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Abstract: This paper studies a mobile edge computing system assisted by multiple unmanned aerial vehicles (UAVs),
where the UAVs act as edge servers to provide computing services for Internet of Things devices. Our goal is to
minimize the energy consumption of this system by planning the trajectories of these UAVs. This problem is difficult
to address because when planning the trajectories, we need to not only consider the order of stop points (SPs), but
also their deployment (including the number and location) and the association between UAVs and SPs. To tackle this
problem, we present an energy-efficient trajectory planning algorithm (called TPA), which comprises three phases.
In the first phase, a differential evolution algorithm with a variable population size is adopted to update the number
and locations of SPs at the same time. Then, the second phase employs the k-means clustering algorithm to group
the given SPs into a set of clusters, where the number of clusters is equal to that of UAVs and each cluster contains
all SPs visited by the same UAV. Finally, in the third phase, to quickly generate the trajectories of UAVs, we propose
a low-complexity greedy method to construct the order of SPs in each cluster. Compared with other algorithms, the
effectiveness of TPA is verified on a set of instances at different scales.

Key words: multi-unmanned aerial vehicle; mobile edge computing; trajectory planning; differential evolution;
k-means clustering algorithm; greedy method
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1 Introduction physical size limitations. Therefore, it is a challenge

to execute resource-intensive tasks on IoT devices.
With the development of mobile communica-

tion technology and the popularization of Internet
of Things (IoT) devices, a considerable number of
resource-intensive applications are emerging, such as
face recognition, virtual reality, and online games
( , ; , ). Despite the
growing capabilities of IoT devices, their comput-
ing and battery capacities remain insufficient due to
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Mobile edge computing (MEC) is recognized as
a promising technology to address the above chal-
lenge. It provides computing services to IoT devices
by offloading tasks to edge servers at the edge of
the network ( , ; , ;
, ). In this way, MEC can reduce la-
tency and energy consumption during task execu-
tion. However, MEC still has some limitations. For
example, the locations of edge servers are usually
fixed and cannot be adjusted according to user re-
quirements. In addition, in large-scale natural disas-
ters, the existing terrestrial communication networks
could be destroyed, in which case, it would be diffi-
cult for MEC to provide timely services (
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Unmanned aerial vehicles (UAVs), due to their
autonomy and flexibility, have been widely used in
various fields ( , ; , ;

, 2019).
been made to use UAVs to enhance the capabili-
ties of MEC systems. ( ) explored
the energy-aware dynamic resource allocation prob-
lem for a UAV-assisted MEC system over Internet of

Recently, some attempts have

Vehicles. ( ) optimized joint resource
and workflow scheduling in a UAV-enabled wirelessly
powered MEC system. ( ) investi-

gated the application of a UAV-empowered MEC
system in cyber-threat detection of smart vehicles.
In addition, in order to take full advantage of the
high mobility of a UAV, some researchers have fo-
cused on trajectory planning in UAV-assisted MEC
systems. For instance, ( ) optimized
joint trajectory and data allocation to minimize the
maximum energy consumption. ( )
studied the bit allocation and trajectory planning
under latency and energy budget constraints.

( ) developed a UAV-assisted relaying and
MEC system, where the UAV can act as the MEC
server or the relay. Then, the authors proposed a
joint task scheduling and trajectory optimization al-
gorithm to minimize the weighted sum energy con-
sumption of the system.

However, the above-mentioned studies only con-
sidered single-UAV-assisted MEC systems. In fact,
collaboration among multiple UAVs can improve the
capability of such systems ( , ). There-
fore, some papers have studied multi-UAV-assisted
MEC systems, where a group of UAVs, rather than
a single UAV, act as edge servers to provide com-
puting services for IoT devices ( , ;

, ). For example, ( )

optimized the power consumption of a multi-UAV-
assisted MEC system by considering the joint de-
vice association, power control, computing capac-
ity allocation, and location planning.
( ) designed a two-layer optimization algorithm
for joint UAV deployment and task scheduling in a
multi-UAV-assisted MEC system. ( )
investigated the quality of service in a multi-UAV-
assisted MEC system.

In this paper, we investigate the trajectory plan-
ning problem in a multi-UAV-assisted MEC sys-
tem. Compared with conventional trajectory plan-
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ning problems (e.g., traveling salesman problems
( , ) and vehicle routing problems
( ) )), the studied problem is more
challenging due to the fact that the deployment of
the stop points (SPs) of UAVs is unknown a priori.
In addition, different from trajectory planning prob-
lems in single-UAV-assisted MEC systems, in the
case of multiple UAVs, we need to consider the asso-
ciation between UAVs and SPs. That is, for a given
SP, we need to assign a specific UAV to visit it. The
main contributions of this paper are summarized as
follows:

e A trajectory planning problem in a multi-UAV-
assisted MEC system is formulated with the aim
of minimizing the energy consumption of the
system by considering the deployment (includ-
ing the number and locations) of SPs, the asso-
ciation between UAVs and SPs, and the order of
SPs.

