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Abstract—This paper presents a new constraint-handling tech-
nique (CHT), called shift-based penalty (ShiP), for solving con-
strained multiobjective optimization problems. In ShiP, infeasible
solutions are first shifted according to the distributions of their
neighboring feasible solutions. The degree of shift is adaptively
controlled by the proportion of feasible solutions in the current
parent and offspring populations. Then, the shifted infeasible
solutions are penalized based on their constraint violations.
This two-step process can encourage infeasible solutions to
approach/enter the feasible region from diverse directions in
the early stage of evolution, and guide diverse feasible solutions
toward the Pareto optimal solutions in the later stage of evolution.
Moreover, ShiP can achieve an adaptive transition from both
diversity and feasibility in the early stage of evolution to both
diversity and convergence in the later stage of evolution. ShiP
is flexible and can be embedded into three well-known multi-
objective optimization frameworks. Experiments on benchmark
test problems demonstrate that ShiP is highly competitive with
other representative CHTs. Further, based on ShiP, we pro-
pose an archive-assisted constrained multiobjective evolutionary
algorithm (CMOEA), called ShiP+, which outperforms two other
state-of-the-art CMOEAs. Finally, ShiP is applied to the vehicle
scheduling of urban bus line successfully.

Index Terms—Constrained multiobjective optimization,
constraint-handling techniques, evolutionary algorithms, penalty,
shift.

I. INTRODUCTION

W ITHOUT loss of generality, a constrained multiobjective
optimization problem (CMOP), in the case of minimiza-

tion, can be formulated as follows [1]–[5]:

min ~F (~x) =
(
f1(~x), f2(~x), . . . , fm(~x)

)T
s.t.


gj(~x) ≤ 0, j = 1, . . . , ng

hj(~x) = 0, j = ng + 1, . . . , ng + nh

xlowk ≤ xk ≤ xuppk , k = 1, . . . , n

(1)

where ~x = (x1, . . . , xn) is an n-dimensional decision vector
defined in the decision space S, xk (k ∈ {1, . . . , n}) is the
kth decision variable, xlowk and xuppk are the lower and upper
bounds of xk, respectively, ~F is an objective vector consist-
ing of m conflicting objectives, gj(~x) is the jth inequality
constraint, hj(~x) is the (j − ng)th equality constraint, and ng
and nh are the numbers of inequality and equality constraints,
respectively.
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Generally, the constraint violation of ~x on the jth constraint
is defined as:

CVj(~x)=

{
max(0, gj(~x)), j=1,. . ., ng

max(0, |hj(~x)|−δ), j=ng+1,. . ., ng+nh
(2)

where δ is a small tolerance value to slightly relax equality
constraints. ~x is called a feasible solution if its total constraint
violation, i.e.,

CV (~x) =

ng+nh∑
j=1

CVj(~x) (3)

is equal to 0; otherwise, ~x is called an infeasible solution. Thus,
the feasible region is defined as

Ω = {~x ∈ S | CV (~x) = 0}. (4)

If a feasible solution is not dominated by any other feasible
solution, it is called a Pareto optimal solution of a CMOP. The
set of Pareto optimal solutions is called the Pareto optimal set.
The image of the Pareto optimal set in the objective space is
called constrained Pareto front (PF).

It is well known that many optimization problems in the real
world are CMOPs by nature [6]–[9]. Evolutionary algorithms
(EAs) are a kind of powerful population-based optimization
algorithms. However, existing multiobjective EAs (MOEAs)
are mainly developed to deal with unconstrained MOPs, that is,
they lack key mechanisms to handle constraints [10]. Therefore,
many constraint-handling techniques (CHTs) are embedded
into MOEAs, enabling them to solve CMOPs [11].

Current CHTs can be roughly classified into three kinds:
methods based on penalty functions [12], methods based on
the separation of objectives and constraints [13], and methods
based on multiobjective optimization [14]. However, current
CHTs usually lack a powerful capability to guide the population
toward the feasible region with good diversity in the early stage
of evolution and to maintain sufficient feasible solutions with
good diversity and convergence in the later stage of evolution.
Moreover, their capability to provide a transition from both
diversity and feasibility in the early stage of evolution to both
diversity and convergence in the later stage of evolution is also
limited.

Motivated by the above consideration, a shift-based penalty
function, called ShiP, is designed in this paper. During the
course of evolution, infeasible solutions are shifted by taking
their local feasible nadirs as reference positions, and the degree
of shift is adaptively controlled by the feasibility proportion
of the current parent and offspring populations. Afterward,
these infeasible solutions are further penalized based on their
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constraint violations. The main contributions of this paper can
be summarized as follows:
• In principle, ShiP is an adaptive penalty function and

the similar idea (i.e., the shift by using local feasible
nadirs) has not appeared previously. ShiP considers the
distributions of feasible solutions in the objective space,
with the aim of supporting promising infeasible solutions
to approach/enter the feasible region from different di-
rections. If enough feasible solutions have been found,
the shift and penalty will severely decrease the fitness
of infeasible solutions, thus giving more chances to
diverse feasible solutions to converge toward the Pareto
optimal solutions. Moreover, based on the feasibility
proportion, ShiP provides an adaptive transition from both
diversity and feasibility in the early stage of evolution
to both diversity and convergence in the later stage of
evolution. Therefore, ShiP has the potential to alleviate
the aforementioned issues in current CHTs.

• The implementation of ShiP is simple and flexible. We
have embedded ShiP into three well-known multiobjective
optimization frameworks: NSGA-II [13], MOEA/D [15],
and IBEA [16]. They are representatives of MOEAs
based on Pareto dominance, decomposition, and indicator,
respectively [17]. ShiP does not add any significant
computational burden to them. We have also investigated
its effectiveness by comparing it with other CHTs on these
frameworks.

• The extension and application of ShiP are discussed. On
one hand, ShiP has been extended by adding an archive-
assisted strategy. In this strategy, an archive is updated in
a way that is complementary to ShiP, making the archive
and the population evolve cooperatively. Experiments have
validated that the archive-assisted ShiP outperforms peer
algorithms on highly-constrained benchmark cases. On
the other hand, we have also applied ShiP to a real-world
CMOP: the vehicle scheduling of urban bus line. On this
real-world case, ShiP exhibits good performance.

The rest of this paper is organized as follows. Section II
introduces the related work. Section III presents the details
of ShiP. The experimental studies of ShiP and its archive-
assisted variant are carried out in Section IV. Then, the vehicle
scheduling problem is solved by ShiP in Section V. Finally,
Section VI concludes this paper.

II. RELATED WORK

Next, we briefly overview the three kinds of CHTs for
CMOPs in the EA community.

A. Methods Based on Penalty Functions

As traditional penalty functions always require a careful
tuning of penalty factors [18], some self-adaptive penalty
functions have been developed. Woldesenbet et al. [12]
modified the objective in each dimension to the sum of a
distance measure and a penalty function:

f ′i(~x) = di(~x) + pi(~x). (5)

For the ith objective, di(~x), i.e., the distance measure, is defined
as follows:

di(~x) =

{
C̃V (~x), if Pfea = 0√
f̃2i (~x) + C̃V

2
(~x), otherwise

(6)

and pi(~x), i.e., the penalty function, is formulated as follows:

pi(~x) = (1− Pfea)Xi(~x) + PfeaYi(~x) (7)

where Pfea is the proportion of feasible solutions in the
population; f̃i and C̃V are the normalized objective in
the ith dimension and normalized constraint violation of ~x,
respectively; Xi(~x) is equal to 0 if Pfea = 0, otherwise
Xi(~x) = C̃V (~x); and Yi(~x) is equal to 0 if C̃V (~x) = 0,
otherwise Yi(~x) = f̃i(~x).

Jiao et al. [19] employed the similar idea in their design.
The modified objective in the ith dimension is formulated as
follows:

f ′i(~x)=

{√
f̃2i (~x) + C̃V

2
(~x), if Pfea=0

Pfeaf̃i(~x) + (1−Pfea)C̃V (~x), otherwise
(8)

where the meaning of Pfea, f̃i, and C̃V is the same as in [12].
Jan and Zhang [20] developed a penalty function in

MOEA/D. The penalty is added to the Tchebycheff aggregation
function (denoted as gte) as follows:

gteap(x|λ, o∗) ={
gte(x|λ, o∗)+s1CV

2(~x), if CV (~x)<τ

gte(x|λ, o∗)+s1τ
2+s2(CV (~x)−τ), otherwise

(9)

where s1 and s2 are two control parameters, s1 � s2, and o∗

is a reference point. In this manner, the penalty on an infeasible
solution would increase promptly if its constraint violation is
greater than a threshold, i.e., τ .

In [21], Jan et al. further improved this method by eliminat-
ing s1 and s2:

fapi (~x) ={
fi(~x)+P 2

infCV
2(~x), if CV (~x)<τ

fi(~x)+P 2
infτ

2+Pinf (CV (~x)−τ), otherwise

(10)

where Pinf is the proportion of infeasible solutions in the
population and τ is equal to the average constraint violation
of all infeasible solutions.

B. Methods Based on the Separation of Objectives and Con-
straints

Some CHTs compare objectives and constraints separately.
CDP [13] is the simplest CHT that belongs to this kind. It
uses the following three rules in the pair-wise comparison:
• When comparing two feasible solutions, the one that

Pareto dominates the other is selected;
• When comparing a feasible solution with an infeasible

solution, the feasible one is selected;
• When comparing two infeasible solutions, the one with

smaller CV is selected.
Obviously, CDP always prefers feasible solutions to infeasi-

ble ones. Due to its simple structure, it has been widely used
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to solve CMOPs. Wei and Wang [22] used CDP in infeasible
elitist-based particle swarm optimization. Liu and Wang [23]
combined CDP with MOEA/D [15], where each subproblem
has a temporary register composed of the infeasible solutions
with lower constraint violations and better objective values. Fan
et al. [24] utilized the angle information among solutions to
adjust the dominance relationship, and designed an angle-based
CDP in MOEA/D.

