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Learning from Demonstration
Qin Li and Yong Wang, Senior Member, IEEE

Abstract—Learning from demonstration (LfD) assists robots
to derive a policy from a training set to execute a task. The
training set consists of training demonstrations collected from a
human who executes the same task. However, due to the human’s
varied skill level, the quality of the training set may be bad,
which will affect the accuracy of the derived policy. To solve
this problem, this paper proposes a novel method to improve
the quality of the training set. This method includes two steps,
namely detecting and handling bad training demonstrations in
the training set. In the detecting step, a reference set containing
reference demonstrations is provided by a human teacher. Based
on the reference set, we calculate the influence of each training
demonstration on the policy derivation. If the influence is nega-
tive, the corresponding training demonstration is bad. Afterward,
in the handling step, we calculate the proportion of the negative
influence with respect to the overall influence and reduce the
proportion by iteratively removing bad training demonstrations
until it is less than a threshold. The results show that the accuracy
of a policy derived from the improved training set increases with
up to 19.30%, which verifies the effectiveness of our method.

Index Terms—Learning from demonstration, robot learning,
teacher assistance, bad training demonstration.

I. INTRODUCTION

Robots assist or replace human work by completing human-
given tasks, which can effectively reduce the human labor. To
complete a human-given task, a robot needs to acquire the
corresponding policy. A policy is a type of mapping model
from environmental states to actions. Environmental states
refer to the task-related environmental information obtained by
a robot through sensors. Actions are performed by the robot
according to the environmental states. Based on the policy,
the robot can perform appropriate actions and complete the
task. To acquire a policy, two aspects should be considered:
1) designing a mapping model as the policy; and 2) calculating
the values of parameters in this policy. Note that the second
aspect is also regarded as policy derivation. In general, the first
aspect is related to the task characteristics. In other words, if a
task is given, the mapping model is deterministic. Therefore,
the first aspect is easy to achieve. However, the mapping
model always has a complex structure and a large number
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of parameters, which makes it difficult to derive the policy.
To address this issue, a new research field is proposed, which
is called robot learning. Robot learning is an intersection of
statistic learning theory and robotics, which designs a policy
based on a statistic learning model and derives the policy
by using an optimization algorithm [1], [2]. Within this re-
search field, learning from demonstration (LfD) is an effective
method, which requires a human to imitate the way that a robot
performs a task (i.e., performs corresponding actions according
to environmental states) [3]–[7]. This process will generate a
series of state-action pairs. Each state-action pair is regarded
as a demonstration. All demonstrations build a training set.
We refer to these demonstrations as training demonstrations.
The training set is used for policy derivation.

The quality of a training set is determined by the quality
of training demonstrations. The quality of a training demon-
stration is related to the accuracy of the action corresponding
to the environmental state. If the action is not accurate, then
the training demonstration is considered bad. For example,
in autonomous vehicle control, a training demonstration con-
tains an environment state describing the road information
such as whether there are obstacles, pedestrians, etc., and
an autonomous vehicle’s action such as turning, moving, or
stopping. Assuming that there are obstacles or pedestrians
on a road, if the corresponding action is moving, then the
training demonstration will be of poor quality. Bad training
demonstrations will decrease the quality of the training set
and the performance of LfD, resulting in poor accuracy of the
derived policy.

To solve this problem, many methods have been proposed,
which can be divided into two types. The first type utilizes LfD
to derive a policy from a training set with unknown quality, and
improves the policy accuracy based on reinforcement learning
(RL) [8]–[12]. Specifically, RL helps a robot to explore
new environmental states, and the robot performs actions
corresponding to the new environmental states based on the
policy. Then, RL provides a reward feedback for each action
to indicate if the action is correct or not. Afterward, the reward
feedbacks are used to update the parameters in the policy, thus
increasing the policy accuracy. The representative work in this
type is [8], in which Abbeel et al. used LfD to derive a policy
for an autonomous helicopter, and then increased the policy
accuracy based on a RL algorithm named finite-state Markov
decision process. However, in typical RL algorithms, reward
feedbacks are calculated by reward functions. Designing a
reward function is always difficult and requires considerable
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RL-type expertise. To overcome this shortcoming, some meth-
ods recruit a human teacher to judge the performance of a
robot completing a task and regard the judgements as reward
feedbacks [13]–[20]. Note that the human teacher has a high
skill level and the judgements from the human teacher are
always correct. For example, Argall et al. [13] used LfD to
derive a policy of a task, i.e., intercepting a moving ball, and
recruited a human teacher to give reward feedbacks by judging
whether a robot intercepts the ball. These reward feedbacks
are then used to increase the policy accuracy. MacGlashan
et al. [16] proposed a RL algorithm named COACH, which
provides better representations of reward feedbacks from a
human teacher. Overall, the first type of method needs robots
to explore new states in the environment. However, during
this process, dangerous environmental states may be explored,
which would cause fatal accidents in safety-sensitive tasks like
autonomous vehicle control.

