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Abstract—This paper proposes a robust image-sequence-based
framework to deal with two challenges of visual place recognition
in changing environments: viewpoint variations and environmen-
tal condition variations. Our framework includes two main parts.
The first part is to calculate the distance between two images from
a reference image sequence and a query image sequence. In this
part, we remove the deep features of non-overlap contents in these
two images and utilize the remaining deep features to calculate
the distance. As the deep features of non-overlap contents are
caused by viewpoint variations, removing these deep features can
improve the robustness to viewpoint variations. Based on the first
part, in the second part, we first calculate the distances of all
pairs of images from a reference image sequence and a query
image sequence, and obtain a distance matrix. Afterward, we
design two convolutional operators to retrieve the distance sub-
matrix with the minimum diagonal distribution. The minimum
diagonal distribution contains more environmental information,
which is insensitive to environmental condition variations. The
experimental results suggest that our framework exhibits better
performance than several state-of-the-art methods. Moreover, the
analysis of runtime shows that our framework has the potential
to satisfy real-time demands.

Index Terms—Visual place recognition, changing environ-
ments, deep feature, image sequence, distance matrix retrieval

I. INTRODUCTION

Visual place recognition, which enables robots to recognize
previously visited places by vision [1], is a hot issue in the
robotics field. It can be considered as an image retrieval task,
meaning that the robot finds an image in a reference dataset
that is most similar to the query image of a given place.
This function is important for a robot’s autonomous naviga-
tion and location [1]–[3]. However, visual place recognition
suffers from the influences of changing environments due to
two factors: viewpoint variations and environmental condition
variations [1]. Viewpoint variations are caused by the shift
or rotation of a robot, which lead to non-overlap contents
in images from the same place. Environmental condition
variations include the changes of illumination, weathers, or
seasons, which change the appearances of images. These two
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variations reduce the similarity of images from the same place,
thus increasing the difficulty of image retrieval. Therefore, it is
necessary to deal with these two variations. For this purpose,
many attempts have been made.

Some researchers have extracted traditional features of
images for single image retrieval, such as SIFT [4], [5],
SURF [4]–[6], color histograms [6]–[9], and textures [7].
These traditional features are just robust to slight viewpoint
variations, and sensitive to environmental condition variations.
To solve this problem, other researchers have extracted deep
features of images based on convolutional neural networks
(CNNs) for single image retrieval because CNNs have shown
advantages in extracting desired deep features for a vari-
ety of visual tasks [10]–[13]. In this kind of research, the
place datasets, which include both viewpoint variations and
environmental condition variations, are needed to train CNN
models. Thus, CNN models can learn robust deep features for
these two variations [14], [15]. However, such robustness is
dependent on the diversity of the place datasets as well as
the structures of CNN models. To overcome this limitation,
several algorithms have been proposed to further handle the
deep features extracted by CNN models [16]–[19]. However,
the performance of these methods is still unsatisfactory when
facing extreme viewpoint variations and environmental condi-
tion variations. Since 2012, a few researchers have made use
of image sequence retrieval instead of single image retrieval
for visual place recognition. An image sequence contains
images from multiple adjacent places. Unlike single image
retrieval that calculates the distance between two images,
image sequence retrieval captures a distance distribution of two
image sequences. As this distance distribution is insensitive to
environmental condition variations, image sequence retrieval-
based methods are robust to extreme environmental condition
variations [20]–[26]. However, they cannot deal with extreme
viewpoint variations [23].

Based on these considerations, in this paper, a robust
image-sequence-based framework is proposed, with the aim
of minimizing the influences of viewpoint variations and
environmental condition variations. The proposed framework
includes two main parts. The first part is to calculate the
distance between two images from a reference image sequence
and a query image sequence. The second part is to retrieve
the reference image sub-sequence which comes from the same
places as the query image sequence. Based on these two parts,
the places of the query image sequence can be recognized.

The main contributions of this paper are summarized as
follows:

• In the first part, we first extract the deep features of two
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images from a reference image sequence and a query
image sequence using a CNN model. Then, a method
named ReNOF is designed to detect and remove the deep
features of non-overlap contents in these two images. Fi-
nally, the distance between these two images is calculated
based on the remaining deep features. Since the deep
features of non-overlap contents caused by viewpoint
variations are removed, the first part can improve the
robustness to extreme viewpoint variations.

• In the second part, the image sequence retrieval is trans-
formed into the distance matrix retrieval. Specifically, we
first calculate the distances of all pairs of images from a
reference image sequence and a query image sequence to
construct a distance matrix. Then, based on this distance
matrix, we design two convolutional operators—the sum
operator and the difference operator—to retrieve the dis-
tance sub-matrix with the minimum diagonal distribution.
This part can capture sufficient information about the
distance distribution between a reference image sub-
sequence and a query image sequence, which is insen-
sitive to environmental condition variations. Therefore,
this part can deal with extreme environmental condition
variations.

