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Abstract—In many real-world engineering applications, 
a uniform design needs to be conducted in a constrained 
experimental domain that includes linear/nonlinear and 
inequality/equality constraints. In general, these
constraints make the constrained experimental domain 
small and irregular in the decision space. Therefore, it is 
difficult for current methods to produce a predefined 
number of samples and make the samples distribute
uniformly in the constrained experimental domain. This 
paper presents a two-phase differential evolution for 
uniform designs in constrained experimental domains. In 
the first phase, considering the constraint violation as the 
fitness function, a clustering differential evolution is 
proposed to guide the population toward the constrained 
experimental domain from different directions promptly.
As a result, a predefined number of samples can be 
obtained in the constrained experimental domain. In the 
second phase, maximizing the minimum Euclidean distance 
among samples is treated as another fitness function. By 
optimizing this fitness function, the samples produced in 
the first phase can be scattered uniformly in the 
constrained experimental domain. The performance of the 
proposed method has been tested and compared with 
another state-of-the-art method. Experimental results 
suggest that our method is significantly better than the 
compared method in the uniform designs of a new type of 
automotive crash box and five benchmark test problems. 
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Moreover, the proposed method could be considered as a 
general and promising framework for other uniform 
designs in constrained experimental domains.
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constrained experimental domain, differential evolution, 
uniform design.

I. INTRODUCTION

NTERPRISES always try to provide high-quality, low-cost 
products and shorten lead time to survive in fierce 

competitive environments. This can be achieved through 
innovative design. Traditional product design is based on 
empirical and/or trial-and-error processes. Utilizing traditional 
methods to develop a new product will inevitably lead to a long 
design cycle and excessive costs because of numerous 
prototype tests. With the rapid development of advanced 
computer technology, finite element analysis has become a 
well-established numerical simulation tool to precisely predict 
product performance in the design stage, which can reduce 
design and prototyping costs [1]. Since the design scheme 
should be manually adjusted in line with engineers’ experience, 
finite element analysis needs to be performed many times to 
reevaluate the results. Furthermore, the above process cannot 
guarantee the global optimum. In order to achieve more active 
design, finite element analysis-based optimization has been 
developed as a promising manner to systematically seek an 
optimal design [2]. Although finite element analysis-based 
optimization is able to improve the design level, it is essentially
an iterative process. Note that computation-intensive design 
problems are becoming increasingly common in automotive, 
aerospace, transportation, and defense industries [3]. With 
respect to such design problems, it is time-consuming for one 
iteration. For example, in full vehicle crashworthiness, to meet 
all safety criteria, the design is intrinsically a daunting 
optimization task often involving multiple loading cases (e.g., 
frontal/side/rear impact, pedestrian safety, roof crush, interior 
head impact, rollover), multiple disciplines, and multiple 
objectives [4]-[6]. Just taking the computational cost into 
account, it has been reported that it takes Ford Motor Company 
about 36-160 hours to run one full vehicle crash simulation [7]. 
In general, a full vehicle crashworthiness design needs to call 
hundreds of simulations. In order to enhance the computational 
efficiency in design, highly accurate surrogate models have 
been widely used [8]-[10]. How to generate representative 
samples is the primary issue for constructing highly accurate 
surrogate models. The design of experiment can be considered
to be an essential step toward this purpose [11].

The design of experiment aims to appropriately select a set of 
samples to provide uniform coverage over the experimental 
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domain of interest [12]. Currently, the design of experiment has 
been broadly applied to computer experiments and industrial 
experiments [13]-[15]. Many techniques have been proposed
for the design of experiment, such as orthogonal design 
[16]-[18], Latin square design [19]-[21], and uniform design 
[22]-[24]. Among them, uniform design is able to obtain more 
information from the experimental domain with a smaller
number of samples [25]. Very often, for uniform designs of 
some complex practical situations, there are many linear/
nonlinear and inequality/equality constraints due to the 
interactions among the decision variables [26]. The uniform 
design of a new type of automotive crash box for lightweight
can be taken as an example. The automotive crash box (as 
shown in Fig. 1) always bears very complex loading, which 
implies that different regions should have different roles to 
maximize the usage of materials. How to exhaust the potential 
of materials according to the performance requirements is one 
of the most important issues for automotive lightweight design.
Fortunately, variable-thickness rolled blank can vary the blank 
thickness with a continuous thickness transition through 
adjusting the roll gap [27]. This innovative technology can 
easily realize the customized thickness of a new type of 
automotive crash box. Note that different thickness 
distributions of the variable-thickness rolled blanks lead to 
different performance; therefore, it is necessary to optimize the 
thickness distributions to maximize performance [28]. The 
optimal thickness distribution among different zones including 
the thin zones, thickness zones, and transition zones should
satisfy a variety of manufacturing constraints [27], which are 
typical linear/nonlinear and inequality/equality constraints.

In this paper, the aim of a uniform design is to sample 
uniformly over a constrained experimental domain which is 
usually a small and irregular region in the decision space
because of constraints. At present, many uniform design
approaches have been proposed for this purpose, including:

1) Traditional uniform design methods: This kind of 
method firstly generates a number of uniform samples
from the decision space, and then checks which samples
satisfy all constraints, deleting the samples violating the 
constraints [29]-[32]. However, if there exist nonlinear
constraints and/or equality constraints, the experimental 
domain is very small compared to the decision space. As 

a result, the samples satisfying all constraints are very 
scarce. Under this condition, it is a very challenging task
for traditional uniform design methods to produce a 
desired number of samples.

2) Number-theoretic uniform design methods: This kind of 
method generates a number of uniform samples by 
number-theoretic techniques and tackles constraints by 
mapping function [33]-[35]. Unfortunately, this kind of 
method can only handle one linear equality constraint, 
and the other constraints are handled by the same 
process as in traditional uniform design methods. Hence, 
it faces substantial difficulties when dealing with 
complex nonlinear and/or equality constraints.

3) Heuristic uniform design methods: This kind of method 
models a uniform design in the constrained expe-
rimental domain as an optimization problem, and 
optimizes it via heuristic methods [36]-[39]. However, 
this kind of method is not suitable for uniform designs in 
the constrained experimental domains with high dimen-
sionality and a large number of design points due to
tremendous computational workload. Additionally, 
most methods do not introduce how to cope with 
nonlinear constraints and equality constraints.

From the above introduction, it is obvious that linear/
nonlinear and inequality/equality constraints pose a great
challenge to current uniform design methods. Therefore, new 
insights toward uniform designs in constrained experimental
domains are quite necessary. In this paper, inspired by [40], a
two-phase differential evolution (DE) called ToPDE is
proposed. In the first phase, a clustering DE integrated with 
constraint violation as the fitness function is presented to guide
the population (i.e., a set of samples or a set of design points)
toward the constrained experimental domain quickly. The 
advantages of the clustering DE are twofold. On one hand, it is 
capable of obtaining a predefined number of samples in the 
constrained experimental domain. On the other hand, it can 
keep the diversity of the population, with the purpose of
providing high-quality candidate solutions for the second phase.
In the second phase, another fitness function and a novel 
replacement strategy are proposed to make the population 
distribute uniformly in the constrained experimental domain, 
which can also dramatically reduce the computational time.

The main contributions of this paper can be summarized as 
follows:

1) ToPDE can be viewed as a new algorithmic framework 
with the incorporation of the properties of uniform 
designs in constrained experimental domains. Moreover, 
ToPDE is not dependent on the type and number of 
constraints.

2) Recognizing that the computational overhead of the 
existing heuristic uniform design methods is very high, 
the fitness function in the second phase offers a tradeoff 
between uniform distribution and computational cost.

3) ToPDE has been applied to the uniform designs of a
practical engineering problem (i.e., a new type of 
automotive crash box) and five benchmark test 
problems. The experimental results show that ToPDE is 

Fig. 1. The illustration of the automotive crash box

Automotive
crash box
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significantly better than NTMD [33], which is a state-
of-the-art number-theoretic method for uniform designs 
in constrained experimental domains.

This paper is organized as follows. Section II describes the 
uniform design of a new type of automotive crash box. Section
III introduces the concepts of DE. ToPDE is proposed in
Section IV. Section V presents the experimental results. 
Section VI further discusses the advantage and effectiveness of
ToPDE. Finally, Section VII concludes this paper.

