F2 : min : f (x) =

{
CEC200516, g(x)> 0
CEC200516 +∆, otherwise

g(x) =
D

∑
i=1

xi

xi ∈ [−5,5], i = 1, . . . ,D

(S-12)

where CEC200516 is the 16th benchmark problem of IEEE CEC2005 and ∆ = 600.

S2-F3 : min : f (x) =

{
CEC200517, g(x)> 0
CEC200517 +∆, otherwise

g(x) =
D

∑
i=1

xi

xi ∈ [−5,5], i = 1, . . . ,D

(S-13)

where CEC200517 is the 17th benchmark problems of IEEE CEC2005 and ∆ = 900.

S2-F4 : min : f (x) =

{
CEC200518, g(x)> 9D
CEC200518 +∆, otherwise

g(x) =
D

∑
i=1

x2
i

xi ∈ [−5,5], i = 1, . . . ,D

(S-14)
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where CEC200518 is the 18th benchmark problems of IEEE CEC2005 and ∆ = 300.

S2-F5 : min : f (x) =

{
CEC200519, g(x)> 9D
CEC200519 +∆, otherwise

g(x) =
D

∑
i=1

x2
i

xi ∈ [−5,5], i = 1, . . . ,D

(S-15)

where CEC200519 is the 19th benchmark problem of IEEE CEC2005 and ∆ = 700.

S2-F6 : min : f (x) =

{
CEC200520, g(x)> 9D
CEC200520 +∆, otherwise

g(x) =
D

∑
i=1

x2
i

xi ∈ [−5,5], i = 1, . . . ,D

(S-16)

where CEC200520 is the 20th benchmark problem of IEEE CEC2005 and ∆ = 1500.

S2-F7 : min : f (x) =

{
CEC200521, g(x)> 12000D
CEC200521 +∆, otherwise

g(x) =
D−1

∑
i=1

[
100(xi+1− x2

i )
2 +(xi−1)2]

xi ∈ [−5,5], i = 1, . . . ,D

(S-17)

where CEC200521 is the 21st benchmark problem of IEEE CEC2005 and ∆ = 200.

S2-F8 : min : f (x) =

{
CEC200522, g(x)> 12000D
CEC200522 +∆, otherwise

g(x) =
D−1

∑
i=1

[
100(xi+1− x2

i )
2 +(xi−1)2]

xi ∈ [−5,5], i = 1, . . . ,D

(S-18)

where CEC200522 is the 22nd benchmark problem of IEEE CEC2005 and ∆ = 900.

S2-F9 : min : f (x) =

{
CEC200523, g(x)> 120000D
CEC200523 +∆, otherwise

g(x) =
D−1

∑
i=1

[
1+

[
100× (x2

i − xi+1)
2 +(1− xi)

2
]2

4000
− cos[100× (x2

i − xi+1)
2 +(1− xi)

2]

]

+

[
1+

[
100× (x2

D− x1)
2 +(1− xD)

2
]2

4000
− cos[100× (x2

D− x1)
2 +(1− xD)

2]

]
xi ∈ [−5,5], i = 1, . . . ,D

(S-19)

where CEC200523 is the 23rd benchmark problem of IEEE CEC2005 and ∆ = 200.

S2-F10 : min : f (x) =

{
CEC200524, g(x)> 120000D
CEC200524 +∆, otherwise

g(x) =
D−1

∑
i=1

[
1+

[
100× (x2

i − xi+1)
2 +(1− xi)

2
]2

4000
− cos[100× (x2

i − xi+1)
2 +(1− xi)

2]

]

+

[
1+

[
100× (x2

D− x1)
2 +(1− xD)

2
]2

4000
− cos[100× (x2

D− x1)
2 +(1− xD)

2]

]
xi ∈ [−5,5], i = 1, . . . ,D

(S-20)
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where CEC200524 is the 24th benchmark problem of IEEE CEC2005 and ∆ = 300.

C. The Third Set of Test Problems

The third set of test problems is the BBOB test suite, which is directly taken from [1].
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