• In this paper, we use a humanoid robot NAO to collect
images during walking in real environments and build
a new dataset named CSU-NAO Dataset. This dataset
contains images from different places with both viewpoint
variations and environmental condition variations. To the
best of our knowledge, it is the first time that a humanoid
robot has been utilized for visual place recognition in
changing environments.

• A series of experiments shows that our framework out-
performs several state-of-the-art methods in dealing with
viewpoint variations and environmental condition varia-
tions. Moreover, additional experiments verify that our
framework can satisfy real-time demands.

The rest of this paper is organized as follows. Section II
introduces the related work. Section III gives the details
of our framework. Section IV describes the experimental
settings, including the datasets, evaluation, image features, and
parameter settings. The experimental results are presented in
Section V. Finally, Section VI concludes this paper.

II. RELATED WORK

At present, many methods for visual place recognition
in changing environments have been proposed, which can
be divided into two kinds: single-image-based methods and
image-sequence-based methods. Next, we briefly introduce
them.

A. Single-Image-Based Methods

According to the feature types, we classify the single-image-
based methods into two categories.

The first category uses traditional features for single image
retrieval [4]–[7], [9], [25], [27]–[29]. Cummins et al. [4]
proposed FAB-MAP, which is a representative in this category.
They converted images into bag-of-words representations and

calculated the distance between the word vectors of two im-
ages. The bag-of-words representations are built by traditional
features such as SIFT [30] or SURF [31], which are robust
to slight viewpoint variations. Ulrich and Nourbakhsh [7]
presented a new appearance-based place recognition system,
in which an image is retrieved based on image histogram
matching. Lowry and Andreasson [28] combined the His-
togram of Oriented Gradients (HOG) with an efficient and
lightweight image description mechanism to perform visual
place recognition.

In the second category, deep features are extracted by CNN
models for single image retrieval [14]–[16], [18], [19], [26],
[32]. Sünderhauf et al. [18] utilized deep features extracted
by the pre-trained AlexNet [33] as holistic image descriptors
and analyzed the robustness of deep features extracted by
different CNN layers for viewpoint variations and environ-
mental condition variations. This work provides a reference
for deep feature selection. Gomez-Ojeda et al. [14] modified
CaffeNet [34] to map an image to low-dimensional deep
features. The modified CaffeNet is trained with triplets of
images, in which two images are from the same place and
the third one is from a different place. Arandjelovic et al. [15]
built a novel CNN model by a new layer named NetVLAD
and trained the CNN model with a large-scale dataset based on
a weakly supervised ranking loss for deep feature extraction.
Qin et al. [26] divided images into patches and extracted deep
features of these patches based on the pre-trained AlexNet
to calculate the similarity between two images. Snderhauf et
al. [19] combined the pre-trained AlexNet with a landmark
proposal technique named Edge Boxes [35] to extract deep
features.

B. Image-Sequence-Based Methods

Since 2012, many image-sequence-based methods have
been presented [17], [20]–[25], [36], [37]. SeqSLAM [20]
is a typical example, which calculates the best candidate
matching place within each local reference image sequence.
Thus, the places of a query image sequence are achieved by
recognizing coherent sequences of these local best candidates.
SeqSLAM has shown a performance improvement over single-
image-based methods in dealing with extreme environmental
condition variations. Pepperell et al. [24] added a new image
matching technique named SMART to handle great perceptual
changes in viewpoint variations on the basis of SeqSLAM.
They also removed the sky region in an image to reduce
the influence of illumination variations. Milford et al. [25]
used state-of-the-art CNN models to generate a synthetic
viewpoint of a place, and combined the synthetic viewpoint
with the image sequence matching technology in SeqSLAM
to recognize places. Chen et al. [16] extracted deep features of
images by the pre-trained Overfeat network [38] to generate
a distance matrix between a reference image sequence and a
query image sequence. Then they used a spatial and sequential
filter to retrieve the most similar reference image sub-sequence
on the distance matrix. Naseer et al. [39] proposed a novel data
association approach for matching streams of query images to
an image sequence stored in a reference dataset. This method
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Fig. 1. Illustration of our framework.

exploits network flows to leverage sequential information,
with the aim of improving the performance of visual place
recognition.

III. PROPOSED FRAMEWORK

As introduced in Section I, there exist some weaknesses
in current single-image-based methods and image-sequence-
based methods for visual place recognition in changing envi-
ronments. Specifically, single-image-based methods fail when
facing extreme viewpoint variations or environmental condi-
tion variations. In addition, image-sequence-based methods
cannot deal with extreme viewpoint variations. Motivated
by these problems, we propose a robust image-sequence-
based framework for visual place recognition in changing
environments. Fig. 1 illustrates the proposed framework, which
contains two main parts: distance calculation between two
images and distance matrix retrieval. Next, we introduce these
two parts.