Takahama and Sakai [25] proposed ε constrained method,
where a decreasing ε-level is designed to relax the constraint
violations of infeasible solutions. Given two solutions ~a and ~b,
~a is better than ~b, if one of the following conditions meets:
• both CV (~a) and CV (~b) are smaller than ε, and ~a Pareto

dominates ~b;
• CV (~a) is smaller than ε, while CV (~b) is greater than ε;
• both CV (~a) and CV (~b) are greater than ε, and CV (~a) <
CV (~b).

If ε decreases to 0, ε constrained method is equivalent to
CDP [26]. Yang et al. [27] incorporated ε constrained method
and an adaptive operator selection into MOEA/D. Fan et
al. [28] proposed an improved version that adjusts the ε-level
dynamically based on the ratio of feasible solutions. Recently,
Fan et al. designed a push and pull strategy, where the ε-level
is controlled in a more elaborate manner [29].

Runarsson and Yao [30] designed a stochastic ranking
method. In this method, when comparing two solutions,
parameter Pf is used to introduce some information of objective.
To be specific, two solutions are compared based on objective
values with the probability of Pf , while they are compared
based on constraint violations with the probability of (1−Pf ).
Geng et al. [31] combined the stochastic ranking method with
an infeasible elitist-based MOEA, where the original objectives
are transformed into a scalar value based on nondomination
level and crowding distance. In addition, Jan and Khanum [32]
embedded the stochastic ranking method into MOEA/D.

C. Methods Based on Multiobjective Optimization

Methods based on multiobjective optimization balance
constraints and objectives via transforming constraints into
one or more additional objectives. Based on their early work
[33], Ray et al. [14] proposed an infeasibility driven EA (called
IDEA), which adds a new objective based on a measure of
constraint violation. Vieira et al. [34] transformed constraints
into two objectives: one is based on a penalty function and
the other is equal to the number of violated constraints. Long
[35] explicitly constructed three new objectives to quantify a
solution’s convergence, diversity, and feasibility, respectively.
Wang et al. [36] proposed an adaptive tradeoff model, which
divides the search process into three scenarios. If there is no
feasible solution, the population is ranked by nondominated
sorting with an additional objective defined by constraint
violation.

III. PROPOSED APPROACH

A. Motivation

When solving CMOPs by EAs, it is necessary to deal with
various constraints and optimize multiple conflicting objectives
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Fig. 1. Illustrations about a CMOP with two objectives and disjoint feasible
parts.

simultaneously, which gives rise to three major challenges
in the field of evolutionary constrained multiobjective opti-
mization. The first challenge is how to achieve both diversity
and feasibility. Many CMOPs have complicated nonlinear
constraints, which generally make the feasible region disjoint
in the objective space. A bi-objective example is given in Fig. 1.
In the early stage of evolution, there are few feasible solutions
in the population. Therefore, it is a critical task to motivate
infeasible solutions with good diversity to approach/enter the
disjoint feasible parts. The second challenge is how to achieve
both diversity and convergence. It is because the ultimate
aim is to converge to a representative Pareto optimal set, the
image of which is evenly distributed on the constrained PF. In
particular, it is important to keep the final population feasible as
infeasible solutions will be eliminated in the decision making.
Additionally, the third challenge is how to provide a transition
from “diversity & feasibility” to “diversity & convergence”. It is
not difficult to understand since after we obtain diverse feasible
solutions, we need to make them become well-converged and
well-distritbuted Pareto optimal solutions in the end.

However, with respect to methods based on penalty functions,
in the early stage of evolution, the solution selection depends
largely on the degree of constraint violation. This bias toward
constraints will lead to the loss of diversity and premature
convergence. In addition, in the later stage of evolution,
methods based on penalty functions may maintain some
infeasible solutions with slight constraint violations in the
population since they generally adopt the feasibility proportion
to balance objectives and constraints. Thus, it is hard to achieve
both diversity and convergence. Therefore, methods based on
penalty functions face the first and second challenges. In terms
of methods based on the separation of objectives and constraints
and methods based on multiobjective optimization, they face
the third challenge due to the fact that they do not use feedback
information (such as the feasibility proportion) to guide the
evolution.

Based on the above consideration, we design a shift-based
penalty function in this paper, called ShiP, which includes a
shift measure and a penalty measure.
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Fig. 2. Illustrations about (a) the calculation of local feasible nadir, and (b)
the shift of infeasible solution ~u with ~F (~u) = (f1(~u), f2(~u)) based on the
local feasible nadir (i.e., ~z∗ = (z∗1 , z

∗
2 )).

B. Shift-based Penalty (ShiP)

In the shift measure, we propose a new concept, i.e., local
feasible nadir. Given infeasible solution ~u and its objective
vector ~F (~u) =

(
f1(~u), f2(~u), . . . , fm(~u)

)T
, we first find the

feasible solutions whose values in the ith (i ∈ {1, . . . ,m})
objective are bigger than fi(~u). Suppose that the number
of such feasible solutions is ki and the corresponding ki
values in the ith objective are: vi,1, . . . , vi,ki . Let z∗i =
min{vi,1, . . . , vi,ki}. The feasible solution, whose value in the
ith objective is equal to z∗i , is called a neighbouring feasible
solution of ~u. It is clear that there are totally m neighbouring
feasible solutions of ~u. Then, ~z∗ = (z∗1 , . . . , z

∗
m) is called the

local feasible nadir of ~u. Note that if ki = 0, z∗i is equal to
the biggest value in the ith objective of the population, which
is called a virtual feasible extreme value in this paper. Still
taking Fig. 1 as an example, we show the local feasible nadirs
of three infeasible solutions in Fig. 2(a). As shown in Fig. 2(a),
some infeasible solutions may share the same neighbouring
feasible solutions and local feasible nadir.

Based on ~z∗, the shift of ~u on the ith objective is defined
as follows:

Si(~u) = fi(~u) + c · Pfea · (z∗i − fi(~u)) (11)

where Pfea is the proportion of feasible solutions in the current
parent and offspring populations, and c is an arbitrary constant
bigger than 1. Fig. 2(b) shows the shift of an infeasible solution
based on (11). It can be seen that the degree of shift is controlled
by Pfea. When Pfea = 1, the infeasible solution will get the

maximum amount of shift. Importantly, the shift measure has
the following properties:

Case 1: if c·Pfea < 1 (i.e., Pfea < 1/c), a shifted infeasible
solution still has an opportunity to be nondominated with the
neighbouring feasible solutions in the objective space.

Case 2: if c ·Pfea ≥ 1 (i.e., Pfea ≥ 1/c), an infeasible
solutions will be shifted to the area that is dominated by its
neighbouring feasible solutions in the objective space.
c is set to 2 in this paper, that is, the threshold of Pfea

to trigger the transition between the above two cases is
0.5. The rationality behind this settings is that since Pfea
is the proportion of feasible solutions in the current parent
and offspring populations, Pfea = 0.5 means that after the
environmental selection, the population for the next generation
is likely to be entirely feasible.

In addition to the shift measure, a penalty measure is used
to further distinguish infeasible solutions. In terms of the ith
objective, the penalty of ~u is defined based on its constraint
violation:

Pi(~u) = CV (~u). (12)

Finally, the ith objective of each individual in the population
is formulated as:

f ′i(~x)=

{
Si(~x)+Pi(~x), if Pfea > 0 ∧ CV (~x) > 0

fi(~x), otherwise
(13)

From (13), it is obvious that feasible solutions will not
experience any shift and penalty.

C. Analysis of Principle

Next, we analyze the working principle of ShiP based on
(13):

1) When the population is entirely infeasible, ShiP only uses
the original objectives. By taking advantage of the information
of the original objectives, it is helpful to maintain the diversity
and explore the search space [29]. One may be interested in
why ShiP can find feasible solutions in this manner. The reasons
are twofold. First, due to the fact that constraints have been
ignored, the population will converge toward the unconstrained
PF. During this process, the population will inevitably meet
the feasible region as shown in Fig. 1. Second, the mating
selection based on constraint violation can help the population
to yield some feasible offspring during the evolution.

2) When 0 < Pfea < 1/c, by utilizing the distribution
information of feasible solutions, ShiP is able to identify
promising infeasible solutions in the areas defined by the
neighbouring feasible solutions and local feasible nadirs. To
illustrate this, we present a hypothetical population and simulate
the shift and penalty measures. In this scenario, there are ten
solutions denoted as A–J . Among them, three are feasible
solutions (i.e., A, F , and G) and seven are infeasible solutions
(i.e., B, C, D, E, H , I , and J). Thus, Pfea = 0.3. Table
I summarizes their original objective values and constraint
violations and Fig. 3(a) shows their original positions in the
objective space. Obviously, B, C, D, and E share the same
neighbouring feasible solutions and local feasible nadir, and
H , I , and J share the same neighbouring feasible solutions
and local feasible nadir. From Fig. 3(a), C and I are more
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TABLE I
SIMULATION OF THE SHIFT AND PENALTY MEASURES WITH Pfea = 0.3 AND c = 2

Solution Original Objectives Local Feasible Nadir Shift Amount Penalty Amount Modified Objectives
(f1, f2) (z1, z2) 〈0.6(z∗1−f1), 0.6(z∗2−f2)〉 〈CV,CV 〉 (f ′1, f

′
2)