II. THE UNIFORM DESIGN OF A NEW TYPE OF AUTOMOTIVE 
CRASH BOX

Reducing the weight of an automobile is an effective method 
for saving energy and reducing emissions. The most important 
premise of automotive lightweight design is not to reduce 
product performance [41], especially safety. In all automotive 
safety parts, the crash box shown in Fig. 1 is an irreplaceable 
part [42] whose energy absorption has a significant effect on 
occupant safety. To improve the energy absorption, the most 
commonly used way is to increase the wall thickness of the 
traditional automotive crash box, which inevitably leads to a
significant increase in weight. Therefore, it is very challenging
to achieve light weight and high crashworthiness simul-

taneously. In order to address this issue, it is necessary to 
design a new type of automotive crash box for the purpose of 
reducing the weight. Herein, the new type of automotive crash
box is designed by variable-thickness rolled blank, the rolling 
processes of which are shown in Fig. 2 [27]. The variable-
thickness rolled blank consists of different thickness zones and 
transition zones, where the transition zones are used to link 
different thickness zones. As mentioned, directly combining
optimization algorithms with finite element analysis will 
consume a great deal of time to search for the optimal thickness 
distribution of the new type of automotive crash box. Indeed, 
highly accurate surrogate models provide an effective way to
improve the computational efficiency. From [11], we know that 
the key issue of constructing highly accurate surrogate models
is to obtain representative samples.

The structure of a new type of automotive crash box is shown
in Fig. 3, which includes 14 decision variables, i.e., nine
different lengths 1 2 9( , , , )x x x and five different thicknesses 

10 11 14( , , , ).x x x In addition, there are many constraints. First, 
each decision variable ix should be in a predefined range, i.e., 
[ , ],  1,2, ,14,lower upper

i ix x i where lower
ix and upper

ix denote the lower 
and upper bounds of ,ix respectively. Secondly, the new type 
of automotive crash box should satisfy the requirement of the 
standard industrial size. Therefore, the sum of the length of 
different thickness zones and transition zones should be equal 
to a constant .L Thirdly, the transition zones should satisfy the 

Fig. 2. The rolling processes of the variable-thickness rolled blank [27]

(a)                                         (b)
Fig. 3. The structure of a new type of automotive crash box. (a) The overall 
view of the new type of automotive crash box. (b) The sectional view of the 
new type of automotive crash box.
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TABLE I
RELATIONSHIP OF THE DECISION VARIABLES IN THE NEW TYPE OF 

AUTOMOTIVE CRASH BOX

Relationship of the decision variables Type of the constraints
,  1, 2, ,14lower upper

i i ix x x i Boundary constraints
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1 ii
x L
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denotes the density of material
l denotes the circumference of cross section
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TABLE II
PARAMETER VALUES OF THE NEW TYPE OF AUTOMOTIVE CRASH BOX

Parameter Value Parameter Value

1 9, ,  lower lowerx x 1 (mm) b 1.5

10 14, ,  lower lowerx x 0.8 (mm) c 1/30

1 9, ,upper upperx x 175 (mm) d 1/10

10 14, ,upper upperx x 2.5 (mm) M 2.1168 (Kg)

L 175 (mm) 62.7 10 (Kg /mm3)
a 0.6 l 320 (mm)
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limitations of manufacturing technology, and thus, the ratio of 
adjacent thicknesses should be in the range of [ , ].a b Moreover,
the ratio between the difference of adjacent thicknesses and the 
length of the corresponding transition zone should be in the 
range of [ , ].c d Finally, the weight of the new type of 
automotive crash box should be less than or equal to a constant 

.M The detailed relationships of the decision variables are
and the parameter values are given in Table II.

that the experimental domain is 
subject to 14 boundary constraints, one linear equality 
constraint, and 17 nonlinear inequality constraints. The 
ultimate aim of the uniform design of the new type of 
automotive crash box is to sample uniformly over this
constrained experimental domain.

III. CONCEPTS OF DIFFERENTIAL EVOLUTION

Differential evolution (DE), proposed by Storn and Price
[43], is a population-based optimizer. It is one of the most 
popular paradigms of evolutionary algorithms and has been 
successfully applied to solve different kinds of optimization
problems [44]-[48]. Suppose that an optimization problem is to
minimize the objective function ( ).f x Firstly, DE randomly 
generates NP samples (also called NP individuals) from the 
decision space:

,1 ,2 ,( , , , ) ,  1,2, ,i i i i Dx x x x S i NP                   (1)
where

,  ( {1,2, , })i jx j D is the jth decision variable;
D is the number of decision variables;

1
[ , ]D lower upper

j jj
S x x is the decision space;

lower
jx and upper

jx are the lower and upper bounds of , ,i jx

respectively.
These NP samples form the initial population, i.e., an NP D
matrix. Next, DE adopts three main steps, i.e., mutation, 
crossover, and selection to evolve the population.

Mutation: By the mutation, DE creates a mutant vector
,1 ,2 ,( , , , )i i i i Dv v v v for each sample .ix The two extensively

used mutation operators (called DE/rand/1 and DE/current-
to-rand/1) are introduced as follows:

DE/rand/1
  

1 2 3
( ),  1,2, ,i r r rv x F x x i NP              (2)

DE/current-to-rand/1
1 2 3

( ) ( ),  1,2, ,i i r i r rv x rand x x F x x i NP        (3)
where 1,r 2 ,r and 3r are three random and mutually different 
integers chosen from [1, ],NP rand is a uniformly distributed
random number from [0,1], and (0,1]F is the scaling factor 
which controls the amplification of the differential vector 

2 3
( ).r rx x

Crossover: The crossover is implemented on ix and its 
mutant vector iv to produce a trial vector ,1 ,2 ,( , , , ) :i i i i Du u u u

,
,

,

if  or 
,  1,2, , ,  1,2, ,

otherwise
i j j rand

i j
i j

v rand CR j j
u i NP j D

x
(4)

where [0,1]CR is the crossover control parameter, jrand is 
the jth evaluation of a uniformly distributed random number 
between 0 and 1, and randj is an index randomly chosen from
{1,2, , }.D The condition “ randj j ” ensures that iu differs
from ix by at least one element.

Selection: ix is replaced by iu if the objective function 
value of ix is not better than that of ;iu otherwise, ix will 
survive into the next generation:

, if ( ) ( )
,  1,2, ,

, otherwise
i i i

i
i

u f u f x
x i NP

x
               (5)

In DE, the mutation, crossover, and selection are executed
generation by generation until a predefined stopping criterion is 
satisfied. From the introduction, it is evident that DE does not 
include any complex operators.

IV. A TWO-PHASE DE FOR UNIFORM DESIGNS IN 
CONSTRAINED EXPERIMENTAL DOMAINS

A. Fitness Functions
If a sample satisfies all constraints, then it is called a feasible 

sample; otherwise, it is called an infeasible sample. A 
constrained experimental domain is the set of all feasible 
samples. As pointed out previously, the constrained experi-
mental domain may be a small and irregular region in the 
decision space because of constraints. The generated samples in 
the population of DE by the initialization satisfy boundary 
constraints, but most of them—even all of them—could not
satisfy linear/nonlinear and inequality/equality constraints, 
which indicates that maybe there is no feasible sample in the 
initial population. Therefore, constraint satisfaction is the first 
issue for uniform designs in constrained experimental domains.

Based on this analysis, we establish the first fitness function.
Since the degree of constraint violation can directly measure
the feasibility of a sample, minimizing the degree of constraint
violation is an efficient way to motivate a sample toward the 
constrained experimental domain. The degree of constraint 
violation of a sample ( {1,2, , })ix i NP on the kth constraint is 
computed by the following equation:

( ) max{0, ( )}, 1
( ) max{0,| ( ) | }, 1

k i k i

k i k i

G x g x k p
H x h x k q

                (6)

where ( )k ig x denotes the kth inequality constraint, p is the 
number of inequality constraints, ( )k iG x represents the degree 
of constraint violation on the kth inequality constraint, ( )k ih x
denotes the kth equality constraint, q is the number of equality 
constraints, is the tolerance value to relax the equality 
constraint to a certain extent, and ( )k iH x represents the degree 
of constraint violation on the kth equality constraint.

Then, the degree of constraint violation of ix on all
constraints can be expressed as follows:

1 1 1
( ) ( ) ( )p q

i k i k ik k
FF x G x H x                       (7)

In this paper, equation (7) is considered to be the first fitness 
function for the purpose of constraint satisfaction. Note that the 
smaller the value of 1,FF the better the performance of a sample.
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Moreover, 1( ) 0iFF x means that ix is a feasible sample. By 
minimizing equation (7), the degree of constraint violation of 
the population will decrease gradually, and more and more 
samples in the population will become feasible. As a result, a 
predefined number of samples can be obtained in the 
constrained experimental domain.