A. Distance Calculation Between Two Images

In this paper, the image sequence to be recognized is called
the query image sequence (denoted as Sq) and the image
sequence that marks places is called the reference image
sequence (denoted as Sr). This part is to calculate the distance
between two images Iq and Ir from Sq and Sr. We first extract
deep features of Iq and Ir, that is, Fq and Fr, by using a
pre-trained CNN model. Then, we propose a method named
ReNOF to detect and remove the deep features of non-overlap
contents in Iq and Ir. The process of ReNOF is given in Fig.
2, and each step is introduced below:

• Step 1: Find the center local deep features f qcenter and
f rcenter in Fq and Fr. The length and width of f qcenter

and f rcenter are one-third of the length and width of Fq
and Fr, respectively.

• Step 2: Take the location of f rcenter as a starting point and
slide f qcenter one step to four different positions (i.e., left,
right, top, and bottom) on Fr. By doing this, five local
deep features are overlapped in Fr—f rcenter, f rleft, f rright,
f rtop, and f rbottom.

• Step 3: Calculate the distance between f qcenter and the
five local deep features obtained in Step 2, respectively:

di = 1− cos〈f qcenter, f ri 〉,
i ∈ {center, left, right, top, bottom}

(1)

Then, the local deep features with the minimum distance
(denoted as f rv ) are obtained, in which

v = argmin(di),

i ∈ {center, left, right, top, bottom}
(2)

• Step 4: Overlay Fq and Fr by aligning the positions
of f qcenter and f rv to detect the non-overlap local deep
features which are regarded as the deep features of non-
overlap contents in Iq and Ir.

• Step 5: Remove these non-overlap local deep features and
obtain the remaining local deep features f qol and f rol .

The reasons why ReNOF can detect the deep features of
non-overlap contents are explained in the following. On the
one hand, the non-overlap contents between two images can
be detected by aligning the positions of overlap contents
between these two images. On the other hand, due to the
special structure of CNNs, the local deep features in a region
correspond to the local contents in the same region of an
image. For example, in Fig. 2, f qcenter corresponds to the center
contents of Iq . Based on these two points, the deep features of
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Fig. 2. Process of ReNOF.

non-overlap contents between two images can be detected by
aligning the deep features of overlap contents. In ReNOF, we
consider two local deep features with the minimum distance
(i.e., f qcenter and f rv ) as the deep features of overlap contents
between Iq and Ir, since the minimum distance suggests the
most similar image contents. By aligning f qcenter and f rv , the
deep features of non-overlap contents in Iq and Ir can be
detected and removed.

Finally, f qol and f rol are used to calculate the distance
between Iq and Ir:

d = 1− cos〈f qol , f rol 〉 (3)

qS

rS

D
min

0.0

1.0

r _min
S

D

Fig. 3. An example of D and Dmin. Dmin is the distance sub-matrix with
the minimum diagonal distribution.

Remark 1: In current methods, the deep features of two im-
ages are directly used to calculate the distance between them.
However, there may exist non-overlap contents between two
images coming from the same place due to extreme viewpoint
variations. Under this condition, the deep features extracted
by current methods may belong to the non-overlap contents
between these two images. Based on such deep features, the
calculated distance between these two images increases, thus
leading to the difficulty of visual place recognition in changing
environments. Different from current methods, ReNOF detects
and removes the deep features of non-overlap contents before
calculating the distance between these two images, which
makes our framework robust to extreme viewpoint variations.

B. Distance Matrix Retrieval

Suppose that Sq and Sr contain M and N images, respec-
tively: Sq = {I1q , I2q , . . . , IMq } and Sr = {I1r , I2r , . . . , INr }.
Based on the first part, we calculate the distances of all pairs
of images from Sr and Sq , and obtain distance matrix D:

D =


d1,1 d1,2 · · · d1,M
d2,1 d2,2 · · · d2,M
d3,1 d3,2 · · · d3,M

...
...

. . .
...

dN,1 dN,2 · · · dN,M

 (4)

where dn,m (n ∈ {1, 2, . . . , N} and m ∈ {1, 2, . . . ,M})
indicates the distance between the nth image in Sr and the
mth image in Sq . Let {Ikr , Ik+1

r , . . . , Ik+M−1
r } be the kth

reference image sub-sequence of Sr. The distance sub-matrix
corresponding to the kth reference image sub-sequence is
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D D̂

Fig. 4. Normalization of D obtained in Fig. 3.

called the kth distance sub-matrix, denoted as Dk. Obviously,
there are (N −M + 1) distance sub-matrixes.