e An energy-efficient trajectory planning algo-
rithm, called TPA, is proposed to tackle the tra-
jectory planning problem. TPA consists of three
phases. First, a differential evolution (DE) algo-
rithm with a variable population is adopted to
optimize the deployment of SPs. Subsequently,
the k-means clustering algorithm is used to
group the given SPs into several clusters, SPs
in each of which are associated with the same
UAV to be visited. Finally, a greedy method is
proposed to construct the order of SPs in each
cluster.

e Extensive experiments are carried out on a set of
instances with up to 200 IoT devices. The exper-
imental results demonstrate that TPA achieves
a better performance compared with other algo-
rithms.

The rest of this paper is organized as follows. In
Section 2, the system model and problem formula-
tion are introduced. Section 3 describes the details
of the proposed algorithm. The experimental studies
are given in Section 4. Finally, Section 5 concludes
this paper.
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Fig. 1 A multi-UAV-assisted MEC system involving
m rotary-wing UAVs and n IoT devices

2 System model and problem formula-
tion

As shown in Figure 1, we consider a multi-
UAV-assisted MEC system involving n IoT devices
(denoted as N = {1,2,---,n}) and m rotary-
wing UAVs with edge servers (denoted as M =
{1,2,---,m}). In this system, each IoT device has
a resource-intensive task to be completed. For the
sake of simplicity, the ith task' is expressed as a
2-tuple: (D;,S;), where D; and S; denote the size
of the input data of the ith task and the comput-
ing resources required to complete a single bit in the
ith task, respectively. Due to the limited computing
capacity, these tasks are first offloaded to the MEC
servers, and then their results are returned to the
IoT devices after the computation is complete.

In this paper, the UAVs can change their SPs to
reduce the distance from the IoT devices. We define
the set of SPs of the jth UAV as C; = {1,2,--- , k;},
where k; is the number of SPs of the jth UAV and
it is unknown a priori. Moreover, the trajectory of
the jth UAV is represented as a sequence of SPs in
Kj: G5 = (X1, Vi), (X2, Yja), - (X, Yik, )}
where (X;;,Y;;),l € K;, denotes the location of the
{th SP of the jth UAV. Note that, like ( ,

) and ( , ), we assume that the
UAVs fly at a fixed altitude H, therefore we only
show the values on the z-axis and y-axis. In addition,
all SPs in G; are visited by the jth UAV one by one,
where the first SP is visited first and the k;-th SP is
visited last.

IFor the sake of simplicity, in this paper, we refer to the
task of the ith IoT device as the ith task.
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We assume that the ith IoT device is located
at (z;,yi,0). Therefore, the distance between the
ith IoT device and the jth UAV at the [th SP is
expressed as

diji :\/(xz — X5)% + (yi — Yj)? + H?,
Vie N,jeM,lek,. (1)

In order to reduce the transmission time and
energy consumption, IoT devices always send their
tasks to the closest SP. We define variable a;j; to
represent the association between the ith IoT device
and the jth UAV at the Ith SP. Specifically, a;;; = 1
if the ith IoT device is served by the jth UAV at the
lth SP; otherwise, a;;; = 0. Thus, one can obtain

1, if (j,l) = argmin d,j,
JEM,IEKR; 2)

0, otherwise.

Cl: a;j1 =

Since each task cannot be further divided into
subtasks, the following constraint should be satisfied:

m  kj
62220,2”:17 VZEN (3)

j=11=1

Due to the bandwidth limitation, the jth UAV
at the [th SP can simultaneously serve at most M
IoT devices. Thus, one has

C3:) aiji <M, VjeM,leK;. (4)
i=1
Moreover, each UAV at each SP serves at least
one IoT device, thus the total number of SPs of all
UAVs, denoted as k, should satisfy the following con-

straint:
C4 . kmin S k S kmaz (5)

where k = Z;n:l kj; kmin and kpqq are equal to | 1% ]
and n, respectively; and |-| denotes the rounding
down operator.

The transmission rate of the ith IoT device for
sending data to the jth UAV at the ith SP is ex-
pressed as

t
piho
ri;1 = Blogy | 14+ = ,
! : ( o2dg (6)
VieN,je M,leK;

where p! denotes the transmitting power of the ith
IoT device, hg denotes the channel power gain at the
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reference distance dg = 1 m, o2 denotes the white
Gaussian noise power, and B denotes the system
bandwidth.