The ultimate purpose of uniform designs in constrained 
experimental domains is to uniformly spread the samples 
throughout the constrained experimental domain. Therefore, 
the second issue is related to the uniform distribution of the 
obtained samples in the constrained experimental domain.

Chen et al. [36] proposed a heuristic method, called discrete 
particle swarm optimization, for constructing uniform designs
in constrained experimental domains. In this method, each 
individual in the population is an NP D array and the central 
composite discrepancy (CCD) [49] is used to measure the 
uniformity of an individual. However, it is an NP-hard problem 
to search for the optimal design based on the CCD criterion. 
Although a discrete version of CCD can save the computational 
cost, it is still very time-consuming. For example, the uniform 
design of the new type of automotive crash box introduced in 
Section II includes 14 decision variables. If a population 
consists of 50 samples, then the method in [36] will take about 

83 10 years to produce the optimal uniform design in the 
constrained experimental domain. Obviously, it is very hard for 
this method to be directly applied in practical engineering.

To achieve uniform designs in constrained experimental 
domains more efficiently, we design a second fitness function, 
which maximizes the minimum Euclidean distance among the 
samples in the population. This fitness function is able to make 
an effective tradeoff between uniform distribution and 
computational cost, which is implemented as follows.

For each sample ( {1,2, , })ix i NP in the population, we 
compute the normalized Euclidean distance from ix to the 
other samples, and the minimum normalized Euclidean 
distance is denoted as :imin_dis

1,2, , ,
min ( ( ), ( ))i i jj NP j i

min_dis distance normalized x normalized x (8)

where ( , )distance represents the Euclidean distance in the 
decision space, and ( )inormalized x and ( )jnormalized x mean
that each dimension of ix and jx is normalized as follows:

, ,( ) ( ) / ( ),  1,2, ,lower upper lower
i k i k k k knormalized x x x x x k D (9)

, ,( ) ( ) / ( ),  1,2, ,lower upper lower
j k j k k k knormalized x x x x x k D (10)

Afterward, the second fitness function can be expressed as
follows:

2 1,2, ,
min ii NP

FF min_dis                            (11)

The larger the value of 2 ,FF the better the overall uniformity of 
the population. A smaller value of 2FF means that some
samples in the population are stuck at a sub-region of the 
constrained experimental domain. On the contrary, a larger 
value of 2FF means that the samples are distributed relatively 
uniformly in the constrained experimental domain. The 
computational time complexity of 2FF is 2( ).O NP

According to the characteristics of uniform designs in 
constrained experimental domains and the two fitness functions, 
we divide the whole evolutionary process into two phases. 
These two phases are elaborated on next.

B. Phase One
The first phase aims at obtaining a predefined number of 

feasible samples by minimizing the first fitness function. Note 
that the first phase should also provide feasible candidate
solutions with good diversity for the next phase to achieve the 
ultimate purpose, i.e., uniform design. In order to keep the 
diversity of the population, a possible way is to guide the 
samples toward the constrained experimental domain from
different directions. Inspired by [40], a clustering DE is
utilized.

Firstly, population P including NP samples is clustered
into /NP NS subpopulations, where NS denotes the number 
of samples in each subpopulation and denotes rounding
down to the nearest integer. Afterward, DE is employed to 
evolve each subpopulation. The clustering DE is implemented
in the following iterative way:

Step 1: Randomly generate a reference point r from the 
decision space and normalize r according to equation (9).

Step 2: Set 1i and .TP // TP denotes a temporary
population

Step 3: Compute the normalized Euclidean distance from r
to the samples in P and determine the nearest sample in P to
r (denoted as z ).

Step 4: Find ( 1)NS samples in ,P which are nearest to .z

These ( 1)NS samples and z form a subpopulation, denoted 
as .iSP

Step 5: Delete these NS samples from .P
Step 6: Generate an offspring subpopulation (denoted as 

)iOP for iSP by the mutation and crossover of DE, and 
implement the selection of DE on iSP and iOP to update .iSP
Note that the comparison is based on the first fitness function 

1.FF
Step 7: Incorporate the updated iSP into the temporary

population ,TP i.e., .iTP TP SP

Step 8: 1.i i If / ,i NP NS then go to Step 3; 
otherwise .P = P TP

Step 9: If each subpopulation has at least / ( / )NP NP NS

feasible samples, then randomly choose / ( / )NP NP NS

feasible samples from each subpopulation to form a new 
population P for the second phase; otherwise go to Step 1.

Since different subpopulations converge toward the 
constrained experimental domain from different directions, in 
Step 9 we choose / ( / )NP NP NS feasible samples from each 
subpopulation to guarantee the diversity of ,P where NP is 
the population size of .P In general, .NP NP

C. Phase Two
After the first phase, we obtain the population ,P which 

contains a predefined number of feasible samples (i.e., ).NP In 
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the second phase, the mutation and crossover of DE are
executed to generate NP offspring for .P It is noteworthy
that maybe some offspring are not in the constrained 
experimental domain. Therefore, it is necessary to check 
whether a newly generated offspring is feasible or not by the 
first fitness function 1.FF If all the newly generated offspring
are infeasible, DE will be implemented continuously until at 
least one offspring is feasible.

In order to make P distribute uniformly in the constrained 
experimental domain, a novel replacement strategy is proposed
in this paper. Firstly, the feasible offspring are added to P one 
by one. After adding one feasible offspring to ,P we will 
choose the sample which has the minimum normalized
Euclidean distance to the other samples according to equation 
(8). If several samples have the same minimum normalized
Euclidean distance, then we will consider the second minimum
normalized Euclidean distance and so forth. At last, we obtain
one individual. Subsequently, this individual is deleted from

;P thus, the population size of P is unchanged. If the 
updated P has a better value of 2,FF then the replacement is 
successful; otherwise, P returns to its original state. If the 
successful replacement cannot occur over continuous count
times, then the second phase halts. Fig. 4 gives a simple 
example. Through this replacement strategy, the overall 
uniformity of P can be strengthened constantly during the 
evolution.

The details of the second phase are given as follows:
Step 1: Compute the fitness function 2FF for .P
Step 2: Set 0.k
Step 3: Generate NP offspring for P by implementing 

the mutation and crossover of DE.
Step 4: Find the feasible offspring and suppose that there are 

NS feasible offspring.
Step 5: If 0,NS which suggests that there are no feasible 

offspring, then go to Step 3.
Step 6: For 1:i NS

Step 6.1: ;Q P // Q denotes the original state of P
Step 6.2: Put the ith feasible offspring into ;P
Step 6.3: Choose the sample having the minimum nor-
malized Euclidean distance according to equation (8) (if 
several samples have the same minimum normalized

Euclidean distance, then select the sample with the 
second minimum normalized Euclidean distance and so 
forth) and delete it from ;P
Step 6.4: Compute the fitness function 2FF for the up-
dated ;P
Step 6.5: If the updated P has a better value of 2,FF

then it is a successful replacement and 0;k otherwise
P Q and 1;k k
Step 6.6: If ,k count break and output ;P

Step 7: Go to Step 3.
Remark 1: Based on our introduction, it can be concluded 

that the above two phases combined with the two fitness 
functions can not only guide the population toward the 
constrained experimental domain from different directions 
quickly, but also have the potential to uniformly scatter the 
population in the constrained experimental domain.

D. Performance Criterion
With the termination of the second phase, the final 

population P can be obtained. In order to evaluate the 
performance of ,P the maximum distance based criterion 
(called )MD is adopted [33]. According to [33], firstly we need 
to produce a test set ,TS which contains m individuals
randomly generated from the constrained experimental domain
and m is a very large integer. In this paper, TS is produced by 
repeatedly implementing the first phase of ToPDE introduced 
in Section IV-B until m individuals have been obtained in the
constrained experimental domain. Afterward, the following 
procedure is executed:

Step 1: Normalize each sample in P and each individual in 
TS according to equation (9). After the normalization, let 

' ' '
1 2{ , , , }NPx x xP and ' ' '

1 2{ , , , }.my y yTS

Step 2: For each ' ( 1,2, , )jy j m in ,TS compute the 

minimum normalized Euclidean distance from '
jy to :P

' ' '

1,2, ,
( , ) min ( , ).j j ii NP

min_dis y distance y xP

Step 3: Compute the maximum '( , ) :  jmin_dis y MDP
'

1,2, ,
max ( , ).jj m

min_dis y P

In principle, this performance criterion computes the 
maximum distance between any ' ( 1,2, , )jy j m in TS and 

the sample in P nearest to ' .jy A small value of MD implies 
that the individuals in TS tend to be close to ,P and a large 
value of MD implies that some sub-regions are not well 
covered by P [33]. Therefore, the smaller the value of ,MD
the better the performance of a method.