In general, if each pair of images at the same position
in Sq and a reference image sub-sequence comes from the
same place, the corresponding distance sub-matrix has the
following two properties: (i) the values of the elements on the
main and adjacent diagonals in this distance sub-matrix are
smaller than the values of the elements at the same positions
in other distance sub-matrixes; and (ii) the values of the
elements on the main and adjacent diagonals in this distance
sub-matrix are smaller than the values of other elements
in the same distance sub-matrix. In this paper, the element
distribution that satisfies these two properties is considered
as the minimum diagonal distribution, and the distance sub-
matrix with the minimum diagonal distribution is denoted
as Dmin. If Dmin can be found, then the reference image
sub-sequence matched to Sq is retrieved, denoted as Sr min.
Therefore, we transform the image sequence retrieval into
the distance matrix retrieval. Fig. 3 gives an example of this
process. In Fig. 3, Sr min and Sq come from the same places;
therefore, the corresponding distance sub-matrix satisfies the
minimum diagonal distribution.

Next, we attempt to retrieve Dmin from D, which includes
two steps. In the first step, a normalization method is proposed
to increase the difference of the values of all elements in
D, which can highlight the minimum diagonal distribution.
In the second step, two convolutional operators are designed,
the sum operator Osum and the difference operator Odif , to
calculate the degree to which a distance sub-matrix satisfies
the minimum diagonal distribution.

The proposed normalization method selects the lth largest
element from each column in D. If the value of an element
in a column is smaller than that of the lth largest element
in this column, then this element is normalized based on
min-max normalization; otherwise, the value of this element
is set to 1. Note that l is a hyper-parameter to control
the normalization range, which can reduce the influence of
abnormal elements with extremely large values in D. This
process can be described by Eq. (5) and Eq. (6):

dj min = min(dj), (5)
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d̂i,j =


di,j − dj min

dj lmax − dj min
, di,j < dj lmax

1, otherwise
, (6)

where dj is the jth column of D, di,j is the ith element of
dj , dj min is the minimum element of dj , dj lmax is the lth
largest element of dj , and d̂i,j is the normalized element. After
normalizing all elements in D, the normalized distance matrix
(denoted as D̂) is obtained. Fig. 4 shows the normalization of
D obtained in Fig. 3. As can be seen, the difference of the
values of all elements in D̂ is significantly highlighted, which
can effectively improve the retrieval performance.

We design sum operator Osum with the size of M ×M ,
which is convoluted with a normalized distance sub-matrix to
calculate the sum of elements on the main and adjacent diag-
onals in this normalized distance sub-matrix. The calculated
sum indicates the degree to which a normalized distance sub-
matrix satisfies the first property of the minimum diagonal
distribution. The smaller the calculated sum, the higher the
degree. Fig. 5 shows the structure of Osum. As shown in Fig.
5, the values of elements on the main and adjacent diagonals
are set to 1, while the values of the remaining elements are
set to 0. In this paper, the number of the selected adjacent
diagonals is zsum.

In addition, we design another convolution operator Odif
with the size of M×M , which is convoluted with a normalized
distance sub-matrix to calculate the difference between the
elements on the main and adjacent diagonals and the elements
in other positions in this normalized distance sub-matrix.
The calculated difference indicates the degree to which a
normalized distance sub-matrix satisfies the second property of
the minimum diagonal distribution. The smaller the calculated
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difference, the higher the degree. Fig. 6 shows the structure of
Odif . As shown in Fig. 6, the values of elements on the main
diagonal and the adjacent diagonals are set to 1, while the
values of the remaining elements are set to -1. In this paper,
the number of the selected adjacent diagonals is zdif .

Afterward, we use Osum and Odif to implement the sliding
convolution on D̂ to obtain two convolution results of each
normalized distance sub-matrix. Then, we take a weighted sum
of these two convolution results to indicate the degree to which
each normalized distance sub-matrix satisfies the minimum
diagonal distribution:

Ck = θ1D̂k ⊗ Osum + θ2D̂k ⊗ Odif ,
= D̂k ⊗ (θ1Osum + θ2Odif ),

k ∈ {1, 2, . . . , N −M + 1}
(7)

where θ1 ∈ [0, 1] and θ2 ∈ [0, 1] are two weights, and D̂k is
the normalized Dk. Let Oconv = θ1Osum + θ2Odif , then Eq.
(7) can be simplified as:

Ck = D̂k ⊗ Oconv
k ∈ {1, 2, . . . , N −M + 1}

(8)

Fig. 7 gives an example of sliding convolution of Oconv on D̂.
Based on the previous analysis, the smaller the value of Ck,
the higher the degree that D̂k satisfies the minimum diagonal
distribution. Therefore, we find the normalized distance sub-
matrix with the smallest weighted sum, denoted as D̂w, where

w = argmin(Ck), k ∈ {1, 2, . . . , N −M + 1} (9)

(a) Garden-Day-Left

(b) Garden-Day-Right

(c) Garden-Night-Right

Fig. 8. Image samples in Garden Point Dataset.