The second type focuses on improving the quality of
training sets. In this type, some methods use either multiple
repeated training demonstrations [21], [22] or training demon-
strations from multiple humans [23], [24]. By doing this, the
number of training demonstrations increases and the influence
of bad training demonstrations on the quality of the training set
can be reduced. However, in these methods, the quality of re-
peated training demonstrations may be bad or the skill levels of
multiple humans may be low, which will actually degrade the
quality of the training set. Unlike these methods, some other
methods detect and handle bad training demonstrations relying
on the assistance from the human teacher [25]–[27]. Such
methods are always called teacher-assistance-based methods.
For example, Liu et al. [26] recruited a human teacher to
record the attributes of each training demonstration. Then,
they computed the matching degree between the recorded
attributes and the desired ones of each training demonstration,
and considered the training demonstrations with low matching
degree to be bad. By removing bad training demonstrations,
the quality of the training set can be improved. Beck et al.
[27] introduced a framework in autonomous vehicle control.
They recruited a human teacher to provide continuous scalar
feedbacks for all training demonstrations, in which bad or
dangerous training demonstrations are associated with low
feedbacks. Then, all training demonstrations are weighted
based on their feedbacks; thus, bad or dangerous training
demonstrations could be neglected due to their low weights.
Teacher-assistance-based methods improve the quality of a
training set by detecting and handling bad training demon-
strations, which can obtain a better quality improvement than
methods based on multiple repeated training demonstrations
or multiple humans. Moreover, compared with the first type
of method, teacher-assistance-based methods do not explore
new environmental states for policy improvement, therefore
avoiding the attacks from dangerous environments.

However, current teacher-assistance-based methods still
have some problems. First, they establish standards based on
task attributes to judge the quality of training demonstrations.
Unfortunately, different tasks have different attributes; thus,
the corresponding standards may differ a lot. As a conse-
quence, there is no general standard which can be used in

different tasks. Second, they always recruit human teachers to
analyze the characteristics of each training demonstration to
detect bad ones, leading to a high labor cost.

Based on the above considerations, a novel teacher-
assistance-based method is proposed, which consists of two
steps: detecting and handling bad training demonstrations in
a training set. The main contributions of this paper can be
summarized as follows:

• In the detecting step, we calculate the influence of a train-
ing demonstration on the policy derivation as the standard
to judge its quality. Specifically, the policy of a task is
first designed and derived from the training set. Then, a
human teacher is recruited to execute the task to provide a
reference set which includes a small number of reference
demonstrations. Based on the reference set, we calculate
the reference loss of the policy. Afterward, we estimate
the change of the reference loss when removing a training
demonstration from the training set. This change can
reflect the influence of the training demonstration on
the policy derivation. If the influence is negative, it
means that the training demonstration has bad quality.
The advantage of using the influence as the standard is
that it is not related to task attributes and can be used
in different tasks. Furthermore, unlike current teacher-
assistance-based methods that recruit human teachers to
analyze all training demonstrations, our method only
requires the human teacher to provide a small reference
set, thus reducing the labor cost.

• In the handling step, we remove bad training demon-
strations from the training set. Considering that directly
removing all bad training demonstrations will reduce
the generality of the training set, an easy and effective
handling framework is proposed to selectively remov-
ing bad training demonstrations. In this framework, the
proportion of the negative influence with respect to the
overall influence is firstly calculated. Then, the proportion
is reduced by iteratively removing bad training demon-
strations. When the proportion drops below a threshold,
the iterative removal operation stops, and the remaining
training demonstrations constitute the improved training
set. Based on this framework, most bad training demon-
strations are removed, which improves the quality of the
training set. Meanwhile, a small portion of bad training
demonstrations with small negative influence is kept,
which enhances the generality of the training set.

• The effectiveness of our method is validated by a classical
LfD-based task: behavior imitation, in which a performer
shows a behavior, and a Nao robot imitates the behavior.
A series of experiments validates that our method has the
capability to improve the quality of the training set.