E. The Framework of ToPDE
By integrating the important components introduced in the 

above four subsections, ToPDE for uniform designs in 
constrained experimental domains works as follows:

Step 1: Randomly generate an initial population P from the 
decision space, which contains NP samples;

Fig. 4. An example of the replacement strategy. In this figure, C is a feasible
offspring which is added into the population, and A and B are two samples in 
the population. Since A and B have the minimum normalized Euclidean 
distance and the second minimum normalized Euclidean distance of A is less 
than that of B, A is deleted from the population. If the updated population has a 
better value of FF2, then the replacement is successful. Otherwise, the 
population returns to its original state.

A
B C

The decision space

The constrained 
experimental domain

A sample in the population
A feasible offspring
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Step 2: Implement the first phase and obtain another
population P which contains NP diversified samples in the 
constrained experimental domain;

Step 3: Implement the second phase to make the NP
samples in P distribute uniformly in the constrained experi-
mental domain;

Step 4: Evaluate P via the performance criterion.
ToPDE includes six main parameters:

:NP the size of population P  in the first phase;
:NS the size of each subpopulation in the first phase;
:NP the size of population P  in the second phases;

:count the maximum tolerance value for the unsuccessful 
replacement in the second phase;

:F the scaling factor of DE;

:CR the crossover control parameter of DE.

V. EXPERIMENTAL STUDY

In this section, at first a two-dimensional example is utilized
to show how ToPDE works. Afterward, ToPDE is applied to 
the uniform design of the new type of automotive crash box. In 
order to further test the performance of ToPDE, it is also 
applied to five benchmark test problems. Moreover, the 
performance of ToPDE is compared with that of another 
state-of-the-art method, called NTMD [33].

A. A Two-dimensional Example
A two-dimensional example is designed to explain the 

working principle of ToPDE. This example contains two 
decision variables and, therefore, is easy to visualize. In
addition, there are one linear inequality constraint and three 

TABLE III
THE DETAILS OF THE TWO-DIMENSIONAL EXAMPLE

Relationship of the variables Type of the constraints

120 20,x 210 10x Boundary constraints

1 2 5 0,x x 2 2
1 25 100 0,x x

Inequality constraints
1 2 10 0,x x 1 2 4 0x x

TABLE IV
PARAMETER SETTINGS OF TOPDE FOR THE TWO-DIMENSIONAL EXAMPLE

Parameter Value Parameter Value
NP 100 count 500
NS 20 F 0.9
NP 20 CR 0.9

Fig. 5. The initial distribution of the five subpopulations. The blue cross is the 
reference point, the five subpopulations are depicted with five different colors 
and shapes, and the cyan part is the constrained experimental domain.

Fig. 6. The end of the first phase. Under this condition, each subpopulation 
has at least four feasible samples.

Fig. 7. The initial population of the second phase, which contains 20 feasible 
samples chosen from the five subpopulations.

Fig. 8. The final population of the second phase, in which the 20 feasible 
samples are uniformly distributed in the constrained experimental domain.

TABLE V
THE EXPERIMENTAL RESULTS OF TOPDE OVER 50 RUNS FOR THE 

TWO-DIMENSIONAL EXAMPLE

MD MD MD MD MD
1 0.0634 11 0.0647 21 0.0584 31 0.0689 41 0.0607
2 0.0634 12 0.0625 22 0.0585 32 0.0614 42 0.0588
3 0.0594 13 0.0617 23 0.0609 33 0.0589 43 0.0626
4 0.0637 14 0.0621 24 0.0651 34 0.0634 44 0.0587
5 0.0627 15 0.0645 25 0.0603 35 0.0634 45 0.0597
6 0.0643 16 0.0681 26 0.0581 36 0.0635 46 0.0602
7 0.0693 17 0.1014 27 0.0772 37 0.0650 47 0.0623
8 0.0708 18 0.0612 28 0.0577 38 0.0589 48 0.0611
9 0.0657 19 0.0599 29 0.0646 39 0.0637 49 0.0642

10 0.0621 20 0.0639 30 0.0636 40 0.0607 50 0.0596
Mean Value±Std Dev: 0.0635±0.0066
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nonlinear inequality constraints. The details of this example are
given in Table III. Assume that the aim is to attain 20 uniform 
samples in the constrained experimental domain.

The parameter settings of ToPDE are given in Table IV and 
they were used in the experiments. For the performance 
criterion, the size of the test set was set to 10,000. After the 
initialization, the first phase of ToPDE was executed. The aim 
of this phase is to guide the population toward the constrained 
experimental domain from different directions promptly. 
Following the steps of the first phase introduced in Section 
IV-B, a reference point was randomly selected, and five (i.e.,

/ )NP NS subpopulations were generated by the clustering
DE. The initial distribution of the five subpopulations is shown
in Fig. 5. From Fig. 5, we can see that the five subpopulations, 
depicted with five different colors and shapes, are located at
different sub-regions and represent different search directions.
If each subpopulation has at least four (i.e., / ( / ) )NP NP NS

feasible samples, then the first phase terminates. The end of the 
first phase is shown in Fig. 6. Afterward, four feasible samples 
were randomly chosen from each subpopulation, and these 20 
feasible samples formed the initial population of the second 
phase, which is shown in Fig. 7.

Subsequently, the second phase was triggered, with the 
purpose of motivating the 20 feasible samples to uniformly 
cover the constrained experimental domain. The final 
population with the end of the second phase is shown in Fig. 8.
From Fig. 8, it is clear that ToPDE has the capability to 
uniformly distribute these 20 feasible samples in the 
constrained experimental domain.

Moreover, we independently ran ToPDE 50 times for this 
two-dimensional example. The MD values over 50 runs are
summarized in Table V. From Table V, it can be seen that 
ToPDE is able to consistently provide very small MD values, 
which verifies the stable performance of ToPDE.

B. The Uniform Design of the New Type of Automotive Crash
Box

Section II has introduced a 14-dimensional uniform design 
of a new type of automotive crash box, the detailed description
of which is given in Tables I and II. Assume that the aim is to 
obtain 100 uniform samples in the constrained experimental 
domain which is subject to one linear equality constraint and 17
nonlinear inequality constraints.

ToPDE was applied to solve this problem. In order to verify
its effectiveness, the performance of ToPDE was compared 

TABLE VI
PARAMETER SETTINGS OF TOPDE FOR THE UNIFORM DESIGN OF THE NEW 

TYPE OF AUTOMOTIVE CRASH BOX

Parameter Value Parameter Value
NP 200 count 500
NS 20 F 0.9
NP 100 CR 0.9

TABLE VII
THE EXPERIMENTAL RESULTS OF TOPDE OVER 50 RUNS FOR THE UNIFORM 

DESIGN OF THE NEW TYPE OF AUTOMOTIVE CRASH BOX

MD MD MD MD MD
1 0.6188 11 0.5706 21 0.5490 31 0.5824 41 0.5732
2 0.5732 12 0.6061 22 0.5919 32 0.5255 42 0.5650
3 0.6117 13 0.5809 23 0.5818 33 0.5582 43 0.5596
4 0.5880 14 0.5343 24 0.6042 34 0.6039 44 0.6231
5 0.5678 15 0.5689 25 0.5352 35 0.5616 45 0.5838
6 0.5865 16 0.5954 26 0.6042 36 0.5693 46 0.5977
7 0.5525 17 0.6276 27 0.5339 37 0.6348 47 0.5960
8 0.6240 18 0.5678 28 0.6165 38 0.5910 48 0.6476
9 0.6135 19 0.5724 29 0.5585 39 0.5837 49 0.6555
10 0.5798 20 0.5731 30 0.6051 40 0.6038 50 0.5711
Mean Value±Std Dev: 0.5856±0.0290

TABLE VIII
THE EXPERIMENTAL RESULTS OF NTMD OVER 50 RUNS FOR THE UNIFORM 

DESIGN OF THE NEW TYPE OF AUTOMOTIVE CRASH BOX

MD MD MD MD MD
1 0.7142 11 0.7472 21 0.7328 31 0.6906 41 0.7619
2 0.7734 12 0.7673 22 0.7251 32 0.7469 42 0.6448
3 0.6612 13 0.7267 23 0.6721 33 0.6634 43 0.7216
4 0.7136 14 0.7313 24 0.7355 34 0.7030 44 0.6883
5 0.6913 15 0.7610 25 0.7656 35 0.7012 45 0.6646
6 0.6745 16 0.6935 26 0.7265 36 0.7011 46 0.6983
7 0.7144 17 0.7547 27 0.7645 37 0.7347 47 0.7274
8 0.7237 18 0.6924 28 0.6523 38 0.7065 48 0.7185
9 0.6667 19 0.7063 29 0.7481 39 0.6705 49 0.7013
10 0.7410 20 0.7597 30 0.6795 40 0.7463 50 0.7382
Mean Value±Std Dev: 0.7149±0.0339

(a)                                                      (b)

       (c)
Fig. 9. Box plots of the experimental results provided by ToPDE and NTMD 
for the uniform designs of the new type of automotive crash box, G04, and 
G09. (a) The new type of automotive crash box. (b) G04. (c) G09.