Subsequently, a threshold T is set to determine whether
D̂w is the desired normalized distance sub-matrix with the
minimum diagonal distribution or not. If Cw < T , then we
consider that D̂w is the normalized distance sub-matrix with
the minimum diagonal distribution, and the corresponding ref-
erence image sub-sequence Sr w and Sq really come from the
same places. Under this condition, the visual place recognition
is successful. On the other hand, if Cw ≥ T , then there is no
reference image sub-sequence in Sr that comes from the same
places as Sq . It means that Sq comes from new places that the
robot has not visited. In this paper, T is swept over a range
of values to generate the precision-recall curves [1].

Remark 2: As mentioned previously, if a query image
sequence and a reference image sub-sequence come from the
same places, their corresponding distance sub-matrix satisfies
the two properties of the minimum diagonal distribution. The
minimum diagonal distribution contains adequate environmen-
tal information, which is insensitive to extreme environmental
condition variations. Current image-sequence-based methods
only utilize the first property to retrieve the reference image
sub-sequence. Different from these methods, our framework
uses both properties to retrieve the reference image sub-
sequence, which is more robust to extreme environmental
condition variations.

IV. EXPERIMENTAL SETTINGS

A. Datasets

We used four datasets to validate the effectiveness of
our framework, including three public datasets (i.e., Garden
Point Dataset [40], North Campus Dataset [41], and Nordland
Dataset [23]) and a new dataset named CSU-NAO Dataset.
These four datasets were built using collection tools which
collect images by using cameras when moving in specific
environments. In these four datasets, viewpoint variations were
caused by shift or rotation of the collection tools. In addition,
environmental condition variations included the changes of
illumination, seasons, or moving objects.

Figs. 8-10 show image samples in the three public datasets.
In Garden Point Dataset, there were three image sequences,
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(a) North-Summer-Left

(b) North-Autumn-Right

Fig. 9. Image samples in North Campus Dataset.

(a) Nordland-Spring

(b) Nordland-Winter

Fig. 10. Image samples in Nordland Dataset.

i.e., Garden-Day-Left, Garden-Day-Right, and Garden-Night-
Right (Fig. 8). Garden-Day-Left and Garden-Day-Right were
collected on the left and right sides of a path during the
day, respectively, and Garden-Night-Right was collected on
the right side of the same path at night. Each image sequence
contained 200 images. North Campus Dataset had 27 image
sequences collected on a path over 15 months. We selected
two image sequences in Summer and Autumn: North-Summer-
left and North-Autumn-right (Fig. 9). Each image sequence
contained 500 images. Nordland Dataset had four image
sequences collected in four seasons. Unlike two other datasets,
Nordland Dataset recorded images by a camera fixed on a
train. Since there was almost no shift or rotation of the
fixed camera, this dataset had no viewpoint variation. We
selected two image sequences in Spring and Winter: Nordland-
Spring and Nordland-Winter (Fig. 10). Each image sequence
contained 3600 images. More properties of these three datasets
are shown in Table I. Apart from these three public datasets,
we also used a humanoid robot NAO to collect a new dataset
named CSU-NAO Dataset. We let NAO walk on two paths at
the Central South University, Changsha, China, and collected
images at a fixed distance interval (i.e., 5m) on the left and
right sides of each path. Therefore, we obtained four image
sequences: CSU-I-Day-Left, CSU-I-Day-Right, CSU-II-Day-

(a) CSU-I-Day-Left

(b) CSU-I-Day-Right

(c) CSU-II-Day-Left

(d) CSU-II-Night-Right

Fig. 11. Image samples in CSU-NAO Databset.

Left, and CSU-II-Night-Right (Fig. 11). CSU-I-Day-Left and
CSU-I-Day-Right were collected on the left and right sides of
path I during the day, respectively. Both of these two image
sequences contained 111 images. CSU-II-Day-Left and CSU-
II-Night-Right were collected on the left side of path II during
the day and on the right side of path II at night, respectively.
Both of these image sequences contain 100 images. To the best
of our knowledge, this is the first time that a humanoid robot
was utilized to build the dataset for visual place recognition
in changing environments.

B. Evaluation

For each query image sequence, if the retrieved reference
image sub-sequence was sufficiently close to the correct ref-
erence image sub-sequence within a tolerance of one frame
for each dataset, it was considered as a true positive match.
For example, if the correct reference image sub-sequence is
the kth reference image sub-sequence, then the (k− 1)th, kth,
and (k + 1)th reference image sub-sequences are considered
as true positive matches to the query image sequence.

C. Image Features and Parameters

For extracting the deep features, a pre-trained CNN frame-
work Place205-Alexnet [42] was utilized. According to [18],
we took the features from the 5th pooling layer of Place205-
Alexnet as the deep features, the size of which is 6×6×256.
The size of the deep features of each layer in Place205-Alexnet
is shown in Table II. In addition, the parameter settings of our
framework are summarized in Table III.