The transmission time and energy consumption
of the ith IoT device for sending data to the jth UAV
at the Ith SP are given by

ﬂ@l:&,VieN,jeM,leKj (7)
Tijl
and
piD

a5l

L VieN,je M,leK;. (8)

t trt
Eijl =D; Tz‘j 1=

The whole energy consumption of all IoT devices
is expressed as®

n m kj
Bt =Y Y > aijEl,. (9)
i=1 j=1 I=1
After receiving the input data, the UAVs start
to execute the tasks. Given the computing resources
ciji, the computing time of the ith task on the jth
UAYV at the Ith SP can be obtained by

= DLS”', Vie N,jeM,lekK,.
Ciji

In fact, the jth UAV will not move to the next
SP until all tasks sent to the /th SP have been com-
pleted. Therefore, the hovering time of the jth UAV
at the [th SP is equal to the maximum execution
time of all tasks (i.e., the sum of the transmission

and computing time), which is given by

(10)

T = %?\)f({aijl(ﬂ'tjz +T50) Vie Mlek;. (1)

Then, the hovering energy consumption of the
jth UAV is given by

Jb (12)

kj
El =Y p'T)Vje M,
=1
where p” is the hovering power of the UAV.
Furthermore, given the trajectory of the jth
UAV (ie., G;), the flight time and energy consump-
tion are expressed as

kj
rf — 2 V(X = Xju-1)? + (V= V)
J v
VjeM

7

(13)

2Due to the fact that the size of the output results is
smaller than that of the input data of the task, we omit
the transmission time and energy consumption of the output
results.
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and

f_— ff s
Ef =p/T! vje M (14)

where v is the flight speed of the UAV and p/ is the
flight power of the UAV.
The whole energy consumption of all UAVs con-

sists of the hovering and flight energy consumption?,
which can be expressed as

Euaw = i (Ejh + E{) .

Jj=1

(15)

In this paper, we aim to optimize the trajectories
of UAVs (i.e., G1,Go, - -
consumption of the system consisting of UAVs and
IoT devices. Thus, the problem can be formulated

-, Gpn) to minimize the energy

as
min
G1,G2,,Gm
s.t. Cl: a1 € {0,1}, Vi GN,j eM,le ]Cj

m kj
C2: ZZaiﬂzl, Vie N

j=11=1

Euav + aEiot

C3: > ajn< M VjeMIleKk;
i=1

C4 : kmin S k S kmam

C5: Xpmin < le < Xoaa, VJ eM,le ,Cj

C6: szn < Yrjl < Yma;ﬂa VJ € Mal € ’Cj

(16)

where a > 0 is the weight parameter between the
energy consumption of UAVs and IoT devices; X,,in
and X4, are the lower and upper bounds of Xj;,
respectively; and Y, and Y., are the lower and
upper bounds of Yj;, respectively.

3 Proposed approach

By analyzing the problem in (16), there are two
challenges that need to be considered:

e In order to address the problem in (16), we
need to know how many SPs are suitable and
where they are located, which UAV is assigned
to visit the given SP, and how to visit SPs in
turn for each UAV. Therefore, the above prob-
lem can be decomposed into three sub-problems:

3Compared with the hovering and flight energy consump-
tion of UAVs, the computing energy consumption of the UAVs
is smaller ( ,
energy consumption of UAVs

); thus, we omit the computing
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Fig. 2 Encoding mechanism used in this paper

the deployment (including the number and lo-
cations) of SPs, the association between UAVs
and SPs, and the order of SPs. However, the de-
ployment of SPs, the association between UAVs
and SPs, and the order of SPs are coupled with
each other. Specifically, the association between
UAVs and SPs can be determined only after
the deployment of SPs is obtained. Moreover,
the order of SPs can be constructed only after
the association between UAVs and SPs is deter-
mined. Therefore, if they are optimized at the
same time, it may lead to poor performance.

e Since the number of SPs is unknown when op-
timizing their deployment, the gradient infor-
mation is not available. As a result, traditional
gradient-based methods cannot optimize the de-
ployment of SPs. As a class of gradient-free

optimization methods, evolutionary algorithms

(EAs) have potential for optimizing the deploy-

ment of SPs ( , )-

EAs, each individual typically represents an en-

However, in

tire deployment. Due to the fact that the num-
ber of SPs is unknown a priori, the length of
the individual is not fixed. However, the com-
monly used crossover and mutation operators
are designed for fixed-length individuals (

, ). Therefore, using conventional
EAs directly would be ineffective in optiming
the deployment of SPs.

To this end, we propose a trajectory planning
algorithm, called TPA, which has the following tech-
nical advantages:

e Considering the strong coupling among the de-
ployment of SPs, the association between UAVs
and SPs, and the order of SPs, TPA plans the
trajectories of UAVs at each iteration through
three phases: update of the deployment of SPs,
generation of the association between UAVs and
SPs, and construction of the order of SPs.