II. PROPOSED METHOD

Our method consists of two steps: detecting and handling
bad training demonstrations in a training set. In what follows,
we will introduce these two steps in detail.
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A. Detecting Bad Training Demonstrations

Training demonstrations are used to derive a policy, so the
quality of training demonstrations greatly affects the policy
derivation. Therefore, we regard the influence on the policy
derivation as the standard to judge the quality of training
demonstrations. Next, we introduce how to calculate the
influence.

Given a task, a human is recruited to provide a training set:
Ztr = {z1tr, . . . ,zntr , . . . ,zNtr }, where N indicates the size of
Ztr, zntr = (sntr , a

n
tr ) is the nth training demonstration, and sntr

and antr are the nth environmental state and the corresponding
human’s action, respectively. Meanwhile, a policy of the task
is designed, denoted as πθ, where θ = {θ1, . . . , θk, . . . , θK}
indicates the parameter set and K is the number of parameters.

Based on Ztr, we firstly implement the policy derivation,
i.e., minimize the training loss of πθ to obtain the optimal
parameter set θ̂ = {θ̂1, . . . , θ̂k, . . . , θ̂K}, where

θ̂k = arg min
θk∈Θk

Ltr (1)

In (1), Θk is a value set of θk, which includes all possible
values of θk. Ltr is the training loss obtained by calculating
the mean of losses of all training demonstrations:

Ltr =
1

N

N∑
n=1

L(zntr ,θ) (2)

where L(zntr ,θ) is the loss of zntr , i.e, L(zntr ,θ) =
floss(πθ(sntr ), a

n
tr ). πθ(sntr ) indicates the action obtained by πθ

with respect to sntr . floss is a loss function such as the cross-
entropy loss function [28] or the hinge loss function [29], aim-
ing to calculate the difference between the obtained action and
the corresponding human’s action. The bigger the difference,
the higher the loss. After implementing the above process, we
get the derived policy denoted as πθ̂.

Then, we calculate the reference loss of πθ̂. Specifically, a
human teacher is recruited to execute the task and provide
a reference set Zref. Zref includes M demonstrations, i.e.,
Zref = {z1ref, . . . ,z

m
ref, . . . ,z

M
ref }. zmref is composed of the mth

environmental state (denoted as smref) and the correspond-
ing human teacher’s action (denoted as amref). We call such
demonstrations as reference demonstrations. Note that M
is approximately one-third of N . After obtaining Zref, we
calculate the reference loss of πθ̂ as follows:

Lref =
1

M

M∑
m=1

L(zmref, θ̂) (3)

where L(zmref, θ̂) is the loss of zmref, i.e., L(zmref, θ̂) =
floss(πθ̂(smref), a

m
ref). Obviously, Lref can indicate the policy

accuracy. The smaller the value of Lref, the higher the accuracy
of πθ̂.

Afterward, to calculate the influence of a training
demonstration (denoted as ẑtr), we remove ẑtr from
Ztr and the optimal parameter set becomes θ̂−ẑtr =
{θ̂−ẑtr,1, . . . , θ̂−ẑtr,k, . . . , θ̂−ẑtr,K}, where

θ̂−ẑtr,k = arg min
θk∈Θk

1

N − 1

N∑
n=1,zn

tr 6=ẑtr

L(zntr ,θ) (4)

As a result, the reference loss becomes:

Lref,−ẑtr =
1

M

M∑
m=1

L(zmref, θ̂−ẑtr) (5)

Based on Lref and Lref,−ẑtr , the change of the reference loss
after removing ẑtr from Ztr can be calculated:

∆Lref,−ẑtr = Lref,−ẑtr − Lref (6)

It is clear that ∆Lref,−ẑtr also indicates the change of the policy
accuracy after removing ẑtr from Ztr, which can reflect the
influence of ẑtr on the policy derivation. However, calculating
∆Lref,−ẑtr based on (6) needs to derive both θ̂ and θ̂−ẑtr , which
will lead to a high time cost. To solve this problem, inspired
by [30], we weight ẑtr by a parameter ε and the optimal pa-
rameter set becomes θ̂εẑtr = {θ̂εẑtr,1, . . . , θ̂εẑtr,k, . . . , θ̂εẑtr,K},
where

θ̂εẑtr,k = arg min
θk∈Θk

1

N
[

N∑
n=1,zn

tr 6=ẑtr

L(zntr ,θ) + εL(ẑtr,θ)] (7)

Then, we consider ∆Lref,−ẑtr as the derivative of Lref with
respect to ε when ε equals 0:

∆Lref,−ẑtr ≈
dLref

dε
|ε=0 (8)

According to [30], ∆Lref,−ẑtr can be calculated by:

∆Lref,−ẑtr ≈
dLref

dε
|ε=0 =

1

M

M∑
m=1

∇θ̂L(zmref, θ̂)>
θ̂εẑtr

dε
|ε=0

= − 1

M

M∑
m=1

∇θ̂L(zmref, θ̂)>H−1
θ̂
∇θ̂L(ẑtr, θ̂)

(9)

where

Hθ̂ =
1

N

N∑
n=1

d2L(zntr , θ̂)

dθ̂2
(10)

Calculating ∆Lref,−ẑtr based on (9) only needs θ̂, which means
that the policy derivation is implemented only once, so the
time cost is effectively reduced. It is necessary to note that
calculating ∆Lref,−ẑtr based on [30] is only applicable to the
differentiable policy.

After obtaining ∆Lref,−ẑtr , we use ∆Lref,−ẑtr to indicate
the influence of ẑtr on the policy derivation. Specifically, if
∆Lref,−ẑtr > 0, it means that the accuracy of πθ̂ decreases
after removing ẑtr from Ztr. Therefore, ẑtr has the positive
influence on the policy derivation. The value of ∆Lref,−ẑtr

indicates the positive influence level of ẑtr. If ∆Lref,−ẑtr = 0,
it means that ẑtr has no influence on the policy derivation. If
∆Lref,−ẑtr < 0, it means that the accuracy of πθ̂ increases after
removing ẑtr from Ztr. Thus, ẑtr has the negative influence
on the policy derivation. The absolute value of ∆Lref,−ẑtr

indicates the negative influence level of ẑtr.
Based on the above process, the influence of all training

demonstrations can be calculated. We use Intr to indicate the
influence of the nth training demonstration zntr , i.e.,

Intr
def
= ∆Lref,−zn

tr
(11)
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Algorithm 1 Handling Bad Training Demonstrations
1: Input: Ztr, Itr,neg, and Itr,pos
2: Calculate r by (12);
3: Set a threshold α;
4: if 0 < r ≤ α then
5: Ẑtr ← Ztr
6: else
7: Sort the elements in Itr,neg in the ascending order and obtain

a new sequence Îtr,neg;
8: while r > α do
9: Remove the first element in Îtr,neg;

10: Calculate r by using the remaining elements in Îtr,neg and
all elements in Itr,pos based on (12);

11: end while
12: Build Ẑtr by integrating the training demonstrations corre-

sponding to the remaining elements in Îtr,neg and all elements
in Itr,pos;

13: end if
14: Output: Ẑtr

Let Itr = [I1tr , . . . , I
n
tr , . . . , I

N
tr ] be the influence sequence. We

consider training demonstrations with the negative influence
as bad training demonstrations.

B. Handling Bad Training Demonstrations

Having obtained bad training demonstrations, we then han-
dle them to improve the quality of Ztr. A straightforward
idea is to remove all bad training demonstrations from Ztr.
However, in this way, the generality of Ztr will decrease. The
reasons are the following. On the one hand, detecting bad
training demonstrations relies on the change of the reference
loss, which is calculated based on Zref. Zref consists of
reference demonstrations generated by a human teacher who
performs suitable actions with respect to the environmental
states encountered in a task. However, it is impossible for
the human teacher to encounter all possible environmental
states in the task, so the generated reference demonstrations
are not fully diverse, which will limit the generality of Zref.
On the other hand, the training demonstrations with the
positive influence are similar to the reference demonstrations
while the training demonstrations with the negative influence
are different from the reference demonstrations. If all bad
training demonstrations are removed, the improved Ztr will
only include the training demonstrations with the positive
influence, thus resulting in the improved Ztr and Zref being
similar. Since Zref has limited generality, the generality of the
improved Ztr will also be limited.

To solve this problem, an easy and effective frame-
work is proposed to enhance the generality of Ztr while
improving its quality. Algorithm 1 shows the proposed
framework. Let Ẑtr be the improved Ztr, Itr,pos =

[I1tr,pos, . . . I
n
tr,pos, . . . , I

Npos
tr,pos] be the positive influence sequence,

and Itr,neg = [I1tr,neg, . . . , I
n
tr,neg, . . . , I

Nneg
tr,neg] be the negative

influence sequence. Npos and Nneg are the sizes of Itr,pos and
Itr,neg, respectively, and Npos +Nneg = N . First, we calculate
the proportion of the negative influence with respect to the

Behavior imitation policy 
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2D-positions 

of key joints

Rotation angles 

of key joints
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Fig. 1. Illustration of behavior imitation.