V. EXPERIMENTAL RESULTS

In this section, we conducted extensive experiments to test
the performance of our framework for visual place recognition
in changing environments. The precision-recall (PR) curve was
adopted as the performance indicator.
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TABLE I
PROPERTIES OF THE THREE PUBLIC DATASETS

Property
Name Garden Point [40] North Campus [41] Nordland [23]

Environment Queensland University of Technology campus University of Michigan’s North Campus Train ride
Collection tool Human Segway robot Train
Total distance 380m 2.5km 72km

Number of image sequences 3 2 2
Number of images in each image sequence 200 500 3600

Distance between adjacent images 1.9m 5m 20m
Viewpoint variation Yes Yes No

Illumination variation Yes Yes Yes
Seasonal variation No Yes Yes

Moving objects Yes Yes No

TABLE II
THE SIZE OF THE DEEP FEATURES OF EACH LAYER IN

PLACE205-ALEXNET

Layer name conv1 pool1 conv2
Size of features 55 × 55 × 96 27 × 27 × 96 27 × 27 × 256

Layer name pool2 conv3 conv4
Size of features 13 × 13 × 256 13 × 13 × 384 13 × 13 × 384

Layer name conv5 pool5 fc6
Size of features 13 × 13 × 256 6 × 6 × 256 4096

Layer name fc7 fc8
Size of features 4096 205

TABLE III
PARAMETER SETTINGS

Parameter Value Description
M 10 the number of images in Sq

l 0.2×N the hyper-parameter in the normalization of D
zsum 2 the number of adjacent diagonals in Osum

zdif 3 the number of adjacent diagonals in Odif

θ1 0.3 the weight of Osum

θ2 0.7 the weight of Odif

A. Comparison with State-of-the-Art Methods

We compared our framework with five state-of-the-art meth-
ods on all datasets. These methods included two single-image-
based methods (i.e., FAB-MAP [4] and VLAD-based Sys-
tem(16384bits) [28]) and three image-sequence-based meth-
ods (i.e., SeqSLAM [20], SMART [24], and Sequence-
based+CNN [16]). Note that the deep features in Sequence-
based+CNN were also taken from the 5th pooling layer of
Place205-Alexnet [42].

In order to fully validate the performance of our framework
in dealing with viewpoint variations and environmental condi-
tion variations, we divided comparison experiments into three
groups: 1) visual place recognition with viewpoint variations;
2) visual place recognition with environmental condition vari-
ations; and 3) visual place recognition with both viewpoint
variations and environmental condition variations. For each
group, we used image sequence pairs with the corresponding
variations in the datasets to complete comparison experiments.
Specifically, in Garden Point Dataset, there are viewpoint
variations between Garden-Day-Left and Garden-Day-Right,
so they were used in the first group. There are environmental
condition variations between Garden-Day-Right and Garden-
Night-Right, so they were used in the second group. There
are both variations between Garden-Day-Left and Garden-
Night-Right, so they were used in the third group. In North
Campus Dataset, there are both variations between North-
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(b) CSU-1-Day-Left & CSU-1-Day-Right

Fig. 12. PR curves of the compared methods on image sequence pairs with
viewpoint variations.

Summer-Left and North-Winter-Right, so they were used in
the third group. In Nordland Dataset, there are environmental
condition variations between Nordland-Spring and Nordland-
Winter, so they were used in the second group. In CSU-NAO
Dataset, there are viewpoint variations between CSU-1-Day-
Left and CSU-1-Day-Right, so they were used in the first
group. There are both variations between CSU-2-Day-Left and
CSU-2-Night-Right, so they were used in the third group. The
comparison results are summarized in the following.

1) Visual Place Recognition with Viewpoint Variations:
In this group, Garden-Day-Left and CSU-1-Day-Left were
for reference, while Garden-Day-Right and CSU-1-Day-Right
were for query. Fig. 12 shows the PR curves of the compared
methods. From Fig. 12, the performance of our framework
is better than that of the five competitors on both image
sequence pairs. This is because these competitors directly use
the extracted features to calculate the distance between two



9

0 0.2 0.4 0.6 0.8 1

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

on

FAB-MAP
VLAD-based System(16384bits)
SeqSLAM
SMART
Sequence-based+CNN 
Our Framework

(a) Garden-Day-Right & Garden-Night-Right

0 0.2 0.4 0.6 0.8 1

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

on

FAB-MAP
VLAD-based System(16384bits)
SeqSLAM
SMART
Sequence-based+CNN 
Our Framework

(b) Nordland-Spring & Nordland-Winter

Fig. 13. PR curves of the compared methods on image sequence pairs with
environmental condition variations.