A (0.172, 1.224) − − − −
B (0.299, 1.125) (0.733, 1.224) 〈0.261, 0.059〉 〈0.108, 0.108〉 (0.668, 1.293)
C (0.362, 0.878) (0.733, 1.224) 〈0.223, 0.207〉 〈0.045, 0.045〉 (0.630, 1.130)
D (0.528, 0.875) (0.733, 1.224) 〈0.123, 0.209〉 〈0.187, 0.187〉 (0.838, 1.271)
E (0.632, 0.753) (0.733, 1.224) 〈0.061, 0.283〉 〈0.134, 0.134〉 (0.827, 1.170)
F (0.733, 0.651) − − − −
G (0.819, 0.558) − − − −
H (0.937, 0.407) (1.351, 0.558) 〈0.248, 0.090〉 〈0.129, 0.129〉 (1.314, 0.626)
I (1.014, 0.041) (1.351, 0.558) 〈0.202, 0.310〉 〈0.101, 0.101〉 (1.317, 0.452)
J (1.351, 0.128) (1.351, 0.558) 〈0.000, 0.258〉 〈0.245, 0.245〉 (1.596, 0.631)

promising than other infeasible solutions: C has the potential
to enter a disjoint feasible part, and I is very close to the Pareto
optimal solutions on the boundary of a disjoint feasible part.
On the contrary, B, E, and H are less valuable for exploration
because they are close to the current feasible solutions, and D
and J are far away from the feasible region. Based on Pfea
and c, Table I also gives the shift amount, penalty amount, and
modified objectives of each infeasible solution, and Fig. 3(a)
also shows the modified positions of the ten individuals by ShiP
in the objective space, which are further depicted in Fig. 3(b)
for clarity. As can be seen from Fig. 3(a), B, D, E, H , and
J are outside the areas defined by their neighbouring feasible
solutions and local feasible nadirs after shift and penalty. It is
because the shifted B, E, and H are close to the boundaries
of the areas defined by their neighbouring feasible solutions
and local feasible nadirs. Thus, after penalty (the penalty angle
is 45◦ since the penalty amount in each objective is the same),
the shifted B, E, and H are outside. In addition, the reason
why the shifted D and J are outside after penalty is mainly
due to their high constraint violations. In contrast, C and I are
inside, which can be attributed to the fact that they have low
constraint violations and are far away from the current feasible
solutions. From Fig. 3(a), based on Pareto dominance, the seven
infeasible solutions are nondominated with the three feasible
solutions, in terms of the original objectives. However, from Fig.
3(b), only C and I are nondominated with the three feasible
solutions, and the other infeasible solutions are dominated
by A, F , or G, in terms of the modified objectives. Thus,
as promising infeasible solutions, C and I are very likely to
survive during the evolution. By making use of such promising
infeasible solutions, the population can gradually approach the
boundary of the feasible region or enter the feasible region
while maintaining good diversity, thus achieving both diversity
and feasibility.

3) When Pfea ≥ 1/c, after shift, all infeasible solutions
are dominated by feasible solutions as analyzed in Case 2 of
Section III-B. Further, after penalty, all infeasible solutions
are definitely outside the areas defined by their neighbouring
feasible solutions and local feasible nadirs since their constraint
violations are bigger than 0. An example is given in Fig. 4. In
this example, there are ten hypothetical solutions. Among them,
three are infeasible solution and seven are feasible solutions.
Thus, Pfea = 0.7. In principle, ShiP with Pfea ≥ 1/c
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Fig. 3. Distribution of ten hypothetical solutions A–I in the case that 0 <
Pfea < 1/c. (a) Their original positions in the objective space. (b) Their
modified positions by ShiP in the objective space.
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Fig. 4. Distribution of ten hypothetical solutions A–I in the case that Pfea ≥
1/c. (a) Their original positions in the objective space. (b) Their modified
positions by ShiP in the objective space.

is equivalent to CDP, therefore giving more opportunities
to feasible solutions to evolve. As a result, based on the
diverse feasible solutions provided by 0 < Pfea < 1/c, ShiP
can motivate them toward the Pareto optimal solutions, thus
achieving both diversity and convergence.

From the above analysis, ShiP is capable of achieving both
diversity and feasibility in the early stage of evolution, and both
diversity and convergence in the later stage of evolution. In
addition, ShiP achieves an adaptive transition from “diversity
& feasibility” to “diversity & convergence” by using Pfea.
Therefore, ShiP provides an effective way to address the
three major challenges mentioned previously. Moreover, the
implementation of ShiP is simple.

The above principle analysis of ShiP is based on Pareto
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dominance. Under the framework of MOEA/D, for a certain
subproblem, a dominated solution can be identified by the
aggregation function (e.g., Tchebycheff approach). In addition,
IBEA with Iε+ indicator has been proven to be compliant with
Pareto dominance. Therefore, ShiP is also applicable to the
decomposition and indicator-based MOEA frameworks. A brief
analysis can prove that the computational time complexity of
ShiP is O(mN2), where N is the population size. Thus, ShiP
does not bring extra computational burden to existing MOEAs.

Remark 1: Despite both ShiP and Woldesenbet et al.’s
method [12] have two components in the modified objectives
and utilize the feasibility proportion, they are different in nature.
In ShiP, the shift measure is based on neighbouring feasible
solutions and local feasible nadirs; thus, the local information
of population distribution is utilized. Therefore, ShiP can adapt
more complicated fitness landscapes. Overall, ShiP is able
to balance feasibility, diversity, and convergence during the
evolution. However, in Woldesenbet et al.’s method, if the
feasibility proportion is small, priority is given to the search
for feasible individuals, and if the feasibility proportion is large,
priority is given to find individuals with better objective values.
As a result, it is hard to keep the diversity of the population
during the evolution due to the fact that this method does not
make use of the local information of population distribution,
especially when there are several disjoint feasible parts.

IV. EXPERIMENTAL STUDY

This section experimentally studies the performance of ShiP
by embedding it into three well-known MOEA frameworks:
NSGA-II [13], MOEA/D [15], and IBEA [16]. From (13), ShiP
revises each objective and transforms a CMOP into an uncon-
strained MOP. Therefore, ShiP can be directly implemented
under the framework of NSGA-II, MOEA/D, and IBEA to
solve CMOPs. In our experiments, MW [37] was adopted as
the test suite. In MW, CMOPs are classified into four types:
the constrained PF is the same with the unconstrained PF (type
I), the constrained PF is a part of the unconstrained PF (type
II), the constrained PF consists of a part of the unconstrained
PF and a part of the boundary of the feasible region (type
III), and the unconstrained PF is entirely located outside the
feasible region and the constrained PF is composed of a part
of the boundary of the feasible region (type IV). For the sake
of clarity, the discussions about the results in this section
were based on the above classification. Under each MOEA
framework, we compared ShiP with some representative CHTs:
• Under the framework of NSGA-II, the compared CHTs

included CDP [13], self-adaptive penalty function (SP)
[12], the multiobjective optimization-based method (MO)
proposed in IDEA [14], and adaptive tradeoff model
(ATM) [36]. Their corresponding constrained MOEAs
(CMOEAs) were denoted as CDP-NSGA-II, SP-NSGA-II,
MO-NSGA-II, and ATM-NSGA-II, respectively.

• Under the framework of MOEA/D, in addition to CDP
[32] and SP [20], we selected stochastic ranking (SR)
[32] and an improved ε constrained method proposed in
[29]. Their corresponding CMOEAs were denoted as CDP-
MOEA/D, SP-MOEA/D, SR-MOEA/D, and ε-MOEA/D,
respectively.

• Currently, very few research works have focused on CHTs
under the framework of IBEA or other indicator-based
MOEAs. We considered a combination of SR and IBEA
presented in [38], denoted as SR-IBEA.

A. Performance Metrics

To assess the performance of the compared CMOEAs, a
commonly used metrics was chosen in this paper: inverted
generational distance (IGD) [39]. Note that, IGD is able
to measure the diversity and convergence of an obtained
approximation P . Assuming that P∗ is a set of samples evenly
distributed on the constrained PF, the IGD metric is calculated
as:

IGD =

∑
~a∗∈P∗ d(~a∗,P)

|P∗| (14)

where |P∗| is the cardinality of P∗, and d(~a∗,P) is the minimal
Euclidean distance between ~a∗ and all members in P . A smaller
IGD value indicates a better approximation of the constrained
PF.

B. Parameter Settings

Our experiments were conducted under the following pa-
rameter settings:
• Number of independent runs: 100;
• Maximum generation number: Gmax = 600;
• Population size: N = 100;
• Number of decision variables: n = 15;
• Number of objectives for the test problems with scalable

numbers of objectives: m = 3.
All the compared CMOEAs used simulated binary crossover

(SBX) [40] and polynomial mutation (PM) [13] to produce the
offspring:
• SBX: the crossover probability pc = 0.9 and the distribu-

tion index ηc = 20;
• PM: the mutation probability pm = 1/n and the distribu-

tion index ηm = 20.
In addition, on each test problem, the results included the

average and standard deviation over 100 independent runs. To
detect the statistical significance, the Wilcoxon’s rank sum test
at a 0.05 significance level was implemented between ShiP
and other CHTs.

C. Comparison under the Framework of NSGA-II

First, ShiP was compared with four other CHTs, i.e., CDP,
SP, MO, and ATM, on MW test suite under the NSGA-II
framework. Table II show the results in terms of IGD.

It can be seen from Table II that ShiP-NSGA-II performs
the best on eight cases, i.e., MW1, MW5–MW7, MW10, and
MW12–MW14, which are mainly type-II and type-III CMOPs.
For the rest of cases, ATM-NSGA-II is better than others
on MW2 and MW4 which are type-I CMOPs; MO-NSGA-II
achieves more promising results than others on MW8, MW9,
and MW11 which mainly belong to type IV; and SP-NSGA-II
wins on MW3. The Wilcoxon’s rank-sum test shows that ShiP
is significantly better than the four competitors on seven, six,
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TABLE II
STATISTICS OF THE IGD METRIC OBTAINED BY FIVE CHTS UNDER THE FRAMEWORK OF NSGA-II, WHERE “AVG” AND “STD DEV” ARE THE AVERAGE
AND STANDARD DEVIATION OF THE IGD VALUES OVER 100 INDEPENDENT RUNS, RESPECTIVELY. THE BEST RESULT FOR EACH TEST PROBLEM AMONG
THE FIVE COMPARED ALGORITHMS IS HIGHLIGHTED IN BOLDFACE. THE WILCOXON’S RANK-SUM TEST AT A 0.05 SIGNIFICANCE LEVEL IS PERFORMED,

WHERE “+”, “≈”, AND “−” DENOTE THAT SHIP PERFORMS BETTER THAN, SIMILAR TO, AND WORSE THAN ITS COMPETITORS, RESPECTIVELY.