overall influence (line 2):

r =

∑Nneg
n=1 |Intr,neg|∑Nneg

n=1 |Intr,neg|+
∑Npos
n=1 I

n
tr,pos

(12)

Then, we define a negative influence threshold α, which is the
upper limit of r (line 3). Section III-A will give an analysis
of α. Afterward, we compare r with α. If 0 < r ≤ α, it
means that bad training demonstrations in Ztr have small neg-
ative influence. Moreover, the existence of such bad training
demonstrations can reduce the similarity between Ztr and Zref,
thus enhancing the generality of Ztr. Therefore, we do not
remove any bad training demonstration. Under this condition,
Ẑtr is equal to Ztr (lines 4 and 5). It should be noted that
in general, there is no training set with r = 0, so we do not
consider this situation. If r > α, it means that there are some
bad training demonstrations that have high negative influence
and should be removed. To find and remove such bad training
demonstrations, we execute iterative removal operation (lines
8 to 11). Specifically, all elements in Itr,neg are sorted in
the ascending order and a new sequence Îtr,neg is obtained.
Then, each element in Îtr,neg is removed in turn. After each
removal, we calculate r based on the remaining elements in
Îtr,neg and all elements in Itr,pos according to (12). When r

drops below α, the iterative removal operation stops, and Ẑtr
is built by integrating training demonstrations corresponding
to the remaining elements in Îtr,neg and all elements in Itr,pos
(line 12).

III. EXPERIMENTAL STUDIES

We validated our method in a classical LfD-based task:
behavior imitation, that is, a performer shows a behavior and
a Nao robot imitates the behavior. The specific process of the
task is shown in Fig. 1. First, a performer was recruited to
show a behavior which was recorded as an RGB image by a
color camera. Then, the RGB image was fed into OpenPose1 to
calculate the 2D-positions of the performer’s key joints in the
RGB image. The key joints of the performer refer to the joints
that both the performer and the Nao robot have. Note that to
reduce the difficulty of the task, the performer only showed the
upper body behaviors. As a result, the involved key joints were
‘LShoulder’, ‘RShoulder’, ‘LElbow’, and ‘RElbow’, where ‘L’

1https://github.com/CMU-Perceptual-Computing-Lab/openpose
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TABLE I
ROTATION ANGLES OF ‘LSHOULDER’, ‘RSHOULDER’, ‘LELBOW’, AND

‘RELBOW’

Human joint LShoulder RShoulder LElbow RElbow

Rotation angle LShoulderPitch
LShoulderRoll

RShoulderPitch
RShoulderRoll

LElbowYaw
LElbowRoll

RElbowYaw
RElbowRoll

TABLE II
UPPER AND LOWER LIMITS OF ALL ROTATION ANGLES

Rotation angle* LShoulderPitch LShoulderRoll RShoulderPitch RShoulderRoll
Upper limit 2.0875 1.6580 2.0875 0
Lower limit -2.0875 0 -2.0875 -1.6580
Rotation angle LElbowYaw LElbowRoll RElbowYaw RElbowRoll
Upper limit 2.0875 0 2.0875 1.5707
Lower limit -2.0875 -1.5707 -2.0875 0
* The values of rotation angles are in radians.

and ‘R’ represent ‘left’ and ‘right’, respectively. Afterward,
a behavior imitation policy was designed based on ConvNet
proposed in [31], which estimates the values of the key joints’
rotation angles based on their 2D-positions. Table I shows the
rotation angles of the key joints, which were used to control the
rotation of the same key joints of the Nao robot. Meanwhile, to
stabilize the estimation of the rotation angles, a limiting filter
was designed, which sets a safe value range (i.e., a upper limit
and a lower limit) for each rotation angle. If the calculated
rotation angle is not within its safe value range, it will be set
to the closest safe value. Table II shows the safe value ranges
of all rotation angles. After implementing the limiting filtering,
the values of all rotation angles were obtained to control the
key joints of the Nao robot to rotate, thus making the Nao
robot imitate the behavior shown by the performer.

In this task, the hardware platform consisted of two parts: a
host computer and the Nao robot. The host computer, including
Windows 10 operating system, Intel Core i7-7500 CPU @2.70
GHz, and 8 GB of RAM, captured RGB images based on
its own camera and realized software programming. The host
computer established a TCP connection with the Nao robot
and transmitted the program instructions to the Nao robot for
control. The software platform was NAOqi which programmed
the Nao robot in the host computer’s Windows 10 operating
system. The programming language was python.