images, which are only robust to slight viewpoint variations.
Unlike them, our framework detects and removes the features
of non-overlap contents in two images, and uses the remaining
features to calculate the distance of these two images. In
this way, the influence of extreme view variations can be
effectively ameliorated. We also compared our framework with
the method in [43] which is robust to extreme viewpoint
variations. As can be seen in Fig. 12, when using CSU-1-Day-
Left and CSU-1-Day-Right, the performance of this method
is comparable to that of our framework. However, when
using Garden-Day-Left and Garden-Day-Right, our framework
performs better. The reason is the following. Images in Garden
Point Dataset were collected by a human who is more sen-
sitive to various interference factors in environments than the
humanoid robot NAO used in CSU-NAO Dataset. Such human
sensitivity will cause obvious camera shift. Therefore, there are
extreme viewpoint variations caused by camera shift between
Garden-Day-Left and Garden-Day-Right. Our framework can
reduce the influence of such extreme viewpoint variations by
removing the features of non-overlap contents in two images.
However, the method in [43] focuses on dealing with extreme
viewpoint variations mainly caused by camera rotation rather
than camera shift, thus resulting in performance degradation.

2) Visual Place Recognition with Environmental Condition
Variations: In this group, Garden-Day-Right and Nordland-
Spring were for reference, while Garden-Night-Right and
Nordland-Winter were for query. Fig. 13 shows the PR curves
of the compared methods. As can be seen, our framework
performs the best on both image sequence pairs. The rea-
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(b) North-Summer-Left & North-Winter-Right
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(c) CSU-1-Day-Left & CSU-2-Night-Right

Fig. 14. PR curves of the compared methods on image sequence pairs with
both viewpoint variations and environmental condition variations.

sons are the following. Single-image-based competitors (i.e.,
FAB-MAP and VLAD-based System(16384bits)) cannot deal
with environmental condition variations. In addition, three
image-sequence-based competitors (i.e., SeqSLAM, SMART,
and Sequence-based+CNN) only utilize the first property of
the minimum diagonal distribution to retrieve the matched
reference image sub-sequence. Unlike these three image-
sequence-based competitors, our framework uses both prop-
erties of the minimum diagonal distribution to retrieve the
matched reference image sub-sequence, which is more robust
to extreme environmental condition variations. On the other
hand, it can be seen that different types of extreme environ-
mental condition variations lead to different performance of
the image-sequence-based methods. For example, there are
illumination changes between Garden-Day-Right and Garden-
Night-Right. On this image sequence pair, SMART and SeqS-
LAM exhibit poor performance. There are seasonal changes
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TABLE IV
COMPARISON OF THE MAXIMUM RECALL AT 100% PRECISION

Experiment Image Sequence Pair Method Precision (%) Recall (%)

Visual Place Recognition
with Viewpoint Variations

Garden-Day-Left
& Garden-Day-Right

FAB-MAP 100 2
VLAD-based System(16384bits) 100 19.5

SeqSLAM 100 1
SMART 100 13

Sequence-based+CNN 100 45
Method in [43] 100 1
Our Framework 100 46

CSU-1-Day-Left
& CSU-1-Day-Right

FAB-MAP 100 14.3
VLAD-based System(16384bits) 100 59

SeqSLAM 100 25.9
SMART 100 12.5

Sequence-based+CNN 100 67.9
Method in [43] 100 75
Our Framework 100 91

Visual Place Recognition
with Environmental Condition Variations

Garden-Day-Right
& Garden-Night-Right

FAB-MAP 100 N/A
VLAD-based System(16384bits) 100 2.5

SeqSLAM 100 3
SMART 100 5

Sequence-Based+CNN 100 48
Our Framework 100 63

Nordland-Spring
& Nordland-Winter

FAB-MAP 100 N/A
VLAD-based System(16384bits) 100 2

SeqSLAM 100 4.6
SMART 100 4.4

Sequence-based+CNN 100 9
Our Framework 100 22.9

Visual Place Recognition with Both Viewpoints
Variations and Environmental Condition Variations

Garden-Day-Left
& Garden-Night-Right

FAB-MAP 100 N/A
VLAD-based System(16384bits) 100 N/A

SeqSLAM 100 N/A
SMART 100 N/A

Sequence-based+CNN 100 14
Our Framework 100 67.5

North-Summer-Left
& North-Winter-Right

FAB-MAP 100 N/A
VLAD-based System(16384bits) 100 17

SeqSLAM 100 31.9
SMART 100 47.1

Sequence-based+CNN 100 10
Our Framework 100 78.4

CSU-2-Day-Left
& CSU-2-Night-Right

FAB-MAP 100 N/A
VLAD-based System(16384bits) 100 11

SeqSLAM 100 16
SMART 100 1

Sequence-based+CNN 100 41
Our Framework 100 90

between Nordland-Spring and Nordland-Winter. On this image
sequence pair, the performance of Sequence-based+CNN is
poor. However, there is little performance degradation of our
framework on these two image sequence pairs, which validates
the robustness of our framework to different types of extreme
environmental condition variations.