2018 19(1):1-5 5

Algorithm 1 Framework of TPA
1: FEs=0;
2: repeat

3:  Produce randomly an initial population P;

4:  Determine the association between UAVs and SPs
in P via the k-means clustering algorithm in Al-
gorithm 3;

5:  Construct the order of SPs of each UAV via the

greedy method in Algorithm 4;
Evaluate P via (16);
FEs=FFEs+1;

until P is feasible or FEs > MaxFEs

while FEs < MaxFFEs do

10:  Produce an offspring population @ via

“DE/rand/1” and the binomial operator of
DE;
11: fori=1:|Q| do
12: Construct three new populations P;, P2, and
P3 via Algorithm 2;
13: for[=1:3do
14: Determine the association between SPs in P,

and UAVs via the k-means clustering algo-
rithm in Algorithm 3;

15: Construct the order of SPs of each UAV via
the greedy method in Algorithm 4;

16: end for

17: Evaluate P1, P2, and P3 via (16);

18: FFEs=FFEs+ 3;

19: if at least one feasible population exists among
P1, P2, and P3 then

20: Update P by the feasible population among

P1, P2, and P3 with the greatest performance
improvement against P;

21: end if

22:  end for

23: end while

e Asshown in Fig 2, in TPA, each individual rep-
resents the location of an SP; thus, the popula-
tion represents a whole deployment, rather than
a set, of deployments. Since the length of indi-
viduals is the same (i.e., two), we can directly
adopt the commonly used crossover and muta-
tion operators for updating the deployment of
SPs.

The framework of TPA is presented in Al-
gorithm 1. In the
tions of SPs of all UAVs are produced ran-

initialization, the loca-
domly, forming an initial population P =
{(Xl’Yl)v(X%Y—Q)v"' 7(kaam’Ykma:c)} (Hne 3)
Subsequently, the association between UAVs and SPs
in P is determined using the k-means clustering algo-
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Algorithm 2 Generation of three new populations
1: P1 + insert the ith individual in O to P;
2: P < replace a random individual in P by using the
ith individual in Q;
3: P3 < delete a random individual in P.

rithm in Algorithm 3 (line 4), and the order of SPs
for each UAV is constructed using the greedy method
in Algorithm 4 (line 5). After that, P is evaluated
via (16) (line 6). If P is feasible, it is produced suc-
cessfully; otherwise, the initialization is repeated un-
til P is feasible or the number of fitness evaluations
(FEs) is not less than MaxFEs, where MaxFEs
denotes the maximum number of FEs. During the
evolution, an offspring population @ is first produced
via “DE/rand/1” and the binomial operator of DE
(line 10). Subsequently, three new populations Py,
P2, and Ps3 are constructed via Algorithm 2 (line
12). Then, the SPs in Py, P2, and Ps are associated
with the UAVs via the k-means clustering algorithm
in Algorithm 3 (line 14), and the order of SPs for
each UAV is constructed via the greedy algorithm in
Algorithm 4 (line 15). Afterward, we evaluate Py,
P2, and Ps via (16) (line 17). Finally, the feasible
population among P, Pa, and Ps with the great-
est performance improvement against P is used to
replace P if at least one feasible population exists
among P1, Po, and Ps (lines 19 — 21). The evo-
lution continues until FFEs > MaxFFEs. Figure 3
illustrates the overall framework of TPA.

3.1 Update of the deployment of SPs

Updating the deployment of SPs consists of two
parts: the locations of SPs and the number of SPs. In
TPA, DE (Storn and Price, 1997) is used to update
the locations of SPs. The reason is that DE is a
simple and effective EA and has been successfully
applied in many fields (Wang et al., 2018; Xin et al.,
2012). Specifically, we first use “DE/rand/1” and
the binomial operator (Wang et al., 2011) of DE to
produce an offspring population Q consisting of the
locations of new SPs, and then adopt the individuals
in Q to update P. In this way, the locations of SPs
can be updated.

Since the location of each SP is treated as an
individual in DE, the whole population represents
the locations of all SPs. Therefore, the population
size is equal to the number of SPs. In order to up-
date the number of SPs, the population size should
be variable during the evolution. In other words, the
population size can be increased, kept unchanged, or
reduced. As a result, we first construct three popula-
tions of different sizes via Algorithm 2. Specifically,
for the ith individual in Q, a new population P; is
constructed by incorporating it into P and another
new population Py is constructed by using it to re-
place a random individual in P. In addition, the
third new population Pj3 is constructed by remov-
ing a random individual from P. It is clear that
the population sizes of Py, P2, and P3 are one more
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Algorithm 3 K-means clustering algorithm for the
clustering of SPs

1: Initial C; = 0,Vj € M;

2: Select randomly an SP for each cluster;

3: repeat

4: fori=1:kdo

5 for j=1:mdo

6: Calculate distance d;; from the ith SP to the

center of all SPs in the jth cluster;

7 end for

8: J' = argmin; g\ dij;

9: Add the ith SP into C;/;
10:  end for
11: until The center of SPs in each cluster has no longer

changed

12: Associate the jth UAV with SPs in C;, Vj € M.

than, the same as, and one less than that of P, re-
spectively. Therefore, when P71, Po, or Pjs is selected
to updated P, the population size will be increased,
kept unchanged, and reduced, respectively. In this
way, the number of SPs can be updated.