Type Prob.
CDP-NSGA-II SP-NSGA-II MO-NSGA-II ATM-NSGA-II ShiP-NSGA-II

Avg(±Std Dev) Avg (±Std Dev) Avg (±Std Dev) Avg (±Std Dev) Avg (±Std Dev)

I
MW2 2.841E-02 (±1.32E-02)≈ 2.482E-02 (±1.28E-02)≈ 2.619E-02 (±1.02E-02)≈ 2.467E-02 (±1.47E-02)≈ 2.667E-02 (±1.47E-02)
MW4 5.644E-02 (±2.75E-03)− 6.220E-02 (±5.69E-02)+ 5.659E-02 (±2.29E-03)− 5.639E-02 (±2.62E-03)− 5.823E-02 (±2.63E-03)
MW14 1.388E-01 (±1.76E-02)≈ 1.386E-01 (±2.31E-02)≈ 1.388E-01 (±2.60E-02)+ 1.387E-01 (±8.28E-03)+ 1.386E-01 (±1.11E-02)

II

MW1 3.011E-02 (±8.32E-02)≈ 1.781E-02 (±4.29E-02)≈ 4.145E-02 (±8.92E-02)+ 1.937E-02 (±4.63E-02)≈ 8.055E-03 (±1.11E-02)
MW5 2.878E-01 (±3.03E-01)+ 2.153E-01 (±2.95E-01)+ 5.687E-02 (±7.00E-02)≈ 2.639E-01 (±2.90E-01)+ 4.724E-02 (±3.88E-02)
MW6 6.432E-02 (±1.06E-01)+ 4.552E-02 (±4.43E-02)≈ 8.393E-02 (±1.29E-01)+ 8.883E-02 (±1.17E-01)+ 4.494E-02 (±9.67E-02)
MW8 6.221E-02 (±1.85E-02)≈ 6.294E-02 (±2.15E-02)≈ 5.976E-02 (±8.97E-03)− 6.036E-02 (±5.73E-03)≈ 6.027E-02 (±5.53E-03)

III

MW3 1.101E-02 (±2.14E-02)≈ 9.817E-03 (±1.98E-02)≈ 6.432E-02 (±2.00E-01)+ 1.747E-02 (±2.13E-02)≈ 1.636E-02 (±3.01E-02)
MW7 3.771E-02 (±1.03E-01)+ 8.673E-03 (±1.44E-02)≈ 8.769E-03 (±1.67E-02)≈ 7.394E-02 (±3.76E-02)+ 8.152E-03 (±1.32E-02)
MW10 1.327E-01 (±1.08E-01)+ 1.291E-01 (±1.42E-01)+ 1.516E-01 (±1.70E-01)+ 1.485E-01 (±1.59E-01)+ 5.362E-02 (±6.41E-02)
MW13 1.982E-01 (±1.79E-01)+ 1.778E-01 (±2.78E-01)+ 2.455E-01 (±1.14E-01)+ 2.214E-01 (±1.22E-01)+ 1.522E-01 (±8.41E-02)

IV
MW9 1.256E-01 (±2.19E-01)− 1.630E-01 (±2.63E-01)− 2.608E-02 (±8.31E-02)− 1.793E-01 (±2.84E-01)− 4.210E-01 (±1.15E-01)
MW11 5.185E-01 (±1.75E-01)+ 4.615E-01 (±2.29E-01)+ 1.721E-01 (±1.91E-01)≈ 5.750E-01 (±1.89E-01)+ 1.733E-01 (±2.04E-01)
MW12 1.501E-01 (±2.49E-01)+ 7.048E-02 (±1.90E-01)+ 4.014E-02 (±1.33E-01)+ 8.735E-02 (±2.37E-01)+ 2.421E-02 (±8.84E-02)

+/ ≈ /− 7/5/2 6/7/1 7/4/3 8/4/2 /
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Fig. 5. The solution sets obtained by the five compared algorithms with the median IGD value among 100 independent runs on MW10. The blue curve
denotes the unconstrained PF and the red curves denote the constrained PF. (a) CDP-NSGA-II. (b) SP-NSGA-II. (c) MO-NSGA-II. (d) ATM-NSGA-II. (e)
ShiP-NSGA-II

seven, and eight cases, respectively; while ShiP is worse than
them on only two, one, three, and two cases, respectively.

It is clear that ShiP has advantages on type-II and type-III
CMOPs and is also competitive on type IV. The following
two reasons support the above observations: 1) on types III
and IV, ShiP can keep some valuable infeasible solutions close
to the boundary of the feasible region; and 2) on type II,
when Pfea ≥ 1/c, ShiP encourages diverse feasible solutions
to approximate the constrained PF and eliminates infeasible
solutions. Fig. 5 plots the feasible solutions resulting from the
five compared algorithms with the median IGD value among
100 independent runs on MW10.

D. Comparison under the Framework of MOEA/D
Subsequently, ShiP-MOEA/D was compared with four other

CMOEAs (i.e., CDP-MOEA/D, SP-MOEA/D, SR-MOEA/D,
and ε-MOEA/D) on MW test suite. Table III presents the results
in terms of IGD.

It can be observed from Table III that ShiP-MOEA/D is
the best algorithm on seven test problems (i.e., MW2, MW5–
MW8, MW13, and MW14) that cover types I–III. In addition,
CDP-MOEA/D performs better than other algorithms on MW4,
MW9, and MW10; ε-MOEA/D achieves better approximations
on MW1, MW3, and MW11; and SP-MOEA/D beats others
on MW12. The Wilcoxon’s rank-sum test confirms that ShiP-
MOEA/D is better than the four competitors on eight, nine, ten,

and five test problems, respectively. However, ShiP-MOEA/D
is worse than them on only four, three, one, four test problems,
respectively.

In summary, under the framework of MOEA/D, ShiP presents
quite encouraging results on types I–III. However, ShiP seems
to be slightly worse than CDP and SP on type-IV cases
(especially, on MW9 and MW12). The reason can be attributed
to the fact that MW9 and MW12 have connected feasible
regions. The weights adopted in MOEA/D can well cover
these feasible regions as the evolution proceeds. Under this
condition, CDP and SP, which highly bias toward feasibility,
will motivate the population to promptly extend along the
connected feasible region and approximate the constrained
PF from the feasible side. Fig. 6 plots the feasible solutions
resulting from the five compared algorithms with the median
IGD value among 100 independent runs on MW7.

E. Comparison under the Framework of IBEA

Finally, we compared ShiP with SR on MW test suite by
embedding them into IBEA. Table IV provides the results in
terms of IGD obtained by SR-IBEA and ShiP-IBEA. It can
be seen from Table IV that ShiP-IBEA wins on MW1, MW3,
MW5, MW7, and MW9–MW12 which are mainly types II–
IV; while on the remaining test problems, SR-IBEA performs
better. The Wilcoxon’s rank-sum test also reveals that ShiP-
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TABLE III
STATISTICS OF THE IGD METRIC OBTAINED BY FIVE CHTS UNDER THE FRAMEWORK OF MOEA/D, WHERE “AVG” AND “STD DEV” ARE THE AVERAGE
AND STANDARD DEVIATION OF THE IGD VALUES OVER 100 INDEPENDENT RUNS, RESPECTIVELY. THE BEST RESULT FOR EACH TEST PROBLEM AMONG
THE FIVE COMPARED ALGORITHMS IS HIGHLIGHTED IN BOLDFACE. THE WILCOXON’S RANK-SUM TEST AT A 0.05 SIGNIFICANCE LEVEL IS PERFORMED,

WHERE “+”, “≈”, AND “−” DENOTE THAT SHIP PERFORMS BETTER THAN, SIMILAR TO, AND WORSE THAN ITS COMPETITORS, RESPECTIVELY.

Type Prob.
CDP-MOEA/D SP-MOEA/D SR-MOEA/D ε-MOEA/D ShiP-MOEA/D

Avg(±Std Dev) Avg (±Std Dev) Avg (±Std Dev) Avg (±Std Dev) Avg (±Std Dev)

I
MW2 1.091E-01 (±8.89E-02)≈ 1.094E-01 (±9.92E-02)≈ 1.086E-01 (±7.58E-02)≈ 1.122E-01 (±8.66E-02)≈ 1.031E-01 (±7.50E-02)
MW4 4.915E-02 (±5.91E-04)− 4.964E-02 (±5.97E-04)− 5.075E-02 (±1.21E-03)+ 4.927E-02 (±8.30E-04)− 5.047E-02 (±5.15E-03)
MW14 3.478E-01 (±1.14E-01)≈ 3.832E-01 (±1.26E-01)+ 3.702E-01 (±1.03E-01)+ 3.335E-01 (±9.66E-02)≈ 3.327E-01 (±1.06E-01)

II

MW1 3.864E-02 (±7.02E-02)+ 3.477E-02 (±7.31E-02)+ 2.837E-02 (±9.03E-02)≈ 1.293E-02 (±3.27E-02)− 1.430E-02 (±4.09E-02)
MW5 6.018E-01 (±2.89E-01)+ 6.429E-01 (±2.05E-01)+ 6.433E-01 (±2.10E-01)+ 1.662E-01 (±1.45E-01)+ 1.481E-01 (±2.13E-01)
MW6 3.606E-01 (±2.54E-01)+ 3.318E-01 (±2.11E-01)+ 3.462E-01 (±2.46E-01)+ 3.146E-01 (±2.09E-01)≈ 2.829E-01 (±2.21E-01)
MW8 1.316E-01 (±8.57E-02)+ 1.526E-01 (±1.10E-01)+ 1.545E-01 (±1.00E-01)+ 1.295E-01 (±5.52E-02)+ 1.082E-01 (±5.11E-02)