3) Visual Place Recognition with Both Viewpoint Varia-
tions and Environmental Condition Variations: In this group,
Garden-Day-Left, North-Summer-Left, and CSU-2-Day-Left
were for reference, while Garden-Night-Right, North-Winter-
Right, and CSU-2-Night-Right were for query. Fig. 14 gives
the PR curves of the compared methods. As shown in Fig. 14,
our framework also obtains the best results. The reason may
be that, as mentioned previously, other compared methods are
either robust to only one type of variation or have a limited
ability to deal with both variations.

In recent visual place recognition systems, the maximum
recall at 100% precision has been frequently used for perfor-
mance evaluation, as introducing false recognition into systems
may cause catastrophic failure in practical tasks [4]. Therefore,

we also compared the maximum recall at 100% precision of
the compared methods in the three groups of experiments,
which is shown in Table IV. In Table IV, “N/A” represents
that the corresponding method cannot achieve 100% precision.
From Table IV, our framework consistently maintains the
highest recall at 100% precision in all experiments, which
demonstrates that our framework has the potential to provide
high-accuracy visual place recognition.

B. Effectiveness of ReNOF
In order to test the effectiveness of ReNOF, we compared

the performance of our framework with and without ReNOF
for visual place recognition by using Nordland Dataset. In
this dataset, Nordland-Spring was for reference and Nordland-
Winter was for query. We simulated viewpoint variations
between Nordland-Spring and Nordland-Winter by moving
all the images in Nordland-Winter to the right by the same
distance. Such moving will generate non-overlap contents in
these two image sequences. Then, we determined the degree of
viewpoint variations based on the ratio of non-overlap contents
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(c) 12.5% non-overlap contents
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(d) 16% non-overlap contents

Fig. 15. PR curves of our framework with and without ReNOF on Nordland Dataset. The ratios of non-overlap contents are 7.5%, 10%, 12.5%, and 16%,
respectively, which reflect different degree of viewpoint variations in Nordland Dataset.

TABLE V
RUNTIME OF DEEP FEATURE EXTRACTION AND DISTANCE CALCULATION

BETWEEN TWO IMAGES IN OUR FRAMEWORK

Operation Runtime
Extracting the deep features of one image 30ms

Calculating the distance between two images 0.08ms

to an entire image. The four ratios were 7.5%, 10%, 12.5%,
and 16%, respectively. Fig. 15 shows the performance compar-
ison. From Fig. 15, in the case of 7.5% non-overlap contents,
the effect of ReNOF is not significant. With the increase of
the ratio, our framework with ReNOF performs better than our
framework without ReNOF, which demonstrates that ReNOF
is able to effectively remove the deep features of non-overlap
contents.

C. Analysis of Runtime

We also carried out the analysis of runtime by using the
Matlab implementation on a desktop with a Nvidia1080 GPU.
In general, deep feature extraction of one image and distance
calculation between two images are the most time-consuming
operations; thus, we only provided the runtime of them. Table
V summarizes their runtime. Based on them, for a reference
image sequence with 1000 images, it takes about 120ms for
our framework to retrieve a query image sequence. As a
consequence, our framework can run at 8.3 Hz for the dataset
with 1000 images, which has the potential to satisfy real-time
demands.

VI. CONCLUSION

In this paper, we proposed a robust image-sequence-based
framework for visual place recognition in changing environ-
ments. Our framework involved two main parts. The first part
was to calculate the distance between two images from a refer-
ence image sequence and a query image sequence by removing
the deep features of non-overlap contents. The second part was
to find the matched reference image sub-sequence to the query
image sequence by retrieving the distance sub-matrix with the
minimum diagonal distribution. Our framework has the follow-
ing advantages: 1) it is robust to extreme viewpoint variations
and extreme environmental condition variations; 2) it has the
potential to provide high-accuracy visual place recognition
in practical tasks; and 3) it satisfies real-time requirements.

On the other hand, it should be noted that our framework
relies on image sequence matching. However, there may be
some situations where image sequences cannot be acquired for
some reasons (e.g., limited experimental conditions or special
scenes). In these situations, our framework is not applicable.

There are still some problems to be solved in visual place
recognition. For example, in the process of robot movement,
the number of images in the reference image dataset will
increase, which may lead to an increase in the time cost of
image retrieval in visual place recognition. Therefore, it is
meaningful to design methods that can ensure the time cost of
image retrieval is not significantly affected by the number of
images in the reference image dataset. Additionally, in practi-
cal tasks, visual place recognition may be affected by dynamic
objects such as moving cars and pedestrians. Therefore, it is
useful to include object recognition in visual place recognition.
By doing this, the recognized static objects (e.g., buildings
and trees) are used for visual place recognition, while the
recognized dynamic objects (e.g., cars and pedestrians) are
ignored. In the future, we will study how to further refine the
positions of non-overlap contents to the pixel level, which can
make the images from the same places more similar.
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