3.2 Generation of the association between
UAVs and SPs

After generating a new population, we need to
determine the association between UAVs and SPs.
That is, these SPs are assigned to UAVs to be vis-
ited. In this paper, the k-means clustering algorithm
(Jain,
where SPs in each cluster are visited by the same
UAV. The loss function of the k-means clustering
algorithm in this paper is given as

Jmin 33 - X2 (- 1)

JEM (X,,Y1)EC;

) is used to group SPs into m clusters,

where X, = ﬁ Z(thl)ecj X; and Y; =
7 2 vee; Ve

From Eq. (17), we can find that the k-means
clustering algorithm can group the closely spaced
SPs into the same cluster. Since the SPs in the same
cluster are visited by the same UAV, the flying dis-
tance of UAVs can be reduced, thereby contributing
to savings in energy consumption in the system.

Algorithm 3 presents the procedure for the k-
means clustering algorithm for the association be-
tween UAVs and SPs. First, we initialize m clusters
C; =0,Vj € M, and then randomly select an SP for
each cluster (lines 1—2). Afterward, we calculate the

Algorithm 4 Greedy method for constructing the

order of SPs
1: for j=1:mdo

2:  Select the location of a random SP from C; as the
current SP of the jth UAV;

3: forl=1:k; do

4 Move the current SP from C; into Gj;

5: Calculate distances from the current SP to all
SPs in Cj;

6: Find the closest SP from the current SP as the
new current SP;

7:  end for

8: end for

9: Output G;,j € M.

distance from each SP to the center of SPs in each
cluster and add the SP into the nearest cluster (lines
4-10). The above procedure is repeated until the
center of SPs in each cluster has no longer changed.
Finally, all SPs in C;,Vj € M, are associated with
the jth UAV.

3.3 Construction of the order of SPs

In this subsection, we construct the order of
SPs for each UAV to minimize the flying distance of
UAVs. In fact, this problem is essentially a traveling
salesman problem. Although classical mathemati-
cal programming methods, such as the branch and
bound algorithm, and the population-based meth-
ods, such as ant colony algorithm and genetic algo-
rithm (GA), have been successfully adopted to ad-
dress traveling salesman problems, they suffer from
high computational time complexity. To this end,
we propose a low-complexity greedy method for con-
structing the order of SPs.

As shown in Algorithm 4, for the first UAV,
we first select a random SP from C; as the current SP
(line 2). Subsequently, the current SP is moved from
C: into Gy (line 4). The distances from the current
SP to all SPs in C; are then calculated and the closest
SP from the current SP is chosen as the new current
SP (lines 5-6). The above procedure is repeated until
C; is empty. As a result, the trajectory of the first
UAV (i.e., G1) is generated. The remaining UAVs
experience the above process one by one.

Remark: In the existing studies on trajectory
planning problems in multi-UAV-assisted MEC sys-
tems ( , ; , ), it is as-
sumed that all UAVs have the same working time.
In addition, the working time is divided into a series
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Table 1 Experimental results of TPA-VLGA, TPA-JGGA, TPA-DEEM, and TPA in terms of average EC(J)

over 20 runs

n TPA-VLGA TPA-JGGA TPA-DEEM TPA
Mean(Std Dev) Mean(Std Dev) Feasibility Rate Mean(Std Dev)
60 1.57e +6(2.33¢ +4) T 1.53e+6(2.47e +4) T 90% 1 1.40e + 6(2.03e + 4)
80 2.36e +6(4.20e +4) 1 2.22e+6(2.33e+4) T 95% 1 2.06e + 6(2.68e + 4)
100 3.07e +6(3.4le+4) T 2.94e+6(2.79e+4) T 90% 1 2.68e + 6(3.73e + 4)
120 3.28¢ +6(3.54e +4) T 3.12e +6(2.74e +4) 80% 1 2.82e + 6(6.29¢ + 4)
140 4.3le+6(4.39e +4) T 4.09 + 6(3.5% + 4) 1 70% 1 3.71e + 6(3.03¢ + 4)
160 5.03e +6(6.89¢ +4) T 4.77e + 6(2.59¢ + 4) T 75% T 4.21e+ 6(5.21e + 4)
180 5.63e + 6(6.06e +4) 1 5.39e + 6(3.87e+4) T 85% 1 4.83e 4 6(4.17e + 4)
200 6.27e 4+ 6(1.00e +5) T 6.07e + 6(3.86e +4) 1 80% 1 5.35e + 6(4.20e + 4)
NRWES 7/0/0 7/0/0 7/0/0
6 210° 652:10° 45x10°
——TPA-VLGA ) ——TPA-VLGA : ——TPA-VLGA
——TPA-JGGA ——TPA-JGGA 7 ——TPA-JGGA
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Fig. 4 Evolution of the average EC(J) values obtained by TPA-VLGA, TPA-JGGA, and TPA on three

instances.

of time slots in a discretized manner and then the
SP of each UAV is determined for each time slot. In
this case, all UAVs have the same number of SPs.
However, this paper does not assume that all UAVs
have the same working time and the same number of
SPs.