Fig. 10. Evolution of the mean MD values derived from ToPDE over 50 runs 
versus the number of evaluations of the second fitness function (i.e., 2 )FF on
the new type of automotive crash box, G04, G05, G09, G18, and G21.
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with that of NTMD [33]. Previously, NTMD was proposed for 
the uniform design of a highly constrained mixture experiment
which has one linear equality constraint and several inequality
constraints. It is worth noting that all the decision variables are 
involved in the linear equality constraint. The implementation 
of NTMD is given in the Appendix, in which Step 4 is used to 
deal with the linear equality constraint and Step 5 is employed 
to handle other inequality constraints.

Different from [33], some of the decision variables in the 
uniform design of the new type of automotive crash box are not
involved in the linear equality constraint. As shown in Table I, 
five decision variables (i.e., 10 11 14, , , )x x x are not included in 
the linear equality constraint. Thus, NTMD cannot be directly 
applied to the uniform design of the new type of automotive 
crash box. Next, we make a simple revision of Step 4 of 
NTMD:

Step 4: Produce a number of samples, in which 1 2 9, , ,x x x

satisfy the linear equality constraint by implementing equations 
(14)-(19), and 10 11 14, , ,x x x are uniformly sampled by taking 
advantage of the Latin square design.

In the experiments, 50 independent runs were implemented 
for ToPDE and NTMD. The parameter settings of ToPDE are
summarized in Table VI. For the performance criterion, the size 
of the test set was set to 50,000. The experimental results of 
ToPDE and NTMD are listed in Table VII and Table VIII, 
respectively.

From Tables VII and VIII, we can see that the mean MD
values of ToPDE and NTMD are 0.5856 and 0.7149, 
respectively. Therefore, the performance of ToPDE is on
average 18.09% better than that of NTMD. Furthermore, Fig.
9(a) provides the box plot of the experimental results of ToPDE

TABLE IX
THE DETAILS OF G04, G05, G09, G18, AND G21

Problem Decision Variable and Constraint D LI NI LE NE

G04

2 5 1 4 3 5

2 5 1 4 3 5

2

1

2

3

4

2 5 1 2 3

85.334407 0.0056858 0.0006262 0.0022053 92 0

85.334407 0.0056858 0.0006262 0.0022053  0

80.51249 0.0071317 0.0029955 0.0021813 110 0

80.51249 0.00

x x x x x x

x x x x x x

x x x x x

g x

g x

g x

g x 2
2 5 1 2 3

3 5 1 35 3 4

3 5 16 3 3 4

71317 0.0029955 0.0021813 90 0

9.300961 0.0047026 0.0012547 0.0019085 25 0

9.300961 0.0047026 0.0012547 0.0019085 20 0

x x x x x

x x x x x x

x x x x x x

g x

g x

5 0 6 0 0 51.1230%

178 102,x 233 45,x and 3 4 527 , , 45x x x

G05

1 4 3 2 3 4

1 3 4 1

2 3 3 4 2

3 4 4 3

( ) 0.55 0,  ( ) 0.55 0
( ) 1000sin( 0.25) 1000sin( 0.25) 894.8 0
( ) 1000sin( 0.25) 1000sin( 0.25) 894.8 0
( ) 1000sin( 0.25) 1000sin( 0.25) 1294.8

g x x x g x x x
h x x x x
h x x x x x
h x x x x 0

4 2 0 0 3 0.0000%

10 1200,x 20 1200,x 30.55 0.55,x and 40.55 0.55x

G09

2 4 2
1 1 2 3 4 5

2
2 1 2 3 4 5

2 2
3 1 2 6 7

2 2 2
4 1 2 1 2 3 6 7

( ) 127 2 3 4 5 0

( ) 282 7 3 10 0

( ) 196 23 6 8 0

( ) 4 3 2 5 11 0

g x x x x x x

g x x x x x x

g x x x x x

g x x x x x x x x
7 0 4 0 0 0.5121%

1 2 710 , , , 10x x x

G18

2 2 2
1 3 4 2 9

2 2 2 2
3 5 6 4 1 2 9

2 2 2 2
5 1 5 2 6 6 1 7 2 8

2 2 2 2
7 3 5 4 6 8 3 7 4 8

9

( ) 1 0,  ( ) 1 0

( ) 1 0,  ( ) ( ) 1 0 

( ) ( ) ( ) 1 0,  ( ) ( ) ( ) 1 0

( ) ( ) ( ) 1 0,  ( ) ( ) ( ) 1 0

( )

g x x x g x x

g x x x g x x x x

g x x x x x g x x x x x

g x x x x x g x x x x x

g x 2 2
7 8 9 10 2 3 1 4

11 3 9 12 5 9 13 6 7 5 8

( ) 1 0,  ( ) 0
( ) 0,  ( ) 0,  ( ) 0

x x x g x x x x x
g x x x g x x x g x x x x x

9 0 13 0 0 0.0000%

1 2 810 , , , 10x x x and 90 20x

G21
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1
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3 4

5

35 35 0
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ln( 2 700) 0
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and NTMD. The convergence curve of the average MD value 
derived from ToPDE over 50 runs is presented in Fig. 10. In Fig. 
10, the iteration will terminate if the number of evaluations of 
the second fitness function (i.e., 2 )FF has reached 8,000. As 
shown in Fig. 10, ToPDE converges after about 3,000 
evaluations of the second fitness function.

The above experimental results reveal that ToPDE is more 
effective than NTMD for the uniform design of the new type of 
automotive crash box.

C. Five Benchmark Test Problems
In order to further verify the effectiveness of ToPDE on other 

uniform designs in constrained experimental domains, five
benchmark test problems (called G04, G05, G09, G18, and G21)
are selected from “the special session and competition on 
evolutionary constrained real parameter single-objective 
optimization” of the 2006 IEEE Congress on Evolutionary 
Computation (IEEE CEC2006) [50]. Note that the purpose of 
this paper is to study how to uniformly sample over the 
constrained experimental domain. Consequently, we only 
exploit the decision variables and constraints of these test
problems, and their objective functions are ignored. The 
decision variables and constraints of G04, G05, G09, G18, and 
G21 are summarized in Table IX. In Table IX, D is the number 
of decisions variables, LI is the number of linear inequality 
constraints, NI is the number of nonlinear inequality constraints, 
LE is the number of linear equality constraints, NE is the 
number of nonlinear equality constraints, and is the 
estimated feasibility ratio between the constrained experi-
mental domain and the decision space. The characteristics of 
these five test problems can be briefly summarized as follows:

G04, G09, and G18 only contain inequality constraints, 

and G05 and G21 include both equality and inequality 
constraints.
G04 has a moderate feasibility ratio (i.e., 51.1230%)
and G09 has a small feasibility ratio (i.e., 0.5121%). In 
particular, G05, G18, and G21 are highly constrained 
problems, the feasibility ratios of which are extermely 
small and approximate to zero 1.

With respect to these five test problems, 50 independent runs 
were implemented for ToPDE and NTMD. The parameter 
settings of ToPDE were the same as in Section V-B. For the 
performance criterion, the size of the test set was set to 50,000.

1 For a real-world industrial application, maybe an algorithm cannot find any 
feasible sample. There are two reasons: 1) there does not exist any region 
satisfying all constraints, and 2) the constrained experimental domain occupies 
a very small proportion of the decision space, such as G05, G18, and G21. To 
the best of our knowledge, there is no ready answer for the first scenario. 
However, for the second scenario, a commonly used method is to relax an 
equality constraint to a certain degree as in Equation (6). Note that, usually 
inequality constraints are not relaxed. In Equation (6), is a very small 
positive number and set to 0.0001 in this paper. This manner slightly enlarges
the constrained experimental domain and enables an algorithm to enter the 
constrained experimental domain more easily. In addition, the power of an 
optimization algorithm also plays a crucial role in searching for the feasible 
samples in the second scenario.