To validate our method, we first generated training demon-
strations to build Ztr. The generation process of a training
demonstration is as follows:
• Recruit the performer to show a behavior and record the

behavior as an RGB image based on the color camera;
• Calculate the 2D-positions of the performer’s key joints

in the RGB image with OpenPose;
• Generate the rotation angles of the key joints during

kinesthetic teaching (see Fig. 2(a)-(c)), in which a human
controls the Nao robot to imitate the behavior shown in
the RGB image to generate the rotation angles of the key
joints;

• Combine the 2D-positions with the rotation angles of the
key joints to form a training demonstration.

Based on the above process, we generated 7200 training
demonstrations to build Ztr. Meanwhile, to fully validate our
method, we also generated a number of misleading training

Fig. 2. Process of kinesthetic teaching, in which a human controls the Nao
robot to imitate the behavior shown in an RGB image to generate the rotation
angles of the key joints. Note that in (d)-(f), the human controls the Nao robot
to perform wrong behaviors. As a result, wrong rotation angles are obtained
and used to generate misleading training demonstrations.

TABLE III
PCR CORRESPONDING TO Ẑαtr,8% WHEN α VARIES FROM 0 TO 0.5.

α 0 0.05 0.10 0.15 0.20 0.25
PCR[%] 82.13 83.84 84.09 83.02 81.92 75.24

α 0.30 0.35 0.40 0.45 0.50
PCR[%] 75.24 75.24 75.24 75.24 75.24

demonstrations. Specifically, the performer showed a number
of behaviors which were recorded as RGB images. For each
RGB image, we calculated the 2D-positions of the key joints
based on OpenPose. Meanwhile, we recruited a human to
control the Nao robot to perform a wrong behaviour which
should be obviously different from the behaviour shown in
the RGB image (see Fig. 2(d)-(f)). By doing this, the wrong
rotation angles of the key joints could be obtained, which
were then combined with the 2D-positions of the key joints to
generate a misleading training demonstration. After generating
all misleading training demonstrations, we built five new train-
ing sets, i.e., Ztr,2%,Ztr,4%,Ztr,8%,Ztr,16%, and Ztr,32%. Each
training set consists of a certain number of normal training
demonstrations and misleading training demonstrations. The
percentage represents the proportion of misleading training
demonstrations in a training set. Note that these new training
sets have the same size with Ztr.

Afterward, we built a reference set Zref and a test set Zte.
These two building processes are similar with the process of
building Ztr, except that during the kinesthetic teaching, a
human teacher was recruited instead of a human to control
the Nao robot. The size of Zref and Zte were 2292 and 2214,
respectively. Based on Zte, we calculated the Percentage of
Correct Rotation-angles (PCR) to indicate the policy accuracy.
PCR represents the percentage of correctly estimated test
demonstrations. Note that a test demonstration is regarded to
be correctly estimated only if the Euclidean distance between
the estimated rotation angles and the ground-truth is less than
a threshold. In this paper, the threshold was set to 0.5.

A. Analysis of α

In this section, we carried out an analysis of α based on
Ztr,8%. First, α was set to a series of values from 0 to 0.5
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Fig. 3. Influence of training demonstrations in Ztr, Ztr,2%, Ztr,4%, Ztr,8%, Ztr,16%, and Ztr,32%. A green dot and a red dot represent the influence of a
normal training demonstration and a misleading training demonstration, respectively.

with the step of 0.05. Note that α > 0.5 means that the
negative influence proportion of a training set is higher than
0.5, which is obviously unreasonable. Therefore, we did not
consider this situation. Then, based on each value of α, the
quality of Ztr,8% was improved based on our method. Let
Ẑαtr,8% be the improved Ztr,8% based on α. To evaluate the
quality of Ẑαtr,8%, we derived the behavior imitation policy and
calculated its PCR. Note that the bigger the value of PCR, the
better the quality of Ẑαtr,8%.

Table III summarizes the results. From Table III, when
0.05 ≤ α ≤ 0.15, PCRs corresponding to the improved
training sets (i.e., Ẑ0.05

tr,8%, Ẑ0.10
tr,8%, and Ẑ0.15

tr,8%) are 83.84%,
84.09%, and 83.02% respectively, which are bigger than PCR
corresponding to Ẑ0

tr,8% (i.e., 82.13%). This is because when
0.05 ≤ α ≤ 0.15, a certain number of bad training demonstra-
tions with small negative influence are kept in Ẑαtr,8%. Thus,
the generality is enhanced and better prediction accuracy is
achieved. On the other hand, when α > 0.15, more and
more bad training demonstrations are retained. As a result,
the quality of Ẑαtr,8% becomes worse and the corresponding
PCR decreases gradually. Note that r of Ztr,8% is 0.21.
When α ≥ 0.25, no bad training demonstration is removed
since α > r and Ẑαtr,8% is equivalent to Ztr,8%. Under this
condition, PCR decreases to the minimum, i.e., 75.24%, and
stays unchanged. It can be seen that α = 0.10 achieves the
highest performance improvement. Therefore, in the following
experiments, α was set to 0.10.