4 Experimental study

The parameter settings of the studied multi-
UAV-assisted MEC system are summarized as fol-
We assume that the IoT devices were dis-
tributed randomly in a 1000 m*1000 m square re-
gion. There were four UAVs flying at a height of 200
m at a speed of 20 m/s; D; (i € N') was distributed
randomly in [1,103] MB, S; (i € N) was set to 100
cycle/bit, ¢;;1 (i € N,j € M,l € K;) was set to 10
Geycles, M was set to 5, pf was set to 0.1 W, and
both p" and pf were set to 1000 W. In addition, o
was set to -174 dBm, h, was set to -30 dB, B was
set to 1 MHz, and o was set to 10000. In this pa-
per, we adopted eight instances with different num-
bers of IoT devices to evaluate the performance of
TPA: n = {60, 80,100, 120, 140, 160, 180,200}. The
parameters of TPA were set as follows: F = 0.6,

lows.

CR = 0.5, and MaxFFEs = 50000. Each algorithm
was executed independently 20 runs for each in-
stance. Moreover, to test the statistical significance
between TPA and each competitor, the Wilcoxon’s
rank-sum test at a 0.05 significance level was con-
ducted. In the experimental results, “1”, “~”, and “|”
represent that TPA performed significantly better
than, equivalent to, and worse than its competitor,
respectively. We implemented all the experiments in
MATLAB and tested them on a personal computer
running with an Intel Core 15-7500 CPU @3.40 GHz
and 8 GB of RAM.

4.1 Effectiveness of the deployment of SPs

TPA adopts DE with a variable population to
update the deployment of SPs. To verify the effec-
tiveness of the deployment of SPs, we replaced DE
used in TPA with three other algorithms: VLGA
( ) ), JGGA ( ) ), and
DEEM ( , ), respectively, resulting
in three new algorithms: TPA-VLGA, TPA-JGGA,
and TPA-DEEM. In VLGA, the uniform and cut-
and-splice crossover operators are used to produce
variable-length individuals. JGGA employs continu-
ous auxiliary variables ranging from 0 to 1 to control
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the expression of the locations of SPs. If the auxil-
iary variable is greater than 0.5, the corresponding
SP is used; otherwise, it is not used. DEEM devel-
ops an encoding mechanism similar to that used in
this paper, but it needs to set the number of SPs in
advance. In this paper, we preset the number of SPs
in DEEM to a random value between [k in, kmaz]-

Table 1 presents the experimental results of
TPA and three comparators regarding the average
and standard deviation of energy consumption (EC)
over 20 runs. The statistical test results between
TPA and each of the three competitors are summa-
rized at the bottom of Table 1. Note that, if not
all IoT devices are served in one run, the run was
considered to be infeasible. In this case, we only
give the feasibility rate in Table 1. It is clear that
TPA-VLGA, TPA-JGGA, and TPA can achieve a
100% feasibility rate on each instance. However,
TPA shows better performance than TPA-VLGA
and TPA-JGGA on each instance in terms of the
average EC. As for DEEM, it cannot achieve a 100%
feasibility rate on any instance. In addition, TPA is
significantly better than each of the three competi-
tors on all instances. Figure 4 plots the evolution
of the average EC of TPA-VLGA, TPA-JGGA, and
TPA when n = 160, 180, and 200. Since TPA-DEEM
cannot achieve a 100% feasibility rate on these in-
stances, the evolution of the average EC of TPA-
DEEM is not presented. It can be seen that TPA pro-
vides the best performance in all algorithms. More-
over, we present the average running time of TPA-
VLGA, TPA-JGGA, and TPA on each instance in
Figure 5. Although the difference among the aver-
age running time of TPA-VLGA, TPA-JGGA, and
TPA is small, it can still be found that TPA-VLGA,
TPA-JGGA, and TPA require less running time on
3, 1, and 4 instances, respectively.

The above-mentioned phenomenon is mainly at-
tributed to the following reasons. Due to the dif-
ferent lengths of individuals, TPA-VLGA searches
for the optimal deployment of SPs in a variable-
dimensional space, which may cause a confused
search. Although the individuals in TPA-JGGA are
of the same length, the introduction of auxiliary vari-
ables leads to an increase in the length of the individ-
uals, thus encountering the curse of dimensionality,
especially in large-scale instances. Since the num-
ber of SPs needs to be set in advance, TPA-DEEM
cannot update the number of SPs during evolution.
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Fig. 5 Average running time of TPA-VLGA, TPA-
JGGA, and TPA on each instance.