TABLE XII
THE EXPERIMENTAL RESULTS OF TOPDE OVER 50 RUNS ON G09

MD MD MD MD MD
1 0.4013 11 0.3999 21 0.3924 31 0.4070 41 0.3919
2 0.4094 12 0.4174 22 0.3950 32 0.4072 42 0.3802
3 0.3987 13 0.3921 23 0.3874 33 0.3978 43 0.4165
4 0.4309 14 0.4129 24 0.3892 34 0.3836 44 0.3862
5 0.4060 15 0.3931 25 0.3996 35 0.4179 45 0.4112
6 0.3879 16 0.3982 26 0.3941 36 0.4091 46 0.4099
7 0.3911 17 0.3997 27 0.4015 37 0.3988 47 0.4094
8 0.3810 18 0.4126 28 0.4092 38 0.3925 48 0.3946
9 0.3883 19 0.3951 29 0.4056 39 0.4145 49 0.4167

10 0.4167 20 0.4090 30 0.3838 40 0.3893 50 0.4263
Mean Value±Std Dev: 0.4012±0.0120

TABLE XIII
THE EXPERIMENTAL RESULTS OF NTMD OVER 50 RUNS ON G09

MD MD MD MD MD
1 0.7430 11 0.8474 21 0.6789 31 0.7315 41 0.6740
2 0.7603 12 0.7721 22 0.7153 32 0.6705 42 0.6751
3 0.7075 13 0.6615 23 0.6965 33 0.7353 43 0.6962
4 0.6724 14 0.7408 24 0.7399 34 0.8025 44 0.7036
5 0.7249 15 0.7770 25 0.7391 35 0.8350 45 0.8246
6 0.7648 16 0.7530 26 0.7420 36 0.6949 46 0.7602
7 0.7291 17 0.7873 27 0.7101 37 0.7721 47 0.7218
8 0.7618 18 0.7574 28 0.7785 38 0.7114 48 0.6862
9 0.8189 19 0.7138 29 0.7247 39 0.7685 49 0.6804

10 0.6844 20 0.7745 30 0.6789 40 0.7221 50 0.7667
Mean Value±Std Dev: 0.7382±0.0460

TABLE XIV
THE AVERAGE AND STANDARD DEVIATION OF THE MD VALUES

(DENOTED AS “MEAN VALUE” AND “STD DEV”) OBTAINED BY TOPDE
AND NTMD OVER 50 RUNS ON G05, G18, AND G21

Problem Method Mean Value±Std Dev

G05 ToPDE 0.1869±0.0648
NTMD NA

G18 ToPDE 0.0679±0.0062
NTMD NA

G21 ToPDE 0.1223±0.0880
NTMD NA

TABLE X
THE EXPERIMENTAL RESULTS OF TOPDE OVER 50 RUNS ON G04

MD MD MD MD MD
1 0.4813 11 0.4762 21 0.4703 31 0.4405 41 0.4789
2 0.4455 12 0.4750 22 0.4375 32 0.4866 42 0.4281
3 0.4310 13 0.4427 23 0.4722 33 0.4465 43 0.4565
4 0.4454 14 0.4886 24 0.4575 34 0.4449 44 0.4466
5 0.4406 15 0.4275 25 0.4644 35 0.4414 45 0.4605
6 0.4369 16 0.4647 26 0.4782 36 0.4353 46 0.4606
7 0.4643 17 0.4681 27 0.4265 37 0.4784 47 0.4989
8 0.4331 18 0.4421 28 0.4950 38 0.4459 48 0.4571
9 0.4246 19 0.4533 29 0.4528 39 0.4502 49 0.4432
10 0.4465 20 0.4435 30 0.4435 40 0.4310 50 0.4536
Mean Value±Std Dev: 0.4543±0.0190

TABLE XI
THE EXPERIMENTAL RESULTS OF NTMD OVER 50 RUNS ON G04

MD MD MD MD MD
1 0.6700 11 0.7938 21 0.6690 31 0.6896 41 0.6230
2 0.7092 12 0.8518 22 0.6377 32 0.5905 42 0.5777
3 0.7112 13 0.6836 23 1.0035 33 0.7344 43 0.6838
4 0.6903 14 0.7976 24 0.5653 34 0.8134 44 0.6965
5 0.6882 15 0.5988 25 0.8874 35 0.8488 45 0.8155
6 0.8097 16 0.7760 26 0.6888 36 0.6566 46 0.8581
7 0.7851 17 0.6961 27 0.6135 37 0.6842 47 0.5957
8 0.7876 18 0.8370 28 0.6958 38 0.5849 48 0.9569
9 0.6526 19 0.7081 29 0.5899 39 0.7531 49 0.6053
10 0.8274 20 1.1475 30 0.6761 40 0.6874 50 0.8443
Mean Value±Std Dev: 0.7310±0.1177



IEEE Transactions on Evolutionary Computation 11

Tables X and XI summarize the experimental results of ToPDE
and NTMD on G04, and Tables XII and XIII summarize the 
experimental results of ToPDE and NTMD on G09. In addition, 
the box plots for the performance comparison between ToPDE
and NTMD on G04 and G09 are given in Fig. 9(b) and Fig. 9(c), 
respectively.

Regarding G04, the mean MD values provided by ToPDE
and NTMD are 0.4543 and 0.7310, respectively, which means
that ToPDE is on average 37.85% better than NTMD. Fig. 9(b)
describes the distribution of the MD values over 50
independent runs. It is obvious from Fig. 9(b) that the worst 
MD value derived from ToPDE is even better than the best 
MD value provided by NTMD.

For G09, the mean MD values of ToPDE and NTMD are 
0.4012 and 0.7382, respectively, which signifies that ToPDE
achieves 45.65% performance improvement. It can be observed
again from Fig. 9(c) that the worst MD value of ToPDE is even 
better than the best MD value of NTMD.

In terms of G05, G18, and G21, the average and standard 
deviation of the MD values obtained by ToPDE and NTMD
over 50 runs are presented in Table XIV. According to our 
observation, NTMD cannot find any feasible solution even 
after running one week. Therefore, in Table XIV, “NA” denotes
the experimental results of NTMD are not available. The reason 
why NTMD cannot find any feasible solution on G05, G18, and 
G21 can be explained as follows. NTMD is very suitable for
dealing with one linear equality constraint. However, G05, G18, 
and G21 do not involve any linear equality constraint. Under 
this condition, NTMD is equivalent to a traditional uniform 
design method as pointed out in Section I. Note that when 
handling other constraints, a traditional uniform design method 
generates a large number of samples and retains only those 

samples satisfying all constraints. Therefore, it is essentially a 
brute-force method. Due to the fact that the feasibility ratios of 
G05, G18, and G21 are extremely small, it is not difficult to 
understand that NTMD fails to find any feasible solution. As 
shown in Table XIV, ToPDE achieves quite good performance 
since the mean MD values are consistently less than 0.2.

The convergence curves of the average MD value derived 
from ToPDE over 50 runs on these five test problems are given 
in Fig. 10. From Fig. 10, it is interesting to see that ToPDE
exhibits very fast convergence speed. In particular, for G05 and 
G18, the performance of ToPDE is nearly stable at the 
beginning of the second phase.

The above experimental results demonstrate that ToPDE is 
also an effective method for other uniform designs in 
constrained experimental domains, and that ToPDE is not 
dependent on the type and number of constraints. In the case of
moderate and small constrained experimental domains (such as 
G04 and G09), the performance of ToPDE is significantly 
better than that of NTMD. Moreover, it seems that NTMD is 
not capable of coping with the uniform designs in the highly 
constrained experimental domains without any linear equality 
constraint (such as G05, G18, and G21).

Remark 2: As pointed out by Borkowski and Piepel [33], for 
the high-dimensional constrained experimental domain, 
distance-based methods such as [11], [51], and [52] tend to 
move samples on or near the boundary, and the interior region 
is thus not effectively covered. Our proposed ToPDE is also a 
distance-based method. However, it still works well on the 
high-dimensional constrained experimental domain. The above 
phenomenon can be illustrated as follows. Firstly, the methods 
in [11], [51], and [52] maximize the minimum distance between 
two samples. It is a local manner to improve the uniformity. 