B. Validation of Detecting Bad Training Demonstrations

In this section, we validated the effectiveness of our method
for detecting bad training demonstrations. We used Ztr, Ztr,2%,
Ztr,4%, Ztr,8%, Ztr,16%, and Ztr,32% in this experiment. For
each training set, we calculated the influence of each train-
ing demonstration based on our method. Fig. 3 shows the
influence of all training demonstrations in the six training
sets. In Fig. 3(a)–Fig. 3(d), the influence of all misleading
training demonstrations is negative (as shown in the red
dots), which means that all misleading training demonstrations
can be detected. In Fig. 3(e) and Fig. 3(f), the influence
of some misleading training demonstrations is positive. The
reason may be that the large proportions of the misleading
training demonstrations in Ztr,16% and Ztr,32% have misled the
task-related statistical characteristics. Therefore, the behavior
imitation policy derived from these two training sets is bad,
thus resulting in incorrect calculation of the influence of
some training demonstrations. However, even in this situation,
the influence of most misleading training demonstrations is
negative. The above results suggest that our method has the
capability to detect bad training demonstrations.

We also implemented an experiment based on Ẑtr,8% to
ascertain whether the absolute value of the negative influence
can indicate the negative influence level of a bad train-
ing demonstration. Specifically, for each misleading training
demonstration in Ẑtr,8%, we calculated the Euclidean distance
between its recorded rotation angles of the key joints and the
real values. Then, we analyzed the relationship between the
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Fig. 4. Relationship between the absolute value of the negative influence and
the Euclidean distance of each misleading training demonstration.
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Fig. 5. PCRs corresponding to Ztr, Ztr,2%, Ztr,4%, Ztr,8%, Ztr,16%, and
Ztr,32% before and after the quality improvement.
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Fig. 6. MSEs corresponding to Ztr, Ztr,2%, Ztr,4%, Ztr,8%, Ztr,16%, and
Ztr,32% before and after the quality improvement.

absolute value of the negative influence and the Euclidean
distance in Fig. 4. As shown in Fig. 4, as the Euclidean
distance increases, the absolute value of the negative influence
also increases, which demonstrates that the absolute value can
effectively reflect the negative influence level of a bad training
demonstration.

C. Validation of Improving the Quality of the Training Set

In this section, we validated the effectiveness of our method
for improving the quality of a training set. Ztr, Ztr,2%, Ztr,4%,
Ztr,8%, Ztr,16%, and Ztr,32% were involved in this experiment.
For each training set, we firstly derived the behavior imitation
policy and calculated its PCR. Then, we improved the training
set based on our method, implemented the policy derivation
again based on the improved training set, and calculated the
corresponding PCR. Fig. 5 presents the results. As can be seen,
for each training set, PCR significantly increases after the qual-
ity improvement. In particular, PCR corresponding to Ztr,32%
increases by 19.30%. Meanwhile, we introduced the mean

(a) Ztr (b) Ztr,2%

(c) Ztr,4% (d) Ztr,8%

(e) Ztr,16% (f) Ztr,32%

Fig. 7. Euclidean distance of all test demonstrations obtained based on the
behavior imitation policy derived from Ztr, Ztr,2%, Ztr,4%, Ztr,8%, Ztr,16%,
and Ztr,32% respectively before and after the quality improvement.

squared error (MSE) between the estimated results and the
ground-truth as another metric to evaluate the policy accuracy.
Fig. 6 shows MSEs corresponding to Ẑ, Ẑtr,2%, Ẑtr,4%, Ẑtr,8%,
Ẑtr,16%, and Ẑtr,32% before and after the quality improvement.
From Fig. 6, for each training set, the corresponding MSE
drops after the quality improvement, which further verifies the
effectiveness of our method.