III

MW3 3.598E-01 (±4.30E-01)+ 4.226E-01 (±4.57E-01)+ 9.009E-02 (±1.92E-01)− 1.076E-02 (±1.90E-03)− 1.475E-01 (±3.26E-01)
MW7 2.797E-01 (±1.97E-01)+ 2.692E-01 (±1.87E-01)+ 3.165E-01 (±1.50E-01)+ 8.750E-02 (±9.89E-02)+ 8.327E-02 (±1.43E-01)
MW10 2.201E-01 (±1.92E-01)− 2.560E-01 (±1.91E-01)≈ 2.719E-01 (±1.83E-01)≈ 2.464E-01 (±2.04E-01)≈ 2.651E-01 (±2.24E-01)
MW13 2.756E-01 (±3.53E-01)+ 2.362E-01 (±3.17E-01)+ 4.996E-01 (±1.37E-01)+ 2.800E-01 (±1.13E-01)+ 1.670E-01 (±5.01E-02)

IV
MW9 1.216E-02 (±3.50E-03)− 1.277E-01 (±1.78E-02)− 2.396E-01 (±1.07E-01)+ 7.065E-02 (±7.46E-02)− 1.301E-01 (±1.41E-01)
MW11 3.929E-01 (±1.85E-01)+ 4.283E-01 (±2.55E-01)+ 5.799E-01 (±3.23E-01)+ 1.378E-01 (±2.04E-01)≈ 1.991E-01 (±1.88E-01)
MW12 5.521E-03 (±3.64E-04)− 5.398E-03 (±3.54E-04)− 1.389E-01 (±6.72E-02)+ 1.357E-02 (±8.65E-03)+ 8.967E-03 (±1.01E-03)

+/ ≈ /− 8/2/4 9/2/3 10/3/1 5/5/4 /
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Fig. 6. The solution sets obtained by the five compared algorithms with the median IGD value among 100 independent runs on MW7. The blue curve denotes
the unconstrained PF and the red curves denote the constrained PF. (a) CDP-MOEA/D. (b) SP-MOEA/D. (c) SR-MOEA/D. (d) ε-MOEA/D. (e) ShiP-MOEA/D.

TABLE IV
STATISTICS OF THE IGD METRIC OBTAINED BY SR AND SHIP UNDER THE

FRAMEWORK OF IBEA, WHERE “AVG” AND “STD DEV” ARE THE
AVERAGE AND STANDARD DEVIATION OF THE IGD VALUES OVER 100
INDEPENDENT RUNS, RESPECTIVELY. THE BETTER RESULT FOR EACH

TEST PROBLEM BETWEEN THE TWO COMPARED ALGORITHMS IS
HIGHLIGHTED IN BOLDFACE. THE WILCOXON’S RANK-SUM TEST AT A
0.05 SIGNIFICANCE LEVEL IS PRESENTED, WHERE “+”, “≈”, AND “−”

DENOTE THAT SHIP PERFORMS BETTER THAN, SIMILAR TO, AND WORSE
THAN SR, RESPECTIVELY.

Type Prob.
SR-IBEA ShiP-IBEA

Avg (±Std Dev) Avg (±Std Dev)

I
MW2 2.354E-02 (±1.01E-02)≈ 2.359E-02 (±7.87E-03)
MW4 5.013E-02 (±1.54E-03)≈ 6.515E-02 (±3.31E-03)

MW14 1.884E-01 (±5.38E-03)− 2.977E-01 (±2.09E-02)

II

MW1 2.373E-02 (±4.40E-02)≈ 1.665E-02 (±2.29E-02)
MW5 3.091E-01 (±3.46E-01)+ 2.009E-01 (±1.15E-01)
MW6 8.795E-02 (±1.11E-01)− 1.828E-01 (±1.43E-01)
MW8 1.016E-01 (±1.05E-02)− 1.957E-01 (±3.35E-02)

III

MW3 5.713E-02 (±1.75E-02)≈ 5.430E-02 (±1.81E-02)
MW7 1.310E-01 (±8.02E-02)+ 7.419E-02 (±2.10E-02)

MW10 1.462E-01 (±1.20E-01)+ 5.430E-02 (±1.41E-02)
MW13 2.515E-01 (±1.29E-01)− 4.027E-01 (±1.66E-01)

IV
MW9 1.903E-01 (±1.92E-01)+ 1.253E-01 (±9.36E-02)

MW11 6.588E-01 (±2.28E-01)+ 4.475E-01 (±2.19E-01)
MW12 1.222E-01 (±2.05E-01)+ 8.036E-02 (±1.33E-01)

+/ ≈ /− 6/4/4 /

IBEA has competitive performance. It is better than and similar
to SR-IBEA on six and four test problems, respectively.

Based on the above discussion, ShiP-IBEA is more suitable

Algorithm 1: Framework of ShiP+

1 Initialize population P and archive A: P and A include
N randomly chosen individuals from the decision space,
respectively;

2 W = {w1, ...,wN} is a set of uniformly distributed
weight vectors;

3 while the stopping criterion is not met do
4 M = MatingSelection(P,A,W );
5 Produce offspring population Q by executing the

reproduction operators on M ;
// the reproduction operators are the same as in

NSGA-II
6 A = ArchiveUpdate(P,Q,A,W );
7 P = Environmental Selection(P,Q);

// the environmental selection is the same as in
ShiP-NSGA-II

8 if A has at lease one feasible solution then
9 P = PopulationUpdate(P,A);

10 Return P ;

for MW test problems with types II–IV. However, SR-IBEA is
better than ShiP-IBEA on type-I cases, whose constrained PFs
are partly in narrow feasible regions. It is because SR always
chooses some infeasible solutions with a certain probability,
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TABLE V
COMPARISON OF THREE ARCHIVE-ASSISTED METHODS (I.E., PPS, DAE, AND SHIP+) IN TERMS OF THE IGD METRIC ON LIR-CMOP AND DAS-CMOP

TEST SUITES. “AVG” AND “STD DEV” ARE THE AVERAGE AND STANDARD DEVIATION OF THE IGD VALUES OVER 50 INDEPENDENT RUNS,
RESPECTIVELY. THE BEST RESULT FOR EACH TEST PROBLEM AMONG THE THREE METHODS IS HIGHLIGHTED IN BOLDFACE. THE WILCOXON’S

RANK-SUM TEST AT A 0.05 SIGNIFICANCE LEVEL IS PRESENTED, WHERE “+”, “≈”, AND “−” DENOTE THAT SHIP+ PERFORMS BETTER THAN, SIMILAR
TO, AND WORSE THAN ITS COMPETITORS, RESPECTIVELY.

Problem
PPS DAE ShiP+

Avg (±Std Dev) Avg (±Std Dev) Avg (±Std Dev)
LIR-CMOP1 1.4884e-1 (±5.08e-2) + 2.1442e-1 (±1.15e-1) + 1.3177e-2 (±8.66e-4)
LIR-CMOP2 1.3699e-1 (±2.96e-2) + 1.8735e-1 (±1.03e-1) + 1.3456e-2 (±8.04e-4)
LIR-CMOP3 2.0167e-1 (±6.56e-2) + 2.8120e-1 (±1.45e-1) + 2.1669e-2 (±9.13e-3)
LIR-CMOP4 1.8786e-1 (±3.09e-2) + 1.9257e-1 (±5.05e-2) + 2.7904e-2 (±1.28e-2)
LIR-CMOP5 2.9991e-1 (±3.55e-2) ≈ 3.6495e-1 (±4.54e-2) + 2.9746e-1 (±3.26e-2)
LIR-CMOP6 3.6765e-1 (±9.38e-2) ≈ 4.1716e-1 (±1.10e-1) + 3.4702e-1 (±8.32e-2)
LIR-CMOP7 1.2423e-1 (±2.43e-2) ≈ 1.6883e-1 (±3.05e-2) + 1.1404e-1 (±2.31e-2)
LIR-CMOP8 1.8410e-1 (±2.62e-2) + 1.9303e-1 (±2.05e-2) + 1.6922e-1 (±4.37e-2)
LIR-CMOP9 4.0142e-1 (±2.26e-1) + 1.3912e-1 (±2.31e-1) − 3.9336e-1 (±3.30e-2)
LIR-CMOP10 1.7486e-1 (±2.10e-1) − 9.6965e-2 (±2.22e-1) − 3.9537e-1 (±4.84e-2)
LIR-CMOP11 1.8991e-1 (±2.73e-1) − 1.3629e-1 (±3.76e-1) − 1.9238e-1 (±7.41e-2)
LIR-CMOP12 2.1996e-1 (±1.70e-1) ≈ 5.7498e-2 (±1.44e-1) − 2.0528e-1 (±6.50e-2)
LIR-CMOP13 1.2186e-1 (±3.60e-3) + 9.6800e-2 (±8.86e-4) + 8.9861e-2 (±9.29e-4)
LIR-CMOP14 1.1843e-1 (±2.76e-3) + 9.9132e-2 (±7.12e-4) ≈ 1.0452e-1 (±1.64e-3)
DAS-CMOP1 6.9915e-1 (±6.26e-2) + 6.2131e-1 (±1.38e-1) + 2.6580e-3 (±7.83e-4)
DAS-CMOP2 2.4212e-1 (±3.95e-2) + 2.0926e-1 (±3.68e-2) + 4.0653e-2 (±2.99e-2)
DAS-CMOP3 3.2762e-1 (±4.34e-2) + 3.2860e-1 (±1.04e-1) + 1.6394e-1 (±1.87e-2)
DAS-CMOP4 1.4958e-3 (±7.35e-5) − 1.3024e-3 (±4.31e-5) − 1.7090e-3 (±2.24e-4)
DAS-CMOP5 4.3636e-3 (±1.60e-3) + 3.1800e-3 (±7.31e-5) ≈ 3.2259e-3 (±1.43e-4)
DAS-CMOP6 2.3203e-2 (±8.16e-3) + 2.3209e-2 (±1.69e-2) + 1.4342e-2 (±2.98e-3)
DAS-CMOP7 5.7109e-2 (±4.61e-3) + 3.6837e-2 (±1.85e-3) − 5.1091e-2 (±1.98e-3)
DAS-CMOP8 7.7258e-2 (±8.66e-3) + 5.0377e-2 (±4.17e-3) − 6.0765e-2 (±3.06e-3)
DAS-CMOP9 4.1735e-1 (±1.42e-1) + 2.7994e-1 (±1.73e-1) + 9.6791e-2 (±7.73e-2)
+/ ≈ /− 16/4/3 14/2/7

which is useful to approach these narrow feasible regions during
the evolution.