(a)                                                                      (b)                                                                        (c)
Fig. 11. The distributions in the x1-x4 space on G04. (a) The distribution of the test set containing 50,000 points. (b) The distribution of the final population of ToPDE 
in a typical run. (c) The distribution of the final population of NTMD in a typical run.

(a)                                                                       (b)                                                                        (c)
Fig. 12. The distributions in the x3-x4 space on G04. (a) The distribution of the test set containing 50,000 points. (b) The distribution of the final population of ToPDE 
in a typical run. (c) The distribution of the final population of NTMD in a typical run.
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Note that although the performance of these two samples can be 
improved, the overall uniformity may deteriorate. In contrast, 
ToPDE maximizes the minimum distance of the entire 
population in a global manner, which pushes the entire 
population as far apart as possible. Secondly, the methods in 
[11], [51], and [52] produce new samples by local search 
algorithms. As a result, their capability to explore the 
previously uncovered areas is limited in the high-dimensional 
constrained experimental domain. On the contrary, ToPDE 
designs a population-based global search algorithm, which is 
much more powerful, to produce samples in some promising 
areas of the high-dimensional constrained experimental
domain.

VI. DISCUSSION

In this section, we investigate the advantage of ToPDE over 
NTMD, the scalability to the sample size, the effect of the 
disconnected constrained experimental domain, and the 
effectiveness of the mutation operator of ToPDE.

A. The Advantage of ToPDE over NTMD
The experimental results in Sections V-B and V-C have 

corroborated the superior performance of ToPDE. In this 
subsection, the advantage of ToPDE over NTMD is further 
analyzed by taking G04 as an example. Figs. 11 and 12 show 
the distributions in the 1 4x x space and in the 3 4x x space
produced by the test set, the final population of ToPDE in a 
typical run, and the final population of NTMD in a typical run, 

respectively. In this paper, a typical run means the run in which 
the MD value ranks 26th (from worst to best) among 50 runs.

As mentioned previously, the general purpose of uniformly
sampling over the constrained experimental domain is to 
provide adequate support for developing the surrogate model. 
Therefore, it is very important to include the samples on the
boundary as well as in the interior of the constrained 
experimental domain [13], [33]. As shown in Fig. 11, NTMD
pays less attention to the boundary of the constrained 
experimental domain and is very likely to miss some parts of 
the constrained experimental domain in the 1 4x x space. In 
contrast, ToPDE has the advantage of being able to not only 
place a number of samples exactly on the boundary of the 
constrained experimental domain, but also cover the interior of 
the constrained experimental domain with a lot of samples.

Fig. 12 suggests that ToPDE still maintains good space-
filling performance in the 3 4x x space. However, the samples 
resulting from NTMD are nearly located on a line segment. It is 
because the nonlinear interaction between 3x and 4x cannot be 
identified by NTMD.

B. The Scalability to the Sample Size
Prior to establishing the surrogate model, a lot of 

computational resources and costs must be spent evaluating the 
performance of the obtained samples by physical examples/
simulations. For example, for establishing the surrogate model 
of a new type of automotive crash box, crashworthiness criteria
such as energy absorption and peak force should be evaluated. 

TABLE XV
EXPERIMENTAL RESULTS OF TOPDE AND NTMD OVER 50 RUNS FOR THE NEW TYPE OF AUTOMOTIVE CRASH BOX, G04, AND G09 WITH VARYING SAMPLE SIZES.

“MEAN VALUE” AND “STD DEV” INDICATE THE AVERAGE AND STANDARD DEVIATION OF THE MD VALUE, RESPECTIVELY. PERCENTAGES IN PARENTHESES 
DENOTE THE IMPROVEMENT RATES.

Problem Method

Sample Size
50

Mean Value±Std Dev
(Improvement Rate)

100
Mean Value±Std Dev
(Improvement Rate)

200
Mean Value±Std Dev
(Improvement Rate)

300
Mean Value±Std Dev
(Improvement Rate)

Crash box
ToPDE 0.6890±0.0447 0.5856±0.0290 0.5144±0.0301 0.4793±0.0279
NTMD 0.8002±0.0477 0.7149±0.0339 0.6457±0.0297 0.6067±0.0273

(13.90%) (18.09%) (20.33%) (21.00%)

G04
ToPDE 0.5520±0.0237 0.4543±0.0190 0.3782±0.0106 0.3449±0.0106
NTMD 0.7380±0.0753 0.7310±0.1177 0.6752±0.1049 0.6312±0.1148

(25.20%) (37.85%) (43.99%) (45.36%)

G09
ToPDE 0.4604±0.0210 0.4012±0.0120 0.3512±0.0150 0.3260±0.0094
NTMD 1.5780±0.1270 0.7382±0.0460 0.6665±0.0621 0.6201±0.0527

(70.82%) (45.65%) (47.31%) (47.43%)

  
(a)                                                                           (b)                                                                              (c)

Fig. 13. The average and standard deviation of the MD values derived from ToPDE and NTMD with four different sample sizes, i.e., 50, 100, 200, and 300. (a) 
The new type of automotive crash box. (b) G04. (c) G09.
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Note that this process is computationally expensive; therefore,
a moderate sample size is usually recommended (e.g., 100).

However, from the viewpoint of algorithm design, one may 
still be interested in the scalability of ToPDE and NTMD to the 
sample size. To this end, we tested four different sample sizes: 
50, 100, 200, and 300. The average and standard deviation of 
the MD values resulting from ToPDE and NTMD are given in 
Table XV and Fig. 13 presents the visualized comparison. 
Since NTMD fails to find any feasible solution for G05, G18, 
and G21, only the experimental result of the new type of 
automotive crash box, G04, and G09 are summarized in Table 
XV. It is noteworthy that Table XV also reports the 
improvement rate achieved by ToPDE against NTMD.

The first observation from Table XV is that the mean value
of ToPDE and NTMD gradually decreases with the increase of 
the sample size. In addition, in terms of the improvement rate, 
ToPDE has the increasing advantage over NTMD with the 
increase of the sample size on the three problems, except that 
for G09 ToPDE achieves the highest improvement rate when 
the sample size is equal to 50.

The above comparison verifies that ToPDE consistently 
outperforms NTMD regardless of the sample size.

C. The Effect of the Disconnected Constrained Experimental 
Domain

In the previous experiments, the constrained experimental 
domain was connected. A question which arises naturally is 
whether ToPDE is also applicable to a uniform design in a
disconnected constrained experimental domain, which is 
composed of several disjointed areas. To ascertain the effect of 
the disconnected constrained experimental domain on the 
performance of ToPDE, we devised the following test problem:

2 2
1 2

2 2
1 2

2 2
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2 2
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                         (12)

Based on this test problem, we also designed three scenarios, 
denoted as S1-S3. S1, S2, and S3 contain the first two
constraints, the first three constraints, and all the constraints, 
respectively. Therefore, their constrained experimental 
domains respectively consist of two, three, and four disjointed
areas, each of which is a circle. In S1-S3, if a sample lies within 
one of the disjointed areas, then it is feasible.

When dealing with the above three scenarios, the parameter 
settings of ToPDE were kept untouched and the purpose is to
obtain 100 uniform samples in each scenario. The experimental 
results of a typical run provided by ToPDE are given in Fig. 14.
As shown in Fig. 14, ToPDE achieves quite promising perfor-
mance in that a good distribution can be maintained in each 
disjointed area of each scenario. Moreover, based on our 
observation, each disjointed area nearly has the same number of 
samples in each scenario, which implies that ToPDE is also 
able to maintain a good overall distribution over all the 
disjointed areas. The excellent performance of ToPDE can be 
attributed to the fact that the first phase of ToPDE guides the 
population toward the disconnected constrained experimental 
domain from different directions and effectively keeps the 
diversity of the population, and that the second phase of ToPDE 
facilitates the uniform distribution of samples in each disjointed 
area.

D. The Effectiveness of DE/current-to-rand/1 Mutation
Operator

In this paper, DE/current-to-rand/1 is adopted as the 
mutation operator in DE. To study how the performance of 
ToPDE is affected by the mutation operator, we implemented a 
variant of ToPDE called ToPDE_1, in which DE/current-
to-rand/1 in equation (3) is replaced by DE/rand/1 in equation 
(2). The experimental results of ToPDE and ToPDE_1 are
presented in Table XVI for the new type of automotive crash 

‘
(a)                                                                    (b)                                                                     (c)

Fig. 14. The experimental results of ToPDE on three scenarios (denoted as S1-S3) with the disconnected constrained experimental domain defined by equation (12)
in a typical run. (a) S1 with two disjointed areas. (b) S2 with three disjointed areas. (c) S3 with four disjointed areas.
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TABLE XVI
EXPERIMENTAL RESULTS OF TOPDE AND TOPDE_1 OVER 50 RUNS.