Note that, an inappropriate number of SPs may re-
sult in not all IoT devices being served. Since TPA
can simultaneously update the number and location
of SPs, and the length of individuals is the same and
very low, it can achieve a better performance.

4.2 Effectiveness of the association between
UAVs and SPs

In order to verify the effectiveness of the as-
sociation between UAVs and SPs, we developed a
variant of TPA without the k-means clustering al-
gorithm, called TPA-WoK, in which the UAVs are
randomly associated with SPs. Table 2 presents the
average and standard deviation of EC over 20 runs,
as well as the statistical results between TPA and
TPA-WoK. 1t is clear that TPA outperforms TPA-
WoK on all instances in terms of the average EC. In
addition, TPA presents significantly better statisti-
cal test results on all instances. The reason is given
as follows. From Figures 6(a) and 6(b), we can ob-
serve that TPA can associate the closely spaced SPs
with the same UAV but TPA-WoK cannot. There-
fore, TPA can reduce the flight distance of UAVs to
lower the energy consumption of the system, which
verifies the effectiveness of the association between
UAVs and SPs.

4.3 Effectiveness of the order of SPs

In this subsection, we investigated the effective-
ness of the order of SPs by comparing TPA with
two variants, called TPA-RAN and TPA-GA. TPA-
RAN randomly generates the order of SPs, while
TPA-GA employs GA to optimize the order of SPs.
Note that, in TPA-GA, a population of ten individu-
als was used to search for the optimal trajectory for
each UAV and the maximum number of iterations
was set to 50. Table 2 presents the experimental re-
sults of TPA-RAN, TPA-GA, and TPA. It is clear
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Table 2 Experimental results of TPA-WoK, TPA-RAN, TPA-GA, and TPA in terms of average EC(J) over

20 runs
" TPA-WoK TPA-RAN TPA-GA TPA
Mean(Std Dev) Mean(Std Dev) Mean(Std Dev) Mean(Std Dev)
60 1.60e + 6(5.74e +4) + 1.56e 4+ 6(1.97e +5) + 1.43e +6(5.87Te +4) 1+ 1.40e + 6(2.03e + 4)
80 2.29¢ +6(6.89e +4) 1+ 2.48e+6(3.14e+5) T 2.27e+6(3.14e+4) T 2.06e + 6(2.68e + 4)
100 2.99e +6(4.88¢ +4) 1+ 3.63e+6(4.02e +5) 1T 3.18¢+6(1.72¢ +5) T 2.68¢+ 6(3.73e +4)
120 3.15e 4 6(5.29¢ +4) ©  4.33e +6(1.7le+5) 1+ 3.7le +6(1.96e +5) T  2.82e 4 6(6.29¢ + 4)
140 4.06e + 6(4.8%8¢ +4) +  5.5le+6(2.29¢ +5) 1  4.90e + 6(1.24e + 5) T  3.7le + 6(3.03¢ + 4)
160 4.66e 4+ 6(6.7le +4) T 6.6le +6(1.83e +5) 1+ 5.94e +6(1.05e +5) 1 4.21e + 6(5.21e + 4)
180 5.22e + 6(6.7le+4) T  7.60e + 6(1.45¢ +5) T 6.69¢ + 6(1.07e +5) T 4.83e + 6(4.17e + 4)
200 5.85e +6(8.88e +4) 1+ 8.5le+6(2.38e+5)1T 7.72e+6(2.62e+5)1T 5.35e + 6(4.20e + 4)
NRWES 7/0/0 7/0/0 7/0/0
1000 Q N 1000 1000
£ s00 £ s00 E £ s
/
. LT
0 500 1000 0 500 1000
X(m) X(m)
(a) TPA (b) TPA-WoK (c) TPA-RAN (d) TPA-GA

Fig. 6 Trajectories of UAVs obtained by TPA, TPA-WoK, TPA-RAN, and TPA-GA when n = 200, where the
red line, green line, blue line, and black line indicate the trajectories of four UAVs (i.e., Gi, G2, G3, and G4),

respectively.

1500 =
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0
60 80 100 120 140 160 180 200
n

Fig. 7 Average running time of TPA-GA and TPA on
each instance.

that TPA performs better than TPA-RAN and TPA-
GA. To further validate the effectiveness of the order
of SPs, we present the trajectories of UAVs obtained
by TPA-RAN and TPA-GA in Figures 6(c) and 6(d).
Compared with TPA, both TPA-RAN and TPA-GA
obtain longer flight trajectories, resulting in higher
energy consumption. The above experimental re-
sults verify the effectiveness of the order of SPs. The
poor performance of TPA-GA could appear confus-
ing. It is explained as follows. As shown in Figure 7,
the average running time of TPA-GA is higher than
that of TPA due to the fact that GA usually requires
more fitness evaluations than the greedy method.
As a result, under the given time budget, TPA-GA
is likely to perform worse than TPA.