Remark 2: Benefiting in part from the emphasis on objectives
in the early stage of evolution, ShiP can maintain good
population diversity as well as escape from local feasible
regions. However, it may inevitably encounter some new issues.
Due to its preference to objectives, the population runs the risk
of getting trapped into the local optima caused by multimodal
features of objectives. One effective way to handle this issue
is to use external archive that can preserve some promising
solutions far away from the local optima. This motivates us to
develop archive-assisted ShiP in the next subsection.

F. ShiP+

Using external archive has been verified to be very effective
to solve highly complex constrained optimization problems [41],
[42]. On the basis of ShiP-NSGA-II, we proposed an archive-
assisted CMOEA, called ShiP+. In each iteration, as shown
in Algorithm 1, ShiP+ includes four main steps: 1) generate
mating pool M based on both archive A and population P ; 2)
update A, after producing offspring population Q; 3) execute
the environmental selection which is the same as in ShiP-
NSGA-II; and 4) update P with the nondominated feasible
solution in A, if A has at least one feasible solution. Due to the
space limitation, the details of these components (except the
environmental selection) are listed in the supplementary file.
In ShiP, A and P cooperatively evolve by exchanging useful
information as follows: 1) in Step 5, Q is produced based on

M , the construction of which is based on both A and P in
Step 4; 2) Q is used to update both A in Step 6 and P in Step
7; and 3) A is used to update P if A has at least one feasible
solution in Steps 8 and 9.

To investigate the performance of ShiP+, we compared it
with two other state-of-the-art archive-assisted CMOEAs (i.e.,
PPS [29] and DAE [42]) on LIR-CMOP1–14 in [29] and DAS-
CMOP1–9 in [43] with 30 decision variables. To make the
comparison fair, all the algorithms used SBX and PM as the
reproduction operators.

Table V provides the results in terms of IGD over 50 indepen-
dent runs. From Table V, ShiP+ achieves the best results on 14
cases, including LIR-CMOP1–8, LIR-CMOP13, DAS-CMOP1–
3, DAS-CMOP6, and DAS-CMOP9. On the remaining nine
cases, DAE is better than others. The Wilcoxon’s rank sum
test confirms that ShiP+ surpasses PPS and DAE on 16 and
14 cases, respectively, and performs worse than them on only
three and seven cases, respectively.

The superiority of ShiP+ can be explained as follows. A
gives higher priority to feasibility, if there is no feasible solution
in P (please see Steps 9-12 in Algorithm 2 of the supplementary
file); while the priority switches to optimality, when P already
has enough feasible solutions (please see Step 20 in Algorithm
2 of the supplementary file). Thus, A works in a way that is
complementary to ShiP. Furthermore, the mating selection and
the archive update use the angle information of individuals,
aiming at enhancing the ability of exploitation and exploration,
respectively.
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Start-time Point
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Fig. 7. A block that includes n consecutive trips of a single vehicle.

G. Parameter Sensitivity Analysis

In (11), the aim of c is to control the transition from “diversity
& feasibility” to “diversity & convergence”. The sensitivity
analysis of c was conducted by setting it to seven different
values (i.e., 0.5, 1, 2, 3, 5, 7, and 9) under the framework of
NSGA-II. The corresponding variants were denoted as ShiP-1–
ShiP-7. Table S-I in the supplementary file presents their results
in terms of IGD on MW test suite over 100 independent runs.
Note that, as ShiP-3 is equivalent to the original ShiP-NSGA-II,
the results of ShiP-3 were directly taken from Table II.

From Table S-I, it can be observed that ShiP-3 (i.e., c=2)
and ShiP-4 (i.e., c=3) perform the best. Compared with them,
ShiP-1 (i.e., c=0.5) is unable to provide promising results on
Types II–IV. This is because ShiP with a small c value fails to
put enough emphasis on feasibility. Additionally, ShiP-2 (i.e.,
c= 1) show poor performance on type IV, which is further
verified by the Wilcoxon’s rank-sum test. It can be attributed
to two primary reasons: 1) only if Pfea is approximately equal
to 100%, the feasibility of the population can be guaranteed
in ShiP-2; and 2) it is easy for ShiP-2 to generate infeasible
solutions on type IV, where the constrained PF is entirely on the
boundary of the feasible region. As a result, the final population
of ShiP-2 always contains some infeasible solutions. Besides,
the above reasons also explain the advantage of ShiP-2 on
MW5: in the later stage of evolution, ShiP-2 can keep enough
infeasible solutions to approach the discrete constrained PF
from the infeasible side.

As the value of c increases, the performance also gradually
degenerates. It is because a variant with a greater c value will
have less number of generations to utilize valuable infeasible
solutions. For ShiP-5 (i.e., c = 5), ShiP-6 (i.e., c = 7), and
ShiP-7 (i.e., c=9), if Pfea is greater than 1/5, 1/7, and 1/9,
infeasible solutions will lose their advantages in comparison
with feasible ones.

Therefore, c = 2 and c = 3 are the best choices for general
use.

V. CASE STUDY: VEHICLE SCHEDULING OF URBAN BUS
LINE

In this section, the effectiveness of ShiP is investigated on a
real-world optimization problem: urban bus scheduling problem
[44].

The scheduling task considers a single urban bus line with
two bus termini (denoted as T1 and T2), that is, all the vehicles
assigned to the line should commute between T1 and T2. Each
terminal has a departure timetable that includes nearly 400
start-time points. A trip is a directed route of a vehicle from
one terminal to the other, and each trip should begin at a

t
R W

ta tb

Fig. 8. The start-time points in the range of [t+R, t+R+W ] are available
for the beginning of the next trip.

certain start-time point. A block is a set of consecutive trips
in the schedule of a single vehicle. Fig. 7 shows a block that
includes n trips. The starting time of a block is called the initial
start-time point (i.e., the start-time point of a block’s first trip).
According to the regulations, all blocks should start before
11 a.m. from T1, and there are 120 initial start-time points in
the departure timetable of T1, denoted as I = {I1, . . . , I120}.
The maximum working time of a bus driver is 8 hours, and a
short/long block requires one/two drivers, lasting 8/16 hours.
According to our investigation, a single trip spends nearly 35
minutes during peak hours (i.e., 6:30–21:00). For other time
periods, it is 32 minutes. When a trip is completed, its driver
has a 10-minute rest time (R). Thus, the interval between any
two adjacent trips in a block should be longer than R.

In practice, to reduce the operation costs and increase their
revenue, bus companies usually need to minimize the numbers
of vehicles and drivers [44]. Therefore, the urban bus scheduling
problem can be formulated as follows:

min


f1 =

|B|∑
i=1

zi

f2 =
|B|∑
i=1

ziLi

s.t. C1 :

|B|∑
i=1

ziai,j > 0, j = 1, . . . , l

C2 :

|B|∑
i=1

ziai,j ≤ H, j = 1, . . . , l

C3 : zi = {0, 1}, i = 1, . . . , |B|
C4 : ai,j = {0, 1}, i = 1, . . . , |B|, j = 1, . . . , l

C5 : Li = {1, 2}, i = 1, . . . , |B|

(15)

where f1 and f2 are the numbers of vehicles and drivers
required in a scheduling scheme, respectively; B is the
candidate set of all blocks; C1 ensures that each start-time
point should be covered; C2 indicates the number of trips that
cover each start-time point should not exceed H; if the ith
block is included in the scheduling scheme, zi = 1, otherwise
zi = 0; if the ith block covers the jth start-time point, ai,j = 1,
otherwise ai,j = 0; if the ith block is a long trip (i.e., requiring
two drivers), Li = 2, otherwise Li = 1; and l is the number
of start-time points and equal to 794 in this paper.

In this paper, to solve this scheduling problem, a CMOEA
consists of four important components: 1) block initialization;
2) encoding and decoding; 3) genetic operations; and 4)
local adjustment procedure. The details are described in the
following.
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Fig. 10. Illustration about the adjustment of blocks in a local scope.

1) Block Initialization: We first initialize B. Specifically, for
each initial start-time point Ii (i = 1, . . . , 120), we add trips
into an empty block one by one, until the block exceeds its
predefined length (i.e., 8 or 16 hours). As shown in Fig. 8,
assuming that the previous trip is completed at the time point
t, we can choose one of the start-time points in the range of
[t+R, t+R+W ] (i.e., ta or tb) as the beginning of the next
trip, where the waiting time W is generally set to 1.2(tb− ta).
The above process is repeated until the set of all the feasible
blocks that begin at Ii is generated, denoted as Bi. Then, the
candidate block set is denoted as B = {B1, . . . , B|I|}.

2) Encoding and Decoding: If we directly use (z1, . . . , z|B|)
as chromosome, (15) will be formulated as a large-scale
CMOP. It is because the number of the feasible blocks in
B is greater than 104. In order to shorten the length of
encoding, the chromosome is designed as (x1, . . . , x|I|). For
the ith gene site, xi takes any integer between 0 and |Bi|. If
xi = j (j ∈ {1, . . . , |Bi|}, the jth block in Bi will be selected
in the corresponding scheduling scheme; otherwise, no block
in Bi will be selected. Fig. 9 shows the decoding process of a
chromosome.

TABLE VI
STATISTICS OF THE HV METRIC OBTAINED BY THE FOUR COMPARED
ALGORITHMS, WHERE THE BEST RESULTS IN TERMS OF MEDIAN AND

IQR ARE HIGHLIGHTED IN BOLDFACE.