“MEAN VALUE” AND “STD DEV” INDICATE THE AVERAGE AND STANDARD 
DEVIATION OF THE MD VALUE, RESPECTIVELY. WILCOXON’S RANK SUM 
TEST AT A 0.05 SIGNIFICANCE LEVEL IS PERFORMED BETWEEN TOPDE AND 

TOPDE_1.

Problem Method Mean Value±Std Dev

Crash box ToPDE 0.5856±0.0290+
ToPDE_1 0.6352±0.0813

G04 ToPDE 0.4543±0.0190
ToPDE_1 0.4588±0.0177

G05 ToPDE 0.1869±0.0648+
ToPDE_1 0.3140±0.1026

G09 ToPDE 0.4012±0.0120
ToPDE_1 0.4004±0.0131

G18 ToPDE 0.0679±0.0062
ToPDE_1 0.0721±0.0066

G21 ToPDE 0.1223±0.0880
ToPDE_1 NA

“+” and “ ” denote that the performance of ToPDE is better than and 
similar to that of ToPDE_1, respectively
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box, G04, G05, G09, G18, and G21, in which “NA” denotes the 
experimental results are not available due to the fact that 
ToPDE_1 cannot enter the second phase on G21.

Table XVI indicates that ToPDE performs statistically better 
than ToPDE_1 on two problems (i.e., the new type of 
automotive crash box and G05), and performs similar with 
ToPDE_1 on three problems (i.e., G04, G09, and G18). 
However, ToPDE_1 cannot surpass ToPDE even on one 
problem. More importantly, ToPDE_1 cannot succeed in 
satisfying the stopping criterion of the first phase on G21. The 
performance superiority of ToPDE can be explained as follows.

For DE/rand/1, three individuals are randomly selected 
from the population for mutation and, consequently, the 
probability that the offspring is better than the parent is 
low. Thus, for certain problems (such as G21), based on 
our observation some subpopulations cannot contain a
predefined number of the feasible solutions in the end. 
In addition, for certain problems (such as the new type 
of automotive crash box and G05), even though the 
population can enter the second phase, the replacement 
cannot occur frequently due to the randomness of DE/
rand/1, which results in the poor performance.
In contrast, DE/current-to-rand/1 generates the off-
spring around the current individual. As a result, if the 
population contains some feasible solutions, then 
ToPDE is very likely to produce the feasible offspring, 
thus enhancing search efficiency.

The above discussion suggests that DE/current-to-rand/1 is a
more reasonable choice for uniform designs in constrained
experimental domains.

Remark 3: In this paper, ToPDE is a framework for uniform 
designs in constrained experimental domains and DE is its
search engine. The function of DE is to generate offspring. The 
main reason why we chose DE is twofold: 1) the imple-
mentation of DE is very simple, and 2) DE provides various 
mutation operators and we can choose one of them with the 
most potential to match the characteristics of an optimization
problem. Up to now, apart from DE, a considerable number of 
evolutionary algorithm paradigms have been presented, such as 
genetic algorithm, evolution strategy, evolutionary program-
ming, particle swarm optimization, artificial bee colony 
algorithm, and so on. In principle, any evolutionary algorithm
paradigm can be incorporated into our framework by replacing 
DE. It is noteworthy that some evolutionary algorithm
paradigms (e.g., particle swarm optimization) make use of the 
information of the personal best of an individual and/or the 
entire population’s best. In our framework, equation (7) can be 
utilized to identify the personal best of an individual and the 
entire population’s best in the first phase, and equation (8) can 
serve a similar purpose in the second phase. In addition, 
according to the discussion in Section VI-D, generating 
offspring around the current individuals could also be 
beneficial to the performance when using other evolutionary 
algorithm paradigms.

VII. CONCLUSION

In this paper, a two-phase differential evolution (ToPDE) has 
been proposed for uniform designs in constrained experimental 

domains. The main task of the first phase is to obtain a 
predefined number of samples in the constrained experimental 
domain. For this purpose, a clustering DE has been presented
which divides the population into several subpopulations and 
guides the subpopulations toward the constrained experimental
domain from different directions quickly. In addition, the 
second phase aims at uniformly distributing the feasible 
samples obtained in the first phase. To accomplish this, a new 
replacement strategy has been introduced. It is noteworthy that 
we have also designed two fitness functions for these two 
phases, respectively. Many experiments have been imple-
mented in this paper. Firstly, we studied the principle of ToPDE
by a simple two-dimensional example. Afterward, ToPDE was
applied to the uniform designs of a new type of automotive 
crash box and five benchmark test problems. The performance 
of ToPDE was compared with that of NTMD, a state-of-the-art 
method. The experimental results verify the effectiveness of 
ToPDE.

In this paper, the distance between any two samples in the 
population is measured by the Euclidean distance. However, 
the distance indicator depends largely on the type of a uniform 
design in a constrained experimental domain. Fig. 15 gives an 
example. In this example, suppose that the geodesic distance is
more appropriate than the Euclidean distance. Under this 
condition, the Euclidean distance will severely underestimate 
the actual distance between two samples A and B. In the future, 
we will investigate other types of distance indicator in the real-
world applications. Moreover, ToPDE will be applied to more
uniform designs in constrained experimental domains of other 
fields.

The Matlab source code of ToPDE can be downloaded from 
Y. Wang’s homepage: http://ist.csu.edu.cn/YongWang.htm
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Appendix: The implementation of NTMD [33] for uniform 
designs in the constrained experimental domains defined by 
one linear equality constraint and several inequality constraints

It is necessary to point out that in [33] NTMD has two 
variants. One is the one-pass exchange algorithm and the other 
is the power-modulo-a-prime algorithm. In this paper, the 
one-pass exchange algorithm is employed. Moreover, we also 
make a simple improvement on the setting of *,N which 
gradually increases during the iteration. It is because for a 
highly constrained problem, NTMD cannot find any feasible 
solution with small and moderate values of *.N In NTMD, the 
linear equality constraint is formulated as follows:

1 1,  D
i i i ii x A x B                             (13)

where iA and iB are the lower and upper bounds of ,ix

respectively, and 0 1.i iA B
NTMD includes the following steps:
Step 1: Given a positive integer *,N let 1 2 1( , , , )Dh h h h

be a vector satisfying the following conditions: 1) 1 2h h
*

1 ,Dh N and 2) *{1,2, , 1},  gcd( , ) 1,jj D N h where 
*gcd( , )jN h denotes the greatest common divisor of *N and 

.jh The second condition means that jh is relatively prime *.N

Step 2: *
, mod( , ),  i j jc i h N *1,2, , ,  i N 1,2, , 1,j D

where *mod( , )ji h N denotes the remainder after dividing 

ji h by *.N If , 0,i jc then reset it to *.N The matrix 

consisting of ,i jc is called an * ( 1)N D lattice-point matrix 
of integers.

Step 3: *
, ,(2 1) / 2 ,  i j i jd c N *1,2, , ,  i N 1,2, , 1.j D

Clearly, ,0 1i jd and ,1 ,2 , 1( , , , )i i i i Dd d d d is a point in the 
(D-1)-dimensional unit hypercube.

Step 4: Let ,1 ,2 , 1(0, , , , )i i i i Dd d d d *( 1,2, , ).i N For each

,id the following equations are calculated:
1D                                           (14)

, , 1 ,1 ( ),  2,3, ,k i k i k i Dd d d k D              (15)

1 2 1max( ,1 )k k
k

k k

A B B Be                   (16)

1 2 1max( ,1 )k k
k

k k

B A A A                   (17)

, ,

1 1 1/( 1)
, ,

( , , , , 1)

      = {1 [ (1 ) (1 )(1 ) ] }
i k i k k k k

k k k
k i k k i k k

x G d e k

d d e
       (18)

,1 ,2 ,3 ,1 ( )i i i i Dx x x x                        (19)

After the above process, id is transformed into ix which can 
satisfy the linear equality constraint.

Step 5: Store *( 1,2, , )ix i N into a predefined set if ix
satisfies all inequality constraints. If the number of points in the 
set is larger than or equal to ,NP i.e., a predefined number of 
the sample size, then stop; otherwise add the value of *N and go
to Step 1.
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