Table 3 Experimental results of TPA-RPS and TPA
in terms of average EC(J) over 20 runs

n TPA-RPS TPA
Mean(Std Dev) Mean(Std Dev)
60 14le+ 6(1.73¢ + 4) ~  1.40e + 6(2.03¢ + 4)
80 2.06e + 6(3.19¢ +4) ~  2.06e + 6(2.68¢ + 4)
100 2.68¢ + 6(5.29¢ +4) ~  2.68¢ + 6(3.73¢ + 4)
120 2.8le+ 6(3.17e +4) ~  2.82¢ + 6(6.29¢ + 4)
140 3.70¢ + 6(4.06¢ +4) ~  3.71e + 6(3.03¢ + 4)
160 4.24e +6(5.27e +4) ~  4.21e + 6(5.21¢ + 4)
180 484e +6(5.37e +4) ~  4.83¢ + 6(4.17¢ + 4)
200 5.36e + 6(5.5% +4) ~  5.35¢ + 6(4.20e + 4)
14/~ 0/0/7

4.4 Discussions
4.4.1 Effect of the Initial Population Size

In this paper, we set the initial population size of
TPA to kjpar- One might be interested in the effect
of the initial population size on the performance of
TPA. Therefore, in this subsection, the initial pop-
ulation size was set to a random number between
[mins kmaz). The resulting variant is named TPA-
RPS. As shown in Table 3, there is no significant
performance difference between TPA and TPA-RPS,
which means that the performance of TPA is not
sensitive to the initial population size. The reason is
that TPA can update the population size adaptively.
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Five Three One
" Mean(Std Dev) Mean(Std Dev) Mean(Std Dev)
60 1.52¢ + 6(4.74e + 4) T 1.50e + 6(3.63¢ + 4) T 1.40e + 6(2.03¢ + 4)
80 2.22¢ + 6(3.7de +4) T 2.15¢ + 6(4.62¢ +4) T  2.06e + 6(2.68¢ + 4)
100 2.84e +6(7.20e +4) T 2.78¢ + 6(5.8Te +4) T 2.68¢ + 6(3.73¢ + 4)
120 3.0le +6(6.73e +4) 1+ 2.92e+6(7.72e +4) T 2.82e+6(6.29¢ +4)
140 3.95e +6(9.3de +4) 1+ 3.8le+6(7.16e +4) T 3.7le +6(3.03e +4)
160 4.44e +6(1.03¢ +5) 7 4.42e+6(8.35¢ +4) 1  4.21e + 6(5.21e + 4)
180 5.08¢ +6(1.10e +5) T 4.95¢ + 6(1.05¢ + 5) T  4.83¢ + 6(4.17¢ + 4)
200 5.75¢ + 6(1.52¢ +5) +  5.53¢ + 6(1.36e +5) +  5.35¢ + 6(4.20e + 4)
1)L/ 7/0/0 7/0/0

4.4.2 Effect of the Updating Strategy

In order to investigate the effect of the updating
strategy, we tested TPA with three different strate-
gies. Specifically, in each updating, at most one,
three, and five individuals in the new population are
different from P, respectively. As shown in Table 4,
the strategy that can update at most one individual
in each updating can provide the best performance
among three compared strategies. The above com-
parison shows that a dramatic change in population
size may lead to poor performance. Therefore, TPA
updates at most one individual in each updating.

5 Conclusion

In this paper, a multi-UAV-assisted mobile edge
computing system was studied. In order to reduce
the energy consumption of the system, a trajectory
planning problem was formulated, containing three
coupled sub-problems: the deployment of SPs,
the association between UAVs and SPs, and the
order of SPs.
problem, we proposed a three-phase trajectory
planning algorithm, called TPA. First, DE with a
variable population was used for the deployment of
SPs, which can simultaneously update the number
and locations of SPs.

To solve the trajectory planning

Subsequently, the k-means
clustering algorithm was employed to cluster SPs
into a set of subsets with the aim of associating the
closely spaced SPs with the same UAV. Moreover,
to reduce the flight distances of UAVs, we designed a
greedy method that can quickly construct the order
of SPs visited by UAVs. The experimental results
show that on a set of instances at different scales,
TPA can save much energy compared with other
algorithms. Therefore, TPA can achieve energy-
efficient trajectory planning. However, we need to

preset the number of clusters (i.e., the number of
UAVs) in the k-means clustering algorithm. As a
result, TPA cannot solve the trajectory planning
problem for a mobile edge computing system that
is assisted by a variable number of UAVs. In the
future, we will try to use the clustering algorithm
that does not require a preset number of clusters to
solve such a trajectory planning problem.
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