Alg. CDP-NSGA-II∗ SP-NSGA-II∗ MO-NSGA-II∗ ShiP-NSGA-II∗

Median 2.650E+02 3.174E+02 2.950E+02 3.370E+02
IQR 3.20E+01 1.47E+01 2.07E+01 1.10E+01

46 47 48 49 50 51 52 53 54 55

f1

82

84

86

88

90

92

94

f 2

CDP-NSGA-II* SP-NSGA-II*
MO-NSGA-II* ShiP-NSGA-II*

Fig. 11. The nondominated solutions obtained by the four compared algorithms
with the best HV values.

3) Genetic Operators: Single-point crossover and bitwise
mutation are used for offspring reproduction. When a gene site
mutates, it is set to 0 with the probability of 0.2, and set to a
random integer in [1, |Bi|] with the probability of 0.8.

4) Local Adjustment Procedure: As the scheduling scheme
obtained by directly assembling the selected blocks may not
cover all the start-time points, we need to conduct a local
adjustment procedure similar to that in [44]. As shown in
Fig. 10, td is initially missed by four blocks, while ta is
covered by two blocks (i.e., Block 1 and Block 2). Therefore,
certain trips in the adjacent blocks will be adjusted to make
td covered.

In this section, we combined ShiP-NSGA-II with the above
components and the resultant algorithm was called ShiP-NSGA-
II∗. For comparison, three peer algorithms (i.e., CDP-NSGA-
II, SP-NSGA-II, and MO-NSGA-II) under the framework of
NSGA-II were modified in a similar way. The corresponding
algorithms were denoted as CDP-NSGA-II∗, SP-NSGA-II∗,
and MO-NSGA-II∗, respectively. Note that, ATM-NSGA-II was
absent in the comparison, as it failed to find any encouraging
feasible solution. In addition, the parameters were set as follows:
the length of chromosome (i.e., n) was 120, which is equal
to the number of initial start-time points; the population size
was 800; the maximum generation number was 500; and the
probabilities of crossover and mutation were set to 0.7 and
0.05, respectively.

Table VI provides the results of the four compared algorithms
in terms of median and interquartile range (IQR) of the HV
values [45] over 10 independent runs. As show in Table VI,
ShiP-NSGA-II∗ obtains the best results. Besides, Fig. 11 shows
the nondominated solutions achieved by the four compared
algorithms with the best HV values. It is clear that the PF of
ShiP-NSGA-II∗ has better convergence and spread than the
PFs of the three competitors, which indicates that ShiP is also
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Fig. 12. A scheduling scheme with 48 vehicles and 84 drivers. Each row
represents a block, where each blue rectangle is a trip and the interval between
any two trips is the waiting time of the corresponding vehicle.

promising for solving real-world CMOPs.
Due to the space limitation, we only plot the scheduling

scheme with 48 vehicles and 84 drivers obtained by ShiP-
NSGA-II∗ in Fig. 12. It can be seen that this scheme uses 12
short blocks and 36 long blocks to compete the scheduling
task.

VI. CONCLUSION

In this paper, we considered three major challenges in
evolutionary constrained multiobjective optimization: achieving
both diversity and feasibility in the early stage of evolution,
achieving both diversity and convergence in the later stage
of evolution, and providing a transition from “diversity &
feasibility” to “diversity & convergence”. To address these
three challenges, a shift-based penalty function, called ShiP,
was proposed in this paper. ShiP constructed new objectives
with shift and penalty measures. When there are few feasible
solutions in the population, ShiP identified promising infeasible
solutions and guided them to enter the feasible region from
different directions. With the increase of feasible solutions, ShiP
made use of the feasibility proportion of the current parent
and offspring populations for an adaptive transition to both
diversity and convergence, i.e., motivating the already obtained
diverse feasible solutions to converge toward the Pareto optimal
solutions.

ShiP was implemented in three well-known MOEA frame-
works, which demonstrated its simplicity, flexibility, and
generalization. The results on MW test suite verified its
effectiveness to solve CMOPs. Moreover, ShiP was extended
by an archive-assisted strategy to solve highly complex CMOPs.
Finally, ShiP was applied to the vehicle scheduling of urban
bus line with promising results.

The source code of this paper can be downloaded from:
https://intleo.csu.edu.cn/publication.html
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Supplementary File for “Shift-based Penalty for
Evolutionary Constrained Multiobjective

Optimization and Its Application”

S-I. DETAILS OF THREE COMPONENTS OF SHIP+

This section presents the detailed implementation of three components of ShiP+ . Algorithm 1, Algorithm 2, and Algorithm 3
are the mating selection, the updating of archive, and the updating of population, respectively.

Algorithm 1: MatingSelection(P,A,W )

1 Set B = P
⋃
A;

2 Set a temporary pool M = ∅;
3 Associate each solution in B with its nearest weight vector in W ;
4 ∆i (i = 1, ..., N ) is the set of solutions associated with wi;
5 for i = 1 to N do
6 if ∆i = ∅ then
7 Randomly select a solution in B, denoted as ~x∗;
8 else
9 Randomly select a solution in ∆i, denoted as ~x∗;

10 M = M
⋃
~x∗;

11 Set the mating pool M = ∅;
12 for i = 1 to N do
13 if rand < 0.9 then
14 Let ~xi be the ith solution in M ;
15 Compute the angle between ~xi and each solution in M\{~xi};
16 Find the solution that has the (0.2N )-th smallest angle in M\{~xi}, denoted as ~x∗∗;
17 else
18 Randomly select a solution in M , denoted as ~x∗∗;

19 M = M
⋃
~xi

⋃
~x∗∗;

20 return M ;

The aim of Steps 5-9 is to select diverse individuals for mating. Similar to MOEA/D, we select neighboring individuals for
mating to enhance the ability of exploitation (Steps 13-16) and also randomly select individuals for mating to enhance the
ability of exploration (Steps 17 and 18). M includes 2N individuals. Pair-wise individuals are selected to implement SBX.
Afterward, two offspring will be produced and one of them is randomly chosen to undergo PM.
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Algorithm 2: ArchiveUpdate(P,Q,A,W )

1 Set B = Q ∪A;
2 Associate each solution in B with its nearest weight vector in W ;
3 ∆i (i = 1, ..., N ) is the set of solutions associated with wi;
4 Count the number of feasible solutions in P : Nf ;
5 if Nf = 0 then
6 while |B| > N do
7 Find the subset that has the most solutions, denoted as ∆j ;
8 Find the two solutions that share the smallest angle in ∆j , denoted as ~xa and ~xb ;
9 if CV (~xa) > CV (~xb) then

10 B = B\{~xa};
11 else
12 B = B\{~xb};

13 A = B;
14 else
15 A = ∅;
16 for i = 1 to N do
17 if |∆i| = 1 then
18 A = A

⋃
∆i;

19 if |∆i| > 1 then
20 Find the best solution in ∆i based on the comparison criteria in (1), denoted as ~x∗;
21 A = A

⋃
~x∗;

22 return A;

Note that, in Step 20, the solutions associated with one weight vector (e.g., w∗) are compared based on the following criteria:

~xa is better than ~xb ⇔


gte(~xa,w∗) < gte(~xb,w∗), if both ~xa and ~xb are feasible or if there exists a feasible solution

associated with w∗ in P and Pfea > 0.5,

CV (~xa) < CV (~xb), otherwise
(1)

where gte(•,w∗) is the value of Tchebycheff aggregation function.
The aim of Steps 6-12 is to remove crowding individuals one by one. In Step 8, the angle information is used to add the

diversity and enhance the ability of exploration. In Steps 9-12, A gives higher priority to feasibility, if there is no feasible
solution in P ; while in Step 20, the priority switches to optimality, when P already has enough feasible solutions. Thus, A
works in a way that is complementary to ShiP.
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Algorithm 3: PopulationUpdate(P,A)

1 Compute the set of nondominated feasible solutions in A, denoted as Sa;
2 Set P = P

⋃
Sa;

3 Count the number of feasible solutions in P : Nf ;
4 if Nf = N then
5 Set P = {~x | ~x ∈ P and CV (~x) = 0};
6 else if Nf > N then
7 Set Sf = {~x | ~x ∈ P and CV (~x) = 0};
8 Divide Sf into different nondominated levels by using nondominated sorting: L = {L1, L2, ...};
9 Set P = ∅;

10 Fill P with the nondominated levels in turn, until |P | > N ;
11 Let Lj be the last nondominated level put into P ;
12 while |P | > N do
13 Find the two solutions that share the smallest angle in Lj , denoted as ~xa and ~xb;
14 if rand < 0.5 then
15 P = P\{~xa};
16 else
17 P = P\{~xb};

18 else
19 Sort P based on the degree of constraint violation in the ascending order, and delete the last (|P | −N ) individuals;

20 return P ;

In Algorithm 3, P is updated with the nondominated feasible solutions in A, if A has at least one feasible solution. In Steps
6-17, if Nf > N , nondominated sorting is first implemented to promote the convergence toward the constrained PF, and then
the angle information is utilized to preserve the diversity of the population.



4

TABLE S-I
COMPARISON OF SIX VARIANTS (I.E., SHIP-1–SHIP-7) IN TERMS OF THE IGD METRIC ON MW TEST SUITE. “AVG” AND “STD DEV” ARE THE AVERAGE
AND STANDARD DEVIATION OF THE IGD VALUES OVER 100 INDEPENDENT RUNS, RESPECTIVELY. THE BEST RESULT FOR EACH TEST PROBLEM AMONG
THE SIX VARIANTS IS HIGHLIGHTED IN BOLDFACE. THE WILCOXON’S RANK-SUM TEST AT A 0.05 SIGNIFICANCE LEVEL IS PERFORMED, WHERE “+”,
“≈”, AND “-” DENOTE THAT SHIP-3 (I.E., THE ORIGINAL SHIP-NSGA-II) PERFORMS BETTER THAN, SIMILAR TO, AND WORSE THAN ITS COMPETITORS,

RESPECTIVELY.