Moreover, to analyze the performance of our method in
depth, we presented the Euclidean distance between the esti-
mated result and the ground-truth of each test demonstration,
in which the estimated result is obtained based on the behavior
imitation policies derived from a training set before and after
the quality improvement. Fig. 7 shows the results of Ztr,
Ztr,2%, Ztr,4%, Ztr,8%, Ztr,16%, and Ztr,32%. From Fig. 7,
for each training set, the Euclidean distances of almost all
test demonstrations decrease after the quality improvement. It
should be noted that as the proportion of misleading training
demonstrations increases, the obtained Euclidean distances of
more and more test demonstrations are abnormally high (as
shown in blue lines in Fig. 7(a)–Fig. 7(f)). It may be because a
large proportion of misleading training demonstrations impairs
the performance of the derived behavior imitation policy, thus
leading to unreasonable estimations.
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Fig. 8. Imitation results corresponding to some human behaviors. The first row shows human behaviors. The second and third rows show imitation results
obtained based on πθ̂Ztr,8%

and πθ̂
Ẑtr,8%

, respectively.

TABLE IV
AUC-ROCS OF THE CLASSIFIERS TRAINED BY Ẑtr , Ẑtr,2% , Ẑtr,4% ,

Ẑtr,8% , Ẑtr,16% , AND Ẑtr,32% .

Training set Ẑtr Ẑtr,2% Ẑtr,4% Ẑtr,8% Ẑtr,16% Ẑtr,32%
AUC-ROC 0.63 0.64 0.68 0.71 0.75 0.77

In a LfD task, there may be a covariate shift between the
training set and the test set. The covariate shift implies that the
training set and the test set have different distributions, which
will cause that the policy derived from the training set has a
poor accuracy on the test set and cannot be used in real scenes.
To this end, we utilized a simple method to judge whether
the training set improved based on our method encounters the
covariate shift. First, we selected training demonstrations in an
improved training set and test demonstrations in the test set.
The numbers of the selected training and test demonstrations
are the same. Then, we labeled the training demonstrations as
1 and the test demonstrations as 0. These labeled training and
test demonstrations were combined to form a new dataset. In
this dataset, 80% of demonstrations were selected to train a
classifier (i.e., a support vector machine in this paper) and
the remaining 20% demonstrations were used to calculate
the area under the receiver operating characteristics (AUC-
ROC) of the classifier. AUC-ROC is an indicator to measure
the classification performance of the classifier. If AUC-ROC
is higher than a threshold, it means that the classifier can
distinguish the training and test demonstrations well. The
threshold is usually set to 0.80. Based on the above method, we
recorded AUC-ROCs of the classifier trained by Ẑtr, Ẑtr,2%,
Ẑtr,4%, Ẑtr,8%, Ẑtr,16%, and Ẑtr,32% in Table IV. As can be
seen, AUC-ROCs of all improved training sets are lower than
0.80, which reflects that all improved training sets have similar
distributions with Ẑte. In other words, these improved training

sets do not encounter the covariate shift.
Furthermore, to visualize the quality improvement of the

training set, we used the behavior imitation policies derived
from Ztr,8% and Ẑtr,8% (denoted as πθ̂Ztr,8%

and πθ̂Ẑtr,8%

) to

control the Nao robot, with the aim of imitating human behav-
iors. Fig. 8 depicts the imitation results. The first, second, and
third rows correspond to the human behaviors, the imitation
results based on πθ̂Ztr,8%

, and the imitation results based on
πθ̂Ẑtr,8%

, respectively. As shown in Fig. 8, the imitation results

in the third row are more similar to the human behaviors,
which means that πθ̂Ẑtr,8%

performs better than πθ̂Ztr,8%
.

IV. CONCLUSION

This paper proposed a novel teacher-assistance-based
method to improve the quality of the training set used for
policy derivation in LfD. This method included two steps,
i.e., detecting and handling bad training demonstrations in a
training set. In the detecting step, we calculated the influence
of each training demonstration on the policy derivation, and
selected the training demonstrations with the negative influ-
ence as bad training demonstrations. The influence is not
related to task attributes and can be used in different tasks for
demonstration quality evaluation. Then, in the handling step,
we calculated the proportion of the negative influence with
respect to the overall influence, and reduced the proportion
by iteratively removing bad training demonstrations until it
was less than a threshold. In this way, most bad training
demonstrations are removed, which improves the quality of
the training set. At the same time, a small portion of bad
training demonstrations with small negative influence is kept,
which enhances the generality of the improved training set.
The results showed that our method could not only detect bad
training demonstrations, but also improves the quality of the
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training set. As mentioned before, in this paper our method is
only applied to the task in which the policy is differentiable.
Therefore, in the future, we will try to design methods for the
tasks with non-differentiable policies.

The videos of the experiments can be downloaded from:
https://intleo.csu.edu.cn/publication.html
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