Type Prob. Statistics ShiP-1 ShiP-2 ShiP-3 ShiP-4 ShiP-5 ShiP-6 ShiP-7

I

MW2
Avg 2.812E-02 ≈ 2.891E-02 ≈ 2.667E-02 2.658E-02 ≈ 2.717E-02 ≈ 2.747E-02 ≈ 2.893E-02 ≈

(±Std Dev) (±1.39E-02) (±1.54E-02) (±1.47E-02) (±1.44E-02) (±1.40E-02) (±1.49E-02) (±1.70E-02)

MW4
Avg 5.742E-02 ≈ 5.814E-02 ≈ 5.823E-02 5.975E-02 ≈ 5.727E-02 ≈ 5.959E-02 ≈ 5.934E-02 ≈

(±Std Dev) (±3.85E-03) (±2.61E-03) (±2.63E-03) (±2.86E-03) (±2.74E-03) (±2.85E-03) (±2.84E-03)

MW14
Avg 1.404E-01 ≈ 1.392E-01 ≈ 1.386E-01 1.402E-01 ≈ 1.435E-01 ≈ 1.458E-01 ≈ 1.480E-01 ≈

(±Std Dev) (±2.32E-02) (±1.35E-02) (±1.11E-02) (±3.246E-02) (±2.68E-02) (±3.51E-02) (±3.95E-02)

II

MW1
Avg 1.629E-02 + 7.961E-03 ≈ 8.055E-03 7.889E-03 ≈ 7.999E-03 ≈ 9.214E-03 + 1.158E-02 +

(±Std Dev) (±1.54E-02) (±9.84E-03) (±1.11E-02) (±9.07E-03) (±1.08E-02) (±1.12E-02) (±1.14E-02)

MW5
Avg 1.615E-01 + 4.588E-02 − 4.724E-02 4.658E-02 ≈ 4.625E-02 ≈ 4.967E-02 + 5.325E-02 +

(±Std Dev) (±2.71E-01) (±3.69E-02) (±3.88E-02) (±3.84E-02) (±3.75E-02) (±4.65E-02) (±4.44E-02)

MW6
Avg 6.119E-02 + 4.591E-02 ≈ 4.494E-02 5.061E-02 + 5.203E-02 + 7.855E-02 + 9.361E-02 +

(±Std Dev) (±1.22E-01) (±8.52E-01) (±9.67E-02) (±9.47E-02) (±1.18E-01) (±1.25E-01) (±1.34E-01)

MW8
Avg 6.327E-02 ≈ 6.299E-02 ≈ 6.027E-02 6.414E-02 ≈ 6.312E-02 ≈ 6.905E-02 ≈ 7.884E-02 +

(±Std Dev) (±6.65E-03) (±4.10E-03) (±5.53E-03) (±1.93E-02) (±1.84E-02) (±1.20E-02) (±3.11E-02)

III

MW3
Avg 1.589E-02 ≈ 1.545E-02 ≈ 1.636E-02 1.405E-02 ≈ 1.596E-02 ≈ 4.015E-02 + 6.822E-02 +

(±Std Dev) (±3.12E-02) (±2.78E-02) (±3.01E-02) (±2.75E-02) (±3.04E-02) (±1.32E-01) (±2.19E-01)

MW7
Avg 7.959E-02 ≈ 8.696E-02 ≈ 8.152E-03 8.550E-03 ≈ 1.006E-02 + 1.397E-02 + 1.604E-02 +

(±Std Dev) (±1.13E-02) (±1.19E-02) (±1.32E-02) (±1.22E-02) (±2.11E-02) (±2.69E-02) (±6.16E-02)

MW10
Avg 1.390E-01 + 5.557E-02 ≈ 5.362E-02 4.732E-02 − 4.192E-02 − 5.426E-02 ≈ 6.834E-02 +

(±Std Dev) (±1.51E-01) (±3.73E-02) (±6.41E-02) (±2.54E-02) (±2.16E-02) (±2.76E-02) (±2.82E-02)

MW13
Avg 2.074E-01 + 1.510E-01 ≈ 1.522E-01 1.549E-01 ≈ 1.881E-01 + 2.031E-01 + 2.072E-01 +

(±Std Dev) (±1.06E-01) (±8.17E-02) (±8.41E-02) (±1.16E-01) (±1.05E-01) (±1.19E-01) (±1.94E-01)

IV

MW9
Avg 6.091E-01 + 6.066E-01 + 4.210E-01 9.169E-02 − 9.577E-02 − 1.056E-01 − 1.750E-01 −

(±Std Dev) (±1.44E-01) (±1.58E-01) (±1.15E-01) (±7.35E-02) (±8.33E-02) (±1.17E-01) (±2.05E-01)

MW11
Avg 8.190E-01 + 1.909E-01 + 1.733E-01 1.720E-01 ≈ 1.887E-01 + 2.020E-01 + 2.540E-01 +

(±Std Dev) (±1.06E-01) (±1.95E-01) (±2.04E-01) (±1.64E-01) (±1.86E-01) (±2.01E-01) (±2.18E-01)

MW12
Avg 3.114E-01 + 6.358E-02 + 2.421E-02 2.934E-02 ≈ 3.176E-02 + 3.943E-02 + 6.680E-02 +

(±Std Dev) (±2.31E-01) (±1.99E-01) (±8.84E-02) (±1.16E-01) (±1.55E-01) (±1.43E-01) (±1.69E-01)
+/ ≈ /− 8/6/0 3/10/1 / 1/11/2 5/7/2 8/5/1 10/3/1
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S-II. ADDITIONAL EXPERIMENTS

In ShiP, the shift measure uses Pfea to adaptively control the shift degree during the evolution. To verify the effectiveness of
this design, we investigated the performance of ShiP without Pfea.

The results in terms of IGD are presented in Table S-II, where “Avg” and “Std Dev” are the average and standard deviation
of the IGD values over 100 independent runs, respectively. In addition, to detect the statistical differences, the Wilcoxon’s
rank-sum test at a 0.05 significance level was conducted between the results obtained by ShiP without Pfea and the other two
algorithms on each test problem. Note that, the results of CDP and the original ShiP were directly taken from Table II.

As shown in Table S-II, in terms of IGD, the original ShiP is still the best algorithm and achieves the best results on 11
cases. Among the remaining three cases (i.e., MW3, MW4, and MW9), ShiP without Pfea and CDP outperform others on two
cases and one case, respectively. This demonstrates that ShiP without Pfea is significantly worse than the original one, but is
similar to CDP. Additionally, the Wilcoxon’s rank-sum test supports the above observations.

It can be concluded from the comparisons that using Pfea is indeed effective for ShiP. Due to c = 2, ShiP without Pfea

always moves infeasible solutions to the areas that are dominated by the neighboring feasible solutions. Thus, it is equivalent to
CDP.

TABLE S-II
STATISTICS OF THE IGD METRIC OBTAINED BY CDP, SHIP, AND SHIP WITHOUT Pfea UNDER THE FRAMEWORK OF NSGA-II, WHERE “AVG” AND “STD

DEV” ARE THE AVERAGE AND STANDARD DEVIATION OF THE IGD VALUES OVER 100 INDEPENDENT RUNS, RESPECTIVELY. THE BEST RESULT FOR
EACH TEST PROBLEM AMONG THE THREE COMPARED ALGORITHMS IS HIGHLIGHTED IN BOLDFACE. THE WILCOXON’S RANK-SUM TEST AT A 0.05
SIGNIFICANCE LEVEL IS PERFORMED, WHERE “+”, “≈”, AND “−” DENOTE THAT SHIP WITHOUT Pfea PERFORMS BETTER THAN, SIMILAR TO, AND

WORSE THAN ITS COMPETITORS, RESPECTIVELY.

Type Prob.
CDP ShiP ShiP without Pfea

Avg(±Std Dev) Avg (±Std Dev) Avg (±Std Dev)

I
MW2 2.841E-02 (±1.32E-02)≈ 2.667E-02 (±1.47E-02)≈ 2.797E-02 (±1.40E-02)
MW4 5.644E-02 (±2.75E-03)≈ 5.823E-02 (±2.63E-03)+ 5.642E-02 (±2.07E-02)

MW14 1.388E-01 (±1.76E-02)≈ 1.386E-01 (±1.11E-02)≈ 1.392E-01 (±3.32E-02)

II

MW1 3.011E-02 (±8.32E-02)≈ 8.055E-03 (±1.11E-02)≈ 2.853E-02 (±8.00E-02)
MW5 2.878E-01 (±3.03E-01)+ 4.724E-02 (±3.88E-02)− 1.724E-01 (±2.77E-01)
MW6 6.432E-02 (±1.06E-01)≈ 4.494E-02 (±9.67E-02)− 7.159E-02 (±1.64E-01)
MW8 6.221E-02 (±1.85E-02)≈ 6.027E-02 (±5.53E-03)≈ 6.271E-02 (±1.45E-02)

III

MW3 1.101E-02 (±2.14E-02)≈ 1.636E-02 (±3.01E-02)≈ 1.093E-02 (±2.49E-02)
MW7 3.771E-02 (±1.03E-01)≈ 8.152E-03 (±1.32E-02)− 3.973E-03 (±1.50E-01)

MW10 1.327E-01 (±1.08E-01)≈ 5.362E-02 (±6.41E-02)− 1.293E-01 (±1.45E-01)
MW13 1.982E-01 (±1.79E-01)≈ 1.522E-01 (±8.41E-02)− 1.793E-01 (±1.49E-01)

IV
MW9 1.256E-01 (±2.19E-01)− 4.210E-01 (±1.15E-01)+ 1.733E-01 (±2.44E-01)

MW11 5.185E-01 (±1.75E-01)≈ 1.733E-01 (±2.04E-01)− 5.240E-01 (±1.53E-01)
MW12 1.501E-01 (±2.49E-01)≈ 2.421E-02 (±8.84E-02)− 1.614E-01 (±2.59E-01)

+/ ≈ /− 1/12/1 2/5/